Роль микроэлементов в жизни растений. Макро — и микроэлементы в жизни растений: роль и значение

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Микроудобрения: виды, особенности, роль в жизни растений. Роль микроэлементов в жизни растений


виды, особенности, роль микроэлементов в жизни растений, органические соли, хелатные органические соединения, минералы, корневая и внекорневая подкормки

12.10.2017

Чтобы получить высокий и качественный урожай от выращиваемых сельскохозяйственных культур, необходимо создать им не только защиту от воздействия различных неблагоприятных факторов и вредоносных объектов, но и обеспечить растения легкодоступным, оптимально сбалансированным питанием. Наряду с хорошо известными основными элементами питания – азотом, фосфором и калием, образующими группу макроэлементов, культуры нуждаются в разнообразных минеральных добавках, так называемых микроэлементах. 

Роль микроэлементов в жизни растений чрезвычайно важна, хотя потребность в них не исчисляется большими количествами. Они участвуют в биохимических процессах (фотосинтез, биосинтез хлорофилла, транспорт сахаров), влияют на деятельность ферментов, улеводный и азотистый обмен. Даже незначительные добавки микроудобрений могут оказывать благотворное действие, улучшая защитные свойства культур, их устойчивость к климатическим особенностям (засухо-, жаро- и холодостойкость), поражению заболеваниями. У растений, получивших своевременное и полное обеспечение микроэлементами, активизируются обменные процессы, отмечается повышенное содержание углеводов (крахмала и сахаров), белков, накопление витаминов, жиров. 

Не всегда и не сразу дефицит того или иного минерала может выражаться во внешних проявлениях. В некоторых случаях установить нехватку элементов питания можно только с помощью лабораторных исследований почвенного состава. Необходимо также учитывать обоюдное влияние макро- и микроэлементов на рост и развитие растений. Недостаток одного из компонентов органического питания негативно влияет на степень доступности минералов и их усваиваемости растительными организмами. Наблюдается и обратная связь, когда нехватка микроэлемента вызывает избыточное или недостаточное накопление органических веществ в культурах, что также может негативно отразиться на их развитии. 

Известны восемь наиболее необходимых для жизнедеятельности растений микроэлементов: железо, медь, бор, магний, цинк, марганец, кобальт, молибден. Отдельно можно выделить серу, которая относится к мезоэлементам. 

Для некоторых типов почв изначально характерен недостаток какого-либо из них. Так, плодородные, богатые органикой грунты отличаются низким содержанием в них меди, а на дерновых почвах растения будут ощущать острую нехватку молибдена, в щелочных грунтах снижается доступность бора, меди, марганца, а в кислых отмечается повышенная усваиваемость марганца, который в больших количествах токсичен для растений. Учитывая такие особенности, в каждом конкретном случае необходимо проводить предварительную обработку (или обогащение) посевных площадей. При этом следует также учитывать потребности каждого вида растений в конкретном микроэлементе, поскольку для разных культур они могут сильно отличаться. Основной недостаток микроэлементов, находящихся в почве – их труднодоступность для потребления растениями. Поэтому, чтобы восполнить недостающие в питании растений микроэлементы, применяют корневые либо внекорневые подкормки культур микроудобрениями.

Микроудобрения представляют собой комплексные химические соединения, содержащие вещества, необходимые для полноценного роста и развития растений, находящиеся в доступной для них форме. Их значение в жизни культур огромно: своевременное и сбалансированное применение микроудобрений позволяет увеличить урожайность на 10 – 20%. Наиболее благоприятными для потребления и усвоения растениями являются устойчивые химические соединения микроэлементов (в виде катионов металлов) с молекулами органических кислот (природного или синтетического происхождения). Их называют хелатами. 

Такие продукты по своему составу максимально приближены к веществам, из которых состоят растительные организмы. К примеру, хорошо всем известные составляющие растений хлорофилл или витамин В12 представляют собой хелаты. К тому же хелатные удобрения совершенно не токсичны и легко растворимы в воде, поэтому полностью поглощаются и усваиваются. Доступность удобрений хелатной формы в 5 – 10 раз выше по сравнению с удобрениями в виде неорганических солей. Если обычные соли микроэлементов могут вступать в различные побочные реакции с элементами почвы, то хелаты не связываются почвой и беспроблемно поглощаются культурами, усваиваясь практически полностью. Их использование для внекорневых подкормок имеет ряд существенных преимуществ. Молекулы хелатных соединений, попадая на пластину листа, поглощаются поверхностью и попадают непосредственно в растение, не накапливаясь снаружи. Единственный недостаток хелатов – их относительно высокая стоимость по сравнению с остальными видами микроудобрений.

Микроудобрения, в зависимости от формы их производства и способа воздействия на растения, различают по видам. К тому же они отличаются нормами расхода, технологией внесения и нюансами применения. Первую группу составляют соли органических кислот. Они наиболее финансово доступны, но малорастворимы. Их целесообразно применять лишь на грунтах с кислой и слабокислой реакцией рН. Соли гуминовых кислот образуют вторую группу. Их степень растворимости гораздо выше, но количество микроэлементов в таких солях незначительно, и даже двукратное применение за сезон не обеспечивает потребность культур в них. Третья группа – комплексные микроудобрения. Они представляют собой труднорастворимые капсулы, способные подпитывать растения необходимыми элементами в течение длительного периода. Современные биохимические разработки позволили создать новое поколение удобрений, представляющих собой органический хелатный комплекс (соединения органических веществ с ионами металла именно в такой форме, в какой они присутствуют во всех живых организмах) и образующих четвертую группу. Применение хелатов способствует увеличению адаптивного потенциала растений, стимулированию их генетических возможностей, что проявляется в повышении урожайности, его качества, устойчивости к влиянию неблагоприятных факторов. 

  

Минеральные микроудобрения также классифицируют по основному содержащемуся компоненту. Различают борные, медные, цинковые, молибденовые, кобальтовые, марганцевые, ванадийсодержащие, йодсодержащие удобрения и пр. Они представляют собой неорганические кислоты, соли металлов, сульфаты, применение которых должно быть строго дозированным во избежание накопления излишков этих химикатов как в почве, так и в частях растений. Более популярными являются полимикроудобрения, в составе которых находятся два и более микроэлемента. Их использование оказывает на растения разностороннее действие и несколько упрощает процедуру подкормок по сравнению с использованием мономикроудобрений. Наиболее применимы в сельскохозяйственной индустрии пять видов микроудобрений: борные, медные, цинковые, марганцевые, молибденовые. 

Содержание в почве достаточного количества бора необходимо для культур в течение всего их жизненного цикла. Но особенно важное значение имеет этот микроэлемент в начальный период развития растения, поэтому борные удобрения часто применяют для предпосевной обработки семян зерновых и плодоносящих культур. Кроме того, содержащие бор вещества вносят на известкованные торфяные, дерновые, заболоченные почвы, выщелоченные черноземы, супесчаники и легкие песчаные грунты. Наиболее известные из борсодержащих удобрений: борная кислота, бура, борный суперфосфат и пр. 

Медные удобрения, основным из которых является медный купорос, применяются для обработки почвы (на заболоченных нейтральных или слабо-щелочных участках, а также на постоянно переувлажненных территориях), предпосевной обработки семян и внекорневых подкормок сельскохозяйственных культур, исключая картофель и капусту. Этот элемент влияет на развитие и вступление растений в фазу цветения. Медь участвует в процессе фотосинтеза, делении клеток, синтезе сахаров и их транспортировке из листьев. Достаточное количество микроэлемента в питании растений активизирует накопление витамина С в плодах и овощах, увеличивает содержание белка в зерновых культурах и сахаров – в корнеплодах. Медь способствует повышению иммунитета растений к грибковым и бактериальным заболеваниям. 

Цинк входит в состав более 30 растительных ферментов, участвующих в процессах дыхания и фотосинтеза. Его недостаток в питании существенно сказывается на темпах роста культур. Кроме того, цинк нормализует фосфорный обмен и способствует фиксации углерода. Внесение цинковых удобрений (сульфат цинка, цинковая грязь, отходы медеплавильных заводов) необходимо, как правило, на карбонатных почвах и известкованных участках с нейтральной и щелочной реакцией рН. Это позволяет повысить урожайность и качественные показатели продукции при выращивании зернобобовых культур (горох, фасоль), сахарной свеклы, овса, льна, кукурузы и др. 

Марганцевые удобрения (сернокислый марганец в 0,05%-ном растворе) применяют для внесения в почву (песчаные, супесчаные грунты, черноземы с нейтральной или щелочной реакцией рН) и предпосевной обработки семян. Этот микроэлемент участвует в фотосинтезе, он активирует около 35 ферментов, влияющих на окислительно-восстановительные процессы. Марганец участвует в азотном обмене (восстановление нитратов до аммиака) и связан с синтезом белка. Его дефицит приводит к быстрому разрушению хлорофилла под действием света. При достаточном обеспечении растений марганцем урожайность зерновых, овощных (в особенности сахарной свеклы), ягодных культур увеличивается на 8 – 10 %.   

Молибден участвует в фиксации атмосферного азота, влияет на стабилизацию структуры нуклеиновых кислот, совместно с железом выполняет каталитическую и структурную функцию, входя в ферментный комплекс нитрогеназы. Его недостаток приводит к резкому снижению количества содержащейся в растениях аскорбиновой кислоты, негативным изменениям в азотном обмене (снижение активности синтеза белка, уменьшение содержания аминокислот и амидов). Молибденовые удобрения (молибденовый суперфосфат, молибденово-кислый аммоний) применяют на почвах с кислой реакцией рН (песчаные, супесчаные, торфяники, дерново-подзолистые, сильноподзолистые, серые лесные, выщелоченные черноземы). Их используют для предпосевной обработки семян (сои, гороха, вики, клевера, люцерны и др.), применяется также внесение молибдена в почву одновременно с посевами. В период бутонизации и начала цветения культуры особенно остро нуждаются в достаточном количестве молибдена, поэтому внекорневые подкормки в это время позволяют повысить урожайность зерновых и зернобобовых культур на 15 – 20%, с одновременным увеличением содержания белка и каротина в продукции, а показатели урожайности сена возрастают на 20 – 25%.    

agrostory.com

Макро - и микроэлементы в жизни растений: роль и значение

Некоторые макро- и микроэлементы для питания растения получают из почвы, а другие в ходе агротехнических мероприятий обязательно нужно вносить в качестве подкормок.

Основные макроэлементы для питания растений

Итак, какова же роль макро- и микроэлементов в жизни растений, и каково их влияние на рост культур?

Растениям, как и всем живым существам, необходимо питание. Биологи выделяют десять основных питательных элементов, необходимых для нормального роста и развития растений, так называемых макроэлементов, кислород, водород, углерод, азот, фосфор, калий, кальций, магний, сера, железо. Но растениям нужны и микроэлементы, правда, в микродозах. К ним относятся бор, натрий, кремний, цинк, марганец, медь и некоторые другие.

Большую часть питательных веществ растения черпают из почвы. Однако они, в отличие от животных, могут добывать себе «пищу» и прямо из воздуха. Это касается, прежде всего, углерода и кислорода. Затем идет азот, являющийся основным компонентом воздуха, которым мы дышим. Так почему же растениям этим не воспользоваться?

Кислород, углерод и водород — основные строительные материалы, из которых состоят ткани растений. Как уже было сказано, кислород и углерод растения берут из воздуха, а водород получают, разлагая воду при фотосинтезе. Так что садоводам не стоит беспокоиться, как обеспечить своих питомцев этими элементами. Трудности могут возникнуть только у владельцев участков, расположенных рядом с пыльными дорогами, потому что слой пыли затрудняет поступление питательных веществ из воздуха.

Азот — один из важнейших макроэлементов в питании растений, потребность в нем чрезвычайно велика. Поэтому все руководства по агротехнике призывают восполнять истощающиеся запасы почвы. Однако нужно сказать, что чрезмерное рвение в подкормке своих питомцев скорее вредит им, чем идет во благо. Во-первых, у перекормленных растений удлиняется период вегетации, луковицы не успевают вызреть, что плохо сказывается на дальнейшей перезимовке. Во-вторых, замечено, что растения, получающие избыток удобрений, в особенности азота, в последующие годы чаще заболевают, подобно тому как изнеженный ребенок подхватывает всяческие простуды. Так что, подумайте, прежде чем закупать селитру и прочие азотные удобрения в больших количествах.

Фосфор, в противоположность азоту, сокращает вегетационный период. Причем, количество азота и фосфора в питании растения должно быть уравновешено, иначе при недостатке фосфора резко усилится действие азота, словно бы он содержится в избытке. Роль этого макроэлемента в жизни растений столь существенна, что при дефиците фосфора у образуется меньше цветков, а их окраска становится тусклой и малопривлекательной.

Калий способствует хорошему общему состоянию растений, усиливает их устойчивость к низким температурам. Особенно много калия требуется молодым растениям. Проявления дефицита этого элемента не столь заметны, как недостаток других макроэлементов. Растения, испытывающие недостаток калия, плохо переносят засуху и нередко гибнут из-за неблагоприятных погодных условий.

Кальций растения используют как строительный материал. При недостатке кальция страдают корни: медленно растут, образуют мало боковых корешков и корневых волосков. Стебли бывают искривленными, нередко полегают. На кислых почвах, обычно замокающих и маловоздушных, растения испытывают, как правило, недостаток этого элемента. Улучшить такие почвы можно путем известкования, а также осушения и рыхления. При избытке кальция растения плохо усваивают фосфор, железо, магний и другие элементы. В этом случае в почву рекомендуется добавлять торф. Внешним проявлением как недостатка, так и избытка кальция является хлороз (бледность листьев).

Магний нужен для образования в листьях хлорофилла, без которого невозможны процессы фотосинтеза. Потребность растений в магнии невелика, в большинстве случаев вполне достаточно его естественного содержания в почве. Нехватка этого элемента обычно наблюдается при избытке кальция, который ограничивает усвоение магния растением. Внешне это проявляется типичным хлорозом: листья бледнеют и даже желтеют. Магний, кроме того, важен для цветения и созревания семян. Если снизить количество кальция в почве, то обычно нормализуется и усвоение растениями магния.

Железо является незаменимым элементом для фотосинтеза (так как участвует в образовании хлорофилла) и протекания других жизненно важных процессов. Обычно вполне достаточно естественного содержания этого элемента в почве. Иногда растения испытывают дефицит железа из-за избыточного содержания кальция в почве. При этом листья становятся бледными.

Влияние микроэлементов на рост растений

Микроэлементы для растений не менее важны, чем макроэлементы.

Особое место занимает бор. При нехватке бора луковицы цветочных растений мельчают. Значение этого микроэлемента в жизни растений настолько высоко, что у декоративных кустарников его недостаток проявляется засыханием верхушек побегов, слабым цветением, появлением некрупных кожистых скрученных листьев.

Алюминий участвует в формировании цветков и влияет на их окраску.

Для роста растений необходим микроэлемент цинк, при его недостатке замедляется развитие культур, и растения получаются приземистыми. Особенно велика роль этого микроэлемента для таких растений, как гладиолусы.

Медь имеет для растений такое же значение, как и железо. При ее недостатке на листьях появляются белые пятна.

Молибден способствует росту корней и нормальному развитию всего растения. Этот микроэлемент в жизни растений не имеет определяющего значения и нужен в самых минимальных количествах. Его недостаток в почве у большинства растений практически никак не проявляется. Исключением являются тюльпаны.

Роль микроэлементов в жизни растений велика, но нужно их совсем немного. Бывает вполне достаточно их естественного содержания в почве. Обычно приходится вносить лишь медь, бор, молибден, цинк, и то лишь в тех садах, где в результате интенсивного выращивания культур расход питательных веществ повышен. При введении микроэлемента медь для питания растений используется медный купорос, который к тому же служит для профилактики грибных заболеваний. Дефицит марганца устраняют при помощи растворов марганцовки различной концентрации, которые, кроме того, помогают от болезней и вредителей. Поливы чередуют с опрыскиваниями. Концентрация микроэлементов должна быть невысокой — не более 1—2 г на 10 л воды. В состав современных комплексных удобрений, как правило, входят микроэлементы (смотрите внимательно на этикетки).

В течение последних двадцати-тридцати лет происходит постепенное изменение традиционных взглядов на подготовку почвы к посадке растений, в том числе на внесение удобрений. Упор делается на упрощение обработки почвы. В старые, довольно сложные рецептуры садовой земли вначале вносились лишь небольшие коррективы, вызванные недостатком тех или иных составных частей. При этом обнаружилось, что роль отдельных микроэлементов в питании растений могут брать на себя другие вещества, а некоторые можно и вовсе и вовсе исключать. При этом растения будут по-прежнему хорошо развиваться. Да и регулярное внесение минеральных удобрений не стало казаться столь уж бесспорной необходимостью.

Растения нуждаются в питании, а почвы со временем истощаются. Но не нужно сразу бросаться в магазин за пакетами с модными названиями. Значение микроэлементов для растений очень велико, но их количество не должно быть чрезмерным. Нехватка или избыток какого-то одного элемента сразу же сказывается на усвоении других. Это значит, что внесение искусственных удобрений далеко не всегда является полезным, ведь лишь в редких случаях можно достичь сбалансированного сочетания отдельных компонентов. Тем же, кто не может отказаться от удобрений, советуем для подкормок пользоваться комплексными удобрениями, содержащими микроэлементы.

Влияние микроэлементов на растения бесспорно, ведь без них удобрения действуют гораздо хуже или вообще не действуют.

Вносить же удобрения лучше в растворе. Для этого указанное в инструкции количество (обычно 20 г) нужно растворить в 10 л воды и внести на 1 м2 площади. Затем рекомендуется еще раз полить водой для того, чтобы питательный раствор проник глубже. Минеральные удобрения помогут получить большие урожаи здоровых крупных луковиц тюльпанов, гиацинтов и других весенних цветов. Да и сами растения будут отличаться декоративностью.

Неплохо зарекомендовал себя способ «мягкого» удобрения. Со школьных лет мы знаем о круговороте воды в природе, а ведь с питательными веществами происходит примерно то же самое. Вся зеленая масса, образованная за лето, осенью возвращается в землю. Продукты жизнедеятельности организмов, населяющих почву, в конечном итоге служат пищей растениям. Кроме того, умирая, подземные обитатели возвращают в почву все, что взяли за свою жизнь. И так до бесконечности.

Источник

1agronom.ru

Роль микроэлементов в жизни растений, дефицит микроэлементов

Становятся все более очевидным, что множество следовых (микро-) элементов играет весьма большую роль в вопросе здоровья растений. Нормальное развитие растений  требует наличия  следующих химических элементов: углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера,  железо, марганец, бор, медь и цинк.

Животным, ко всему прочему, нужны натрий, хлор, йод, кобальт. Количества, необходимые для нормального развития растений и животных, весьма сильно варьируют. В минимальных количествах  требуется железо, марганец,  бор, медь, цинк, йод и кобальт. В больших количествах эти элементы токсичны.

В то время как продолжительное использование удобрений истощает  запас жизненно необходимых  веществ, использование конского(коровьего) навоза, лесной подстилки, прелой листвы,  древесной золы и торфа имеет тенденцию к их пополнению. Лесная подстилка, прелая листва и древесная зола содержит многие существенно важные элементы именно в тех количествах, которые необходимы  растениям.

Нежелательные элементы самонейтрализуются. Кроме того,  многие элементы находятся именно в  растворимой, необходимой растениям форме (например, марганец). В специальных долговременных экспериментах  в Англии было выяснено, что внесение навоза поддерживает плодородие  почв в течение  в течение долгого периода времени, чем использование химических удобрений.

Многочисленные химические элементы, входящие  в состав навоза, являются  важным фактором поддерживания плодородия. Однако может случиться, что  у садоводов не будет достаточного запаса органики. Вместо  навоза и листвы можно использовать компост, в особенности обогащенный природными добавками для поддержания плодородия.

Восприимчивость   растений  к определенным  болезнетворным грибам и вредным насекомым  может также объясняться  дефицитом жизненно важных  элементов. В сфере контроля заболеваний  и насекомых возможна их профилактика путем добавок  дефицитных   элементов в почву, и это путь представляется весьма экономичным.

Как только деревья или кустарники  проявляют признаки заболевания, которые не могут быть вызваны  насекомыми, сверьтесь   со следующим списком симптомов до дефициту  питательных элементов.

Список дефицита микроэлементов:

Дефицит азота. Проверьте  цвет листьев на старых ветвях. При дефиците азота они становятся  желто-зелеными, а также  можно заметить красноватые и красновато-фиолетовые  размытые пятна. Если не сделать ничего для восполнения дефицита, листья мельчают, а ветви становятся тонкими и хрупкими.

Дефицит фосфора. Молодые ветви становятся  бледно-лиловыми на вид; на травянистых стеблях  и черенках листьев появляется  лиловый цвет; листья мельчают и приобретают темно-зеленый цвет.  Старые листья становятся  пятнистыми: попеременно светлые  и темно-зеленые пятня. На зрелых ветвях оказываются  одиночные бронзовые листья.

Дефицит калия. Ключевым признаком дефицита калия  является фиолетовый оттенок и скручивание  краев листьев. Омертвевшие пятна появляются  на зрелых листьях, однако при серьезном  дефиците затронуты бывают даже молодые листья. Листва персика  часто сморщивается, а ветви становятся необычно длинными и тонкими.

Дефицит магния. На больших старых листьях появляются зоны омертвения; они телесного цвета, не доходят до краев  листа. Внимательно присмотритесь, не поникают ли листья, сначала на старых ветвях, а затем  на приросте  текущего сезона. Опадение листьев может быть почти полным.

Дефицит цинка. Признаки недостатка   как цинка , так и магния  вполне схожи. Дефицит каждого из этих элементов   имеет результатом опадение листьев (вплоть до оставшейся концевой розетки мелких скрученных  листочков). У цитрусовых наблюдается измельчение  плодов и их гладкокожесть. Возможны также резкие  контрасты в окраске листьев: темно – зеленые жилки и желтая ткань.

Дефицит кальция. Дефицит, как кальция, так и бора  проявляется  сначала  у молодой поросли. Мертвые пятна заметны на молодых нежных листьях – на кончиках и краях. Позже ветви  отмирают, а корни также повреждаются.

Дефицит бора. Ярким признаком этого дефицита   является  нарастание внутренней корки  у яблок. В начале созревания летом у плодов внутри мякоти появляются твердые  коричневые пятна. По мере созревания  эти пятна  размягчаются  и растут. Листья могут  не проявлять никаких признаков.

Дефицит железа и алюминия. С повышением  дозы извести в почве возрастает недоступность  растениям соединений железа и алюминия. Этих элементов  в почве может быть достаточно, однако   они находятся в нерастворимой  форме. Признак этого дефицита —  пожелтение листьев  с коричневыми пятнами, потеря плодами вкуса  и аромата.

Для исправления этих состояний необходимо:

По азоту. Применение хлопкового жмыха, кровяной муки, сырой костной муки, рыбных отходов, сена бобовых либо какого – то азотного комплексного удобрения.

По фосфору. Добавка сырого или коллоидного фосфорита, костной муки, рыбных отходов, птичьего помета или отходов  сахарного тростника.

По калию. Применение гранитной пыли, глауконитового песка или крошки,  древесной золы,  морских водорослей, цедры цитрусовых.

По магнию. Доломит или сырой фосфорит – крошка.

По цинку. Сырой фосфорит.

По кальцию. Сырой пульверизированный известняк.

По бору. Сырой фосфорит – крошка (избегайте  извести, добавляйте органику вроде торфа, опилок или перемолотых дубовых листьев).

По железу и алюминию. Глауконитовая крошка (избегайте извести, используйте  кислую органику, рекомендованную  специально в этом случае).

 
ПОХОЖИЕ ЗАПИСИ

chudoogorod.ru

Роль микроэлементов в жизни растений • удобрения Adaptamin

Элемент

Функция

Азот

N

Основной элемент образования органического вещества. Участвует в  построении белков и многих витаминов, особенно  группы В. Регулирует рост вегетативной массы. Определяет уровень урожайности.

Фосфор

P

Элемент энергетического обеспечения (АТФ, АДФ). Ускоряет развитие растений, активирует рост корневой системы и генеративных органов. Стимулирует цветение и плодоношение,   повышает зимостойкость и засухоустойчивость.

Калий

K

Элемент молодости клеток. Регулятор тургора и роста клетки. Сохраняет и удерживает воду.  Способствует образованию сахаров и их миграции. Повышает морозо- и засухоустойчивость, усиливает иммунитет.

Магний

Mg

Элемент переноса энергии. Входит в состав хлорофилла, участвует в фотосинтезе, углеводном обмене, действии ферментов и в образовании плодов.  Активирует окислительно-восстановительные процессы.

Кальций

Ca

 Регулятор мобилизации запасных питательных веществ. Активизирует питание проростков семян. Стимулирует рост растения и развитие корневой системы. Усиливает обмен веществ, активирует ферменты, участвует в построении некоторых белков. Укрепляет клеточные стенки. Повышает вязкость протоплазмы. В  ряде процессов антипод калия.

Сера

S

Входит в состав аминокислот, белков, многих витаминов, фитонцидов, эфирных масел. Участвует в азотном и белковом обмене. Влияет на окислительно-восстанови-тельные процессы. 

Железо

Fe

Регулирует фотосинтез, дыхание, белковый обмен и биосинтез ростовых веществ – ауксинов. Входит в состав гемосодержащих ферментов: каталазы, пероксидазы и цитохромоксидазы — главных катализаторов всех окислительно-восстановительных процессов. Участвует в синтезе хлорофилла, метаболизме азота и серы, делении и росте клетки. Содержится в хлоропластах.

Марганец

Mn

Мощный регулятор фотосинтеза, дыхания, углеводного и белкового обмена. Входит в состав многих ферментов. Способствует увеличению содержания хлорофилла в листьях, синтезу аскорбиновой кислоты, энергизирующих кислот и сахаров.  Усиливает гидролитические процессы. Ускоряет миграцию аминокислот и сахаров из листьев в семена и плоды. Регулирует водный баланс, повышает устойчивость к неблагоприятным факторам, влияет на плодоношение. Ускоряет  созревание. Уменьшает полегаемость. Регулирует окисление железа. Активирует восстановление нитритов и гидроксиламина до аммонийных солей и аминов. Содержится в зародышах, оболочках семян и зеленых листьях.

Цинк

Zn

Регулирует липидный, белковый, углеводный, фосфорный обмен, биосинтез витаминов А, В, С, Р, каротина и фолиевой кислоты, ростовых веществ — ауксинов. Катализирует метаболизм аминокислот триптофана и триптамина, нуклеиновых кислот и циклы энергообразования. Обеспечивает иммунитет, процессы роста и репродукции. Повышает жаро-, засухо-, морозо- и солеустойчивость растений. Участвует в построении 24 цинкозависимых энзимов, дыхательных ферментов цитохромов А и Б, цитохромоксидазы, алкогольдегидразы и глицилглициндипептидазы, утилизатора углекислого газа – карбоангидразы. При дефиците цинка  замедляется образование сахарозы, крахмала и гормонов роста, нарушается фосфорилирование глюкозы, образование жиров и белков, останавливается фотосинтез, тормозится деление клеток,  прерывается плодоношение. Повышает устойчивость к бактериальным и грибковым заболеваниям

Медь

Cu

Регулирует дыхание, фотосинтез, углеводный, белковый, водный обмен и концентрацию ростовых веществ. Повышает устойчивость к полеганию, засухо-, морозо-, и жароустойчивость. Активатор энзимов. Участвует в построении и стабилизации хлорофилла, антоциана, железопорфиринов, медьпротеидов, многочисленных окислительных ферментов: цитохромоксидазы, полифенол-,  ди-, амино- и аскорбиноксидазы, железосодержащей пероксидазы. Повышает водоудерживающую способность,  устойчивость к бактериальным и грибковым заболеваниям. Активизирует репродукцию. Улучшает аромат фруктов и овощей. 

Бор

B

Регулирует опыление и оплодотворение, углеводный и белковый обмен, количество фитогормонов — ауксинов и биофенолов. Управляет делением клеток, общим линейным ростом и развитием тканей. Участвует в синтезе РНК и ДНК, карбогидратном метаболизме, поглощении кальция и водообеспечении растений. Повышает устойчивость к грибковым, бактериальным и вирусным заболеваниям. Особенно  важен в периода вегетации. Способствует усилению роста пыльцевых трубок и прорастанию пыльцы, увеличению количества цветков, плодов и семян. При недостатке бора нарушается синтез, превращение и передвижение углеводов, формирование репродуктивных органов, оплодотворение (стерильность пыльцы) и плодоношение растений.

Молибден

Mo

Стимулирует фиксацию атмосферного азота. Регулирует азотный, углеводный и фосфорный обмен, синтез хлорофилла и витаминов. Участвует в синтезе нуклеиновых кислот (РНК и ДНК), витамина С и каротина. Регулирует фотосинтез и дыхание. При его недостатке  накапливаются токсичные нитраты. Входит в состав фермента нитраторедуктазы (молибдофлавопротеина),  восстанавливает нитраты  в амиды и амины, стимулирует синтез из них аминокислот и белка. Концентрируется в клубеньках бобовых, способствует их  росту, стимулирует фиксацию клубеньковыми бактериями атмосферного азота.

Кобальт

Co

Участвует в синтезе белков, нуклеиновых и жирных кислот, углеводов, метионина, фолиевой и аскорбиновой кислоты. Компонент витамина В12 и фермента транскарбоксилазы. Влияет на накопление в растениях азотистых веществ и углеводов,  ускоряет их отток из вегетативных органов в генеративные. Усиливает интенсивность дыхания и фотосинтеза, способствуя образованию хлорофилла, уменьшая его распад в темное время. Участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота. Стимулирует рост, развитие и продуктивность растений. Повышает общее содержание воды в клетка

adaptamin.com

Роль различных микроэлементов в жизни садовых растений

Железо – это основополагающая составная часть ферментов, на которых лежит ответственность за хлорофилл, а точнее – процессы его синтеза. Кроме того, без железа невозможно нормальное протекание дыхания и регуляции окислительно-восстановительного процесса у растений. Если жилки листа сохраняют зеленый оттенок. В то время как остальной лист начал внезапно желтеть, - это явный сигнал о дефиците железа. Впрочем, переизбыток данного элемента также нежелателен, ибо он является виновником дефицита фосфорных и марганцевых составляющих.

Ферменты растений также содержат марганец, отвечающий, как и железо, за окислительно-восстановительные процессы. При снижении урожайности или же резком ослаблении корневой системы стоит задуматься о вероятной нехватке данного элемента. На него же указывает и снижение иммунных характеристик определенных растений. Если его дефицит носит хронический характер, растение может подвергаться проявлениям некроза. Если же почвы на участке имеют повышенную кислотность, произвесткуйте их или внесите азотное удобрение для нейтрализации воздействия марганца.

Нормальное протекание белкового обмена, как, впрочем, и углеводного и фосфорного, невозможно без наличия достаточного количества цинка.

Цинк – очень важный элемент в составе наиболее значимых ферментов. Синтез витаминов сильно зависит от цинка, хотя и его переизбыток ни к чему хорошему не приводит. Если же цинка все же не хватает, ждите проявлений хлороза или доминирования мелколистности.

Без меди невозможно нормальное протекание процессов окисления, а также дыхания растений. Кроме того, медь – отличный биокатализатор. У растений, страдающих от дефицита меди, резко понижается способность синтезировать белок, что, в конечном счете, приводит к суховершинности – особенно этому подвержены плодовые культуры. Если кончики листьев неожиданно начали белеть, а окраска становится все менее интенсивной – это дефицит меди, и если его не восполнить, листва неминуемо погибнет. Если же меди в почве слишком много. Растение перестанет усваивать фосфор из почвы.

Когда растения вступают в фазу формирования генеративных органов, отвечающих за плодоношение, а также оплодотворения цветков, им не обойтись без бора. Если бор присутствует в необходимом растению количестве, завязываемость плодов выходит на более чем высокий уровень. Также соединения бора крайне важны для транспортировки сахаров, аскорбиновой кислоты, а также ростовых элементов от листвы к плодам.

Нормальное функционирование углеводного обмена также во многом зависимо от наличия бора. Если начинается нарушение углеводного обмена, сахар накапливается в лиственном покрове растения, на которое с удовольствием набрасываются различные вредители. Недостаток бора зачастую является источником начавшегося некроза листьев или, как минимум, их пожелтения и постепенной деформации. Также нехватка бора может быть причиной покрасневших лиственных жилок, опадания новообразованных завязей или скоропостижного опадания листвы.

Переходим к кобальту, который, как известно, входит в состав витамина В12. Если нет кобальта, данный витамин попросту не синтезируется в почве. Для обеспечения подвижности данного элемента в рамках нормы необходима нейтральная почва: в любом другом случае (имеется в виду отклонение) наблюдается резкое снижение подвижности элемента – совсем как при переизбытке удобрений органического происхождения.

И, конечно, невозможно не упомянуть о йоде, без которого не видать нам синтеза белка и аминокислот, в состав которых он, собственно говоря, и входит, как своих ушей. Если растения живут в перманентном состоянии йодного дефицита, их иммунитет снижается с ужасающей скоростью, а заболевания только и успевают атаковать на всех направлениях, ведь основными достоинствами йода являются его антибактериальный, фунгицидный (противогрибковый), а также противовирусный эффекты.

gardenstar.ru

Роль металлов и микроэлементов для растений

Тяжелые металлы (Cu, Ni, Со, Pb, Sn, Zn, Cd, Bi, Sb, Hg) относятся к микроэлементам. То есть химическим элементам, присутствующим в организмах в низких концентрациях (обычно тысячные доли процента и ниже). Изучение минерального питания растительных организмов включает в себя знакомство и с микроэлементами.

В настоящее время при помощи специальных, особо чувствительных методов удалось определить в составе организмов свыше 60 таких химических элементов. Однако можно утверждать, что названное число не является пределом и в состав организмов в самом деле входят все известные химические элементы и их изотопы, (как стабильные, так и радиоактивные).

Химические элементы, которые, входя в состав организмов растений, животных и человека, принимают участие в процессах обмена веществ и обладают выраженной биологической ролью, получили название биогенных элементов. К числу биоэлементов относятся: азот, водород, железо, йод, калий, кальций, кислород, кобальт, кремний, магний, марганец, медь, молибден, натрий, сера, стронций, углерод, фосфор, фтор, хлор, цинк.

Указанный перечень будет, несомненно, увеличиваться по мере роста наших знаний. Например, биогенное значение кобальта и молибдена определилось недавно. Некоторые элементы биогенны только по отношению к определенным классам, родам, а иногда и видам организмов. Например, бор необходим для растений, но пока не может считаться биогенным  по  отношению  к животным  и  человеку.

Значительное количество химических элементов, постоянно обнаруживаемых в организмах, оказывает определенное влияние на течение процессов обмена веществ и на ряд физиологических функций в эксперименте, однако еще не известно, какую роль эти элементы играют в организмах в природных условиях, и поэтому их биогенное значение пока сомнительно. К таким элементам относятся алюминий, барий, бериллий, бром, висмут, галлий, германий, кадмий, литий, мышьяк, никель, олово, радий, ртуть, рубидий, свинец, серебро, сурьма, титан, уран, хром, цезий.

Количественное содержание биоэлементов, входящих в состав организмов, сильно варьирует в зависимости от среды обитания, способа питания, видовой принадлежности  и т. п.

Основную массу живого вещества (99,4%) составляют так называемые макроэлементы: О, С, Н, Са, N, К, Р, Мg, S, Cl, Na.

К числу микроэлементов, содержание которых в организме исчисляется тысячными и даже триллионными долями процента, относятся: железо, кобальт, марганец, медь, молибден, цинк, кадмий, фтор, йод, селен, стронций,  бериллий,  литий  и  др.

Участие в каталитических реакциях характерно, главным образом, для металлов. Металлы могут осуществлять влияние на процессы обмена различным путем:

1) непосредственно входя в ак­тивный центр фермента (в простетическую группу или в апофермент). Таковы ферменты, содержащие железо, медь и некоторые другие элементы. Функция металла заключается чаще всего в переходе из восстановленной в окисленную форму и обратно, что сопровождается переносом электрона, например: Fe2+ —» Fe3+ + е;

2) активируя тот или иной фермент путем изменения заряда белка-фермента или его конфигурации;

3) являясь связующим мостиком между фер­ментом и субстратом и тем самым облегчая их взаимодействие;

4) изменяя константу равновесия ферментативных реакций;

5) изменяя равновесие между активной и неактивной формами фермента;

6) связывая ингибиторы тех или иных ферментативных реакций.

Микроэлементам, несмотря на их малое количественное содержание в организмах, принадлежит значительная биологическая роль. Помимо общего благоприятного влияния на процессы роста и развития, установлено специфическое воздействие ряда микроэлементов на важнейшие физиологические процессы — например, фотосинтез у растений.

Связь между ролью элемента в живом организме и положением его в периодической системе хорошо прослежена для многих микроэлементов, однако далеко еще не все стороны этой зависимости изучены  в достаточной степени.

Обратимся теперь к сущности влияния микроэлементов на живой организм. Наиболее характерна высокая биологическая активность микроэлементов, т. е. способность чрезвычайно малых доз их оказывать сильное действие.

Мощное воздействие микроэлементов на физиологические процессы и организме объясняется тем, что они вступают в теснейшую связь с биологически активными органическими веществами — гормонами, витаминами. Изучена также их связь со многими белками и ферментами. Именно указанными взаимоотношениями и определяются основные пути вовлечения микроэлементов в биологические процессы.

Выяснилось, что микроэлементы в подавляющем большинстве активируют определенные ферментативные системы. Это осуществляется различными путями — непосредственным участием в составе молекул ферментов или их активацией. Важным моментом в действии всех микроэлементов является их способность давать комплексные соединения с различными органическими соединениями, в том числе и с белками. Разные микроэлементы могут давать комплексные со­единения с одними и теми же органическими веществами, благодаря чему они могут выступать как антагонисты. Отсюда понятно, что для нормального роста растений необходимо определенное соотношение микроэлементов (железа к марганцу, меди к бору и т. д.). Имеются еще и такие элементы, которые усиливают рост лишь определенных групп растений.

Например, известно необходимость ванадия для Scenedesmus (зеленая одноклеточная водоросль), причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен. Не все растения одинаково нуждаются и в тех элементах, которые относят к необходимым. Бор и кальций необходимы для всех растений, но для злаков бор нужен в значительно меньшей степени. В то же время для некоторых бактерий и грибов кальций может быть заменен стронцием или барием. Бобовые больше нуждаются в молибдене по сравнению с представителями других семейств. Калий в некоторых случаях и в небольших количествах может быть заменен рубидием или цезием. Бериллий может заменить магний для некоторых грибов и частично для томатов. Не все элементы, необходимые для жизни растений, являются таковыми для животных. Так, по-видимому, для животных не нужен бор. Они больше нуждаются в натрии, чем в калии. Установлено, что для животных необходимы йод и кобальт. Такие различия в реакции на элементы питания различных организмов для биолога очень важны, так как дают возможность выяснить, какую роль играет данный элемент. Так, если бор не нужен животным, то, следовательно, его функция должна быть связана со специфическими особенностями растительного организма.

В настоящее время твердо установлена связь между микроэлементами и витаминами. Показано, что марганец необходим для образования в ряде растений витамина С (аскорбиновой кислоты), предохраняющего человека и, некоторых животных от заболевания цингой. Есть данные, показывающие, что введением марганца можно вызвать образование аскорбиновой кислоты в организме тех видов животных, которые обычно неспособны к выработке этого витамина. Марганец, по-видимому, нужен и для действия витамина D (антирахитного) и B1 (антиневритного). Намечается связь между микроэлементом цинком и витамином В1. Однако наиболее интересно открытие антианемического витамина B12, недостаток которого в организме приводит к тяжелым формам анемии (злокачественному малокровию). Оказалось, что этот витамин — соединение микроэлемента кобальта и сложной органической группы.

Как известно, многие металлы, преимущественно микроэлементы, в растворах обладают ярко выраженным каталитическим действием, т. е. способны в значительной степени, в сотни тысяч и миллионы раз, ускорять течение химических реакций. Это каталитическое действие микроэлементы проявляют и в живом организме, особенно тогда, когда они вступают во взаимодействие с органическими веществами, содержащими азот.

Максимальную каталитическую активность металлы как таковые или, чаще, их металлоорганические (органо-минеральные) соединения приобретают, вступая в соединения с белками. Именно такое строение имеют многие биологические катализаторы — ферменты. Помимо значительного повышения активности, роль белкового компонента заключается в придании таким соединениям, в основном ферментам, специфичности действия.

При взаимодействии микроэлементов с белковыми компонентами ферментов образуются металлоэнзимы. Состав большой группы металлоэнзимов характеризуется наличием в них металла в качестве стабильного комплекса (железосодержащие ферменты — каталаза, пероксидаза, цитохромы, цитохромоксидаза и др.).

Геохимические процессы, непрерывно протекающие в земной коре, и эволюция химического состава организмов— процессы сопряженные. Жизнь, по В. И. Вернадскому, не составляет внешнего, случайного явления на земной поверхности, а теснейшим образом связана со строением  земной  коры.

Содержание элементов в живом веществе пропорционально составу среды обитания организма с поправкой на растворимость соединений, включающих эти элементы.

С геохимическими провинциями земли тесно связаны биогеохимические провинции—области, характеризующиеся более или менее одинаковой концентрацией одного или нескольких элементов. В пределах биогеохимических провинций с избыточным или недостаточным содержанием определенных элементов наступает своеобразная биологическая реакция флоры и фауны данной области, что проявляется в эндемических заболеваниях растений и животных—биогеохимических эндемиях.



biofile.ru

Роль микроэлементов в жизни растений « ГЛИЦЕРОЛ Казахстан. Микроудобрения, корректор дефицита элементов питания

Оптимизация питания растений, повышение эффективности внесения удобрений в огромной степени связаны с обеспечением оптимального соотношения в почве макро- и микроэлементов. Причем это важно не только для роста урожая, но и повышения качества продукции растениеводства Следует учитывать также и то, что новые высокопродуктивные сорта имеют интенсивный обмен веществ, требующий полной обеспеченности всеми элементами питания, включая и микроэлементы.

Недостаток микроэлементов в почве является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма. В конечном итоге растения не полностью реализуют свой потенциал и формируют низкий и не всегда качественный урожай, а иногда и погибают.

Основная роль микроэлементов в повышении качества и количества урожая заключается в следующем:

1. При наличии необходимого количества микроэлементов растения имеют возможность синтезировать полный спектр ферментов, позволяющих более интенсивно использовать энергию, воду и питание (N, P, K), и, соответственно, получить более высокий урожай.

2. Микроэлементы и ферменты на их основе усиливают восстановительную активность тканей и препятствуют заболеванию растений.

3. Микроэлементы являются одними из тех немногих веществ, которые повышают иммунитет растений. При их недостатке создается состояние физиологической депрессии и общей восприимчивости растений к паразитным болезням.

4. Большинство микроэлементов являются активными катализаторами, ускоряющими целый ряд биохимических реакций. Совместное влияние микроэлементов значительно усиливает их каталитические свойства. В ряде случаев только композиции микроэлементов могут восстановить нормальное развитие растений.

Микроэлементы оказывают большое влияние на биоколлоиды и влияют на направленность биохимических процессов.

По результатам исследований эффективности применения микроэлементов в сельском хозяйстве можно сделать однозначные выводы:

1. Недостаток в почве усваиваемых форм микроэлементов ведет к снижению урожайности сельскохозяйственных культур и ухудшению качества продукции. Является причиной различных заболеваний (сердцевинная гниль и дуплистость свеклы, пробковая пятнистость яблок, пустозернистость злаков, розеточная болезнь плодовых и различные хлорозные заболевания).

2. Оптимальным является одновременное поступление макро- и микроэлементов, особенно это касается фосфора и цинка, нитратного азота и молибдена.

3. В течение всего вегетационного периода растения испытывают потребность в основных микроэлементах, часть из которых не реутилизируются, т.е. не используются повторно в растениях.

4. Микроэлементы в биологически активной форме в настоящее время не имеют себе равных при внекорневых подкормках, особенно эффективных при одновременном использовании с макроэлементами.

5. Профилактические дозы биологически активных микроэлементов, вносимые независимо от состава почвы, не влияют на общее содержание микроэлементов в почве, но оказывают благоприятное воздействие на состояние растений. При их использовании исключается состояние физиологической депрессии у растений, что приводит к повышению их устойчивости к различным заболеваниям, что в целом скажется на повышении количества и качестве урожая.

6. Особенно необходимо отметить положительное влияние микроэлементов на продуктивность, рост и развитие растений, обмен веществ при условии их внесения и в строго определенных нормах, и в оптимальные сроки.

Сельскохозяйственные культуры отличаются различной потребностью в отдельных микроэлементах. Сельскохозяйственные растения по потребности в микроэлементах объединяются в следующие группы (по Церлингу В.В.):

1. Растения невысокого выноса микроэлементов и сравнительно высокой усваивающей способности – зерновые злаки, кукуруза, зернобобовые, картофель;

2. Растения повышенного выноса микроэлементов с невысокой и средней усваивающей способностью – корнеплоды (сахарная, кормовая, столовая свекла и морковь), овощи, многолетние травы (бобовые и злаковые), подсолнечник;

3. Растения высокого выноса микроэлементов – сельскохозяйственные культуры, выращиваемые в условиях орошения на фоне высоких доз минеральных удобрений.

Современные комплексные микроудобрения содержат в своем составе помимо ряда микроэлементов некоторые мезо- и макроэлементы. Рассмотрим влияние отдельных макро- и мезо- и микроэлементов на сельскохозяйственные растения.

Мезоэлеметы

Магний

Магний входит в состав хлорофилла, фитина, пектиновых веществ; содержится в растениях и в минеральной форме. В хлорофилле содержится от 15-30 % всего магния, усваиваемого растениями. Магний играет важную физиологическую роль в процессе фотосинтеза, влияет на окислительно-восстановительные процессы в растениях.

При недостатке магния увеличивается активность пероксидазы, усиливаются процессы окисления в растениях, а содержание аскорбиновой кислоты и инвертного сахара снижается. Недостаток магния тормозит синтез азотсодержащих соединений, особенно хлорофилла. Внешним признаком его недостаточности является хлороз листьев. У хлебных злаков мраморность и полосчатость листьев, у двудольных растений желтеют участки листа между жилками. Признаки магниевого голодания проявляются, в основном на старых листьях.

Недостаток магния проявляется, в большей степени на дерново-подзолистых кислых почвах легкого гранулометрического состава.

Аммиачные формы азотных, а также калийные удобрений ухудшают поглощение магния растениями, а нитратные напротив – улучшают.

Сера

Сера входит в состав всех белков, содержится в аминокислотах, играет важную роль в окислительно-восстановительных процессах протекающих в растениях, в активировании энзимов, в белковом обмене. Она способствует фиксации азота из атмосферы, усиливая образование клубеньков бобовых растений. Источником питания растений серой являются соли серной кислоты.

При недостатке серы задерживается синтез белков, так как затрудняется синтез аминокислот, содержащих этот элемент. В связи с этим проявления признаков недостаточности серы сходно с признаками азотного голодания. Развитие растений замедляется, уменьшается размер листьев, удлинняются стебли, листья и черешки становятся деревянистыми. При серном голодании листья не отмирают, хотя окраска становится бледной.

Большим содержанием серы отличаются торфяные почвы, солонцы и солончаки, а на супесчаных и песчаных почвах нечерноземной зоны ее часто бывает недостаточно, из-за низкого содержания гумуса.

Во многих случаях при внесении серосодержащих удобрений отмечаются прибавки урожайности зерновых культур.

 

Макроэлементы

Калий

Калий воздействует на физико-химические свойства биоколлоидов (способствует их набуханию), находящихся в протоплазме и стенках растительных клеток, тем самым увеличивает гидрофильность коллоидов – растение лучше удерживает воду и легче переносит кратковременные засухи. Калий увеличивает весь ход обмена веществ, повышает жизнедеятельность растения, улучшает поступление воды в клетки, повышает осмотическое давление и тургор, понижает процессы испарения. Калий участвует в углеводном и белковом обмене. Под его влиянием усиливается образование сахаров в листьях и передвижение его в другие части растения.

При недостатки калия задерживается синтез белка и накапливается небелковый азот. Калий стимулирует процесс фотосинтеза, усиливает отток углеводов из пластинки листа в другие органы.

Азот

Азот входит в состав таких важных органических веществ, как белки, нуклеиновые кислоты, нуклеопротеиды, хлорофилл, алкалоиды, фосфаты и др.

Нуклеиновые кислоты играют важнейшую роль в обмене веществ в растительных организмах. Азот является важнейшей составной частью хлорофилла, без которого не может протекать процесс фотосинтеза; входит в состав ферментов – катализаторов жизненных процессов в растительном организме.

В препаратах ГЛИЦЕРОЛ азот находится в нитратной форме. Нитраты – лучшая форма питания растений в молодом возрасте, когда листовая поверхность небольшая, вследствие чего в растениях еще слабо происходит процесс фотосинтеза и не образуются в достаточном количестве углеводы и органические кислоты.

Микроэлементы

Железо

Особенности строения атома железа, типичные для переходных элементов, определяют переменную валентность этого металла (Fe2+/Fe3+) и ярко выраженную способность к комплексообразованию. Эти химические свойства и определяют основные функции железа в растениях.

В окислительно-восстановительных реакциях железо участвует как в гемовых, таки в негемовых формах.

Железо в составе органических соединений необходимо для окислительно-восстановительных процессов, происходящих придыхании и фотосинтезе. Это объясняется очень высокой степенью каталитических свойств этих соединений. Неорганические соединения железа также способны катализировать многие биохимические реакции, а в соединении с органическими веществами каталитические свойства железа возрастают во много раз.

Атом железа окисляется и восстанавливается сравнительно легко, по­этому соединения железа являются переносчиками электронов в биохимических процессах. Процессы эти осуществляются ферментами, содержащими железо. Железу также принадлежит особая функция – непременное участие в биосинтезе хлорофилла. Поэтому любая причина, ограничивающая доступность железа для растений, приводит к тяжелым заболеваниям, в частности к хлорозу.

При недостатке железа листья растений становятся светло-желтыми, а при голодании – совсем белыми (хлоротичными). Чаще всего хлороз, как заболевание, характерен для молодых листьев. При остром недостатке железа наступает гибель растений. У деревьев и кустарников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти белыми и постепенно усыхают. Недостаток железа для растений чаще всего отмечается на карбонатных, а также на плохо дренированных почвах.

В большинстве случаев микроэлементы в растении не реутилизируются при недостатке какого-либо из них. Установлено, что на засоленных почвах применение микроэлементов усиливает поглощение растениями питательных веществ из почвы, снижает поглощение хлора, при этом повышается накопление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содержания хлорофилла и повышается продуктивность фотосинтеза.

Недостаток железа чаще всего проявляется на карбонатных почвах, а также на почвах с высоким содержанием усваиваемых фосфатов, что объясняется переводом железа в малодоступные соединения.

Дерново-подзолистые почвы отличаются избыточным количеством железа.

Бор

Бор необходим для развития меристемы. Характерными признаками недостатка бора являются отмирание точек роста, побегов и корней, нарушения в образовании и развитии репродуктивных органов, разрушение сосудистой ткани и т. д. Недостаток бора очень часто вызывает разрушение молодых растущих тканей.

Под влиянием бора улучшаются синтез и передвижение углеводов, особенно сахарозы, из листьев к органам плодоношения и корням. Известно, что однодольные растения менее требовательны к бору, чем двудольные.

В литературе имеются данные о том, что бор улучшает передвижение ростовых веществ и аскорбиновой кислоты из листьев к органам плодоношения. Он способствует и лучшему использованию кальция в процессах обмена веществ в растениях. Поэтому при недостатке бора растения не могут нормально использовать кальций, хотя последний находится в почве в достаточном количестве. Установлено, что размеры поглощения и накопления бора растениями возрастают при повышении содержания калия в почве.

Недостаток бора ведет не только к понижению урожая сельскохозяйственных культур, но и к ухудшению его качества. Известно, что многие функциональные заболевания культурных растений обусловлены недостаточным количеством бора. Например, на известкованных дерново-подзолистых и дерново-глеевых почвах наблюдается заболевание льна бактериозом. У свеклы появляются хлороз сердцевинных листьев, загнивание корня (сухая гниль).

Следует отметить, что бор необходим растениям в течение всего вегетационного периода. Исключение бора из питательной среды в любой фазе роста растения приводит к его заболеванию.

Многими исследованиями установлено, что цветки наиболее богаты бором по сравнению с другими частями растений. Он играет существенную роль в процессах оплодотворения. При исключении его из питательной среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение бора способствует лучшему прорастанию пыльцы, устраняет опадение завязей и усиливает развитие репродуктивных органов.

Бор играет важную роль в делении клеток и синтезе белков и является необходимым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор в углеводном обмене. Недостаток его в питательной среде вызывает накопление сахаров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным удобрениям культур.

При недостатке бора в питательной среде наблюдается также нарушение анатомического строения растений, например слабое развитие ксилемы, раздробленность флоэмы основной паренхимы и дегенерация камбия. Корневая система развивается слабо, так как бор играет значительную роль в ее развитии. Особенно сильно нуждается в боре сахарная свекла.

Важное значение бор имеет также для развития клубеньков на корнях бобовых растений. При недостаточности или отсутствии бора в питательной среде клубеньки развиваются слабо или совсем не развиваются.

Медь

Роль меди в жизни растений весьма специфична: медь не может быть заменена каким-либо другим элементом или их суммой.

Признак недостатка меди в растениях проявляется в виде «болезни обработки». У злаковых симптомы проявляются в видепобеления и подсыхания верхушек молодых листьев. Все растение приобретает светло-зеленую окраску, колошение задерживается. При сильном медном голодании высыхают стебли. Такие растения совсем не дают урожая, или урожай бывает очень низкий и плохого качества. Иногда при сильном медном голодании растения обильно кустятся и часто продолжают образовывать новые побеги после полного засыхания верхушек. Сильное и растянутое кущение ячменя при медном голодании благоприятствует его повреждению шведской мухой.

Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью к недостатку меди. Растения можно расположить в следующем порядке по убывающей отзывчивости на медь: пшеница, ячмень, овес, кукуруза, морковь, свекла, лук, шпинат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель, томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного и того же вида имеют большое значение и существенно влияют на степень проявления симптомов медной недостаточности.

Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах также с недостатком магния. Внесение высоких доз азотных удобрений усиливает потребность растений в меди и способствует обострению симптомов медной недостаточности. Это указывает на то, что медь играет важную роль в азотном обмене.

Медь участвует в углеводном и белковом обменах растений. Под влиянием меди повышается как активность пероксидазы, так и синтез белков, углеводов и жиров. Недостаток меди вызывает у растений понижение активности синтетических процессов и ведет к накоплению растворимых углеводов, аминокислот и других продуктов распада сложных органических веществ.

При питании нитратами недостаток меди тормозит образование ранних продуктов их восстановления и вначале не сказывается на обогащении азотом аминокислот, амидов, белков, пептонов и полипептидов. В дальнейшем же наблюдается сильное торможение обогащения 15N всех фракций органического азота, причем оно особенно значительно в амидах. При питании аммиачным азотом недостаток меди задерживает включение тяжелого азота в белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это указывает на особо важную роль меди при применении аммиачного азота.

У кукурузы медь увеличивает содержание растворимых Сахаров, аскорбиновой кислоты и в большинстве случаев — хлорофилла, усиливая активность медьсодержащего фермента полифенолоксидазы и снижая активность пероксидазы в листьях кукурузы. Она повышает также содержание белкового азота в листьях созревающей кукурузы.

Медь играет большую роль в процессах фотосинтеза. При ее недостатке разрушение хлорофилла происходит значительно быстрее, чем при нормальном уровне питания растений медью.

Таким образом, медь влияет на образование хлорофилла и препятствует его разрушению.

В общем следует сказать, что физиологическая и биохимическая роль меди многообразна. Медь влияет не только на углеводный и белковый обмены растений, но и повышает интенсивность дыхания. Особенно важно участие меди в окислительно-восстановительных реакциях. В клетках растений эти реакции протекают при участии ферментов, в состав которых входит медь. Поэтому медь является составной частью ряда важнейших окислительных ферментов — полифенолоксидазы, аскорбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществляют реакции окисления переносом электронов с субстрата к молекулярному кислороду, который является акцептором электронов. В связи с этой функцией валентность меди в окислительно-восстановительных реакциях изменяется (от двухвалентного к одновалентному состоянию и обратно).

Характерной особенностью действия меди является то, что этот микроэлемент повышает устойчивость растений против грибных и бактериальных заболеваний. Медь снижает заболевание зерновых культур различными видами головни, повышает устойчивость томатов к бурой пятнистости.

Цинк

Все культурные растения по отношению к цинку делятся на 3 группы: очень чувствительные, средне чувствительные и нечувствительные. К группе очень чувствительных культур относятся кукуруза, лен, хмель, виноград, плодовые; средне чувствительными являются соя, фасоль, кормовые бобовые, горох, сахарная свекла, подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники; слабо чувствительными — овес, пшеница, ячмень, рожь, морковь, рис, люцерна.

Недостаток цинка для растений чаще всего наблюдается на песчаных и карбонатных почвах. Мало доступного цинка на торфяниках, а также на некоторых малоплодородных почвах.

Недостаток цинка обычно вызывает задержку роста растений и уменьшение количества хлорофилла в листьях. Признаки цинковой недостаточности чаще всего встречаются у кукурузы.

Недостаток цинка сильнее сказывается на образовании семян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности широко встречаются у различных плодовых культур (яблоня, черешня, абрикос, лимон, виноград). Особенно сильно страдают от недостатка цинка цитрусовые культуры.

Физиологическая роль цинка в растениях очень разнообразна. Он оказывает большое влияние на окислительно-восстановительные процессы, скорость которых при его недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов превращения углеводов. Установлено, что при недостатке цинка в листьях и корнях томата, цитрусовых и других культур накапливаются фенольные соединения, фитостеролы или лецитины. Некоторые авторы рассматривают эти соединения как продукты неполного окисления углеводов и белков и видят в этом нарушение окислительно-восстановительных процессов в клетке. При недостатке цинка в растениях томата и цитрусовых накапливаются редуцирующие сахара и уменьшается содержание крахмала. Имеется указание, что недостаток цинка сильнее проявляется у растений, богатых углеводами.

Цинк участвует в активации ряда ферментов, связанных с процессом дыхания. Первым ферментом, в котором был открыт цинк, является карбоангидраза. Карбоангидраза содержит 0,33—0,34 % цинка. Она определяет различную интенсивность процессов дыхания и выделения СО2 животными организмами. Активность карбоангидразы в растениях значительно слабее, чем в организме животных.

Цинк входит также в состав других ферментов — триозофосфатдегидрогеназы, пероксидазы, каталазы, оксидазы, полифенолоксидазы и др.

Обнаружено, что большие дозы фосфора и азота усиливают признаки недостаточности цинка у растений. В опытах со льном идругими культурами установлено, что цинковые удобрения особенно необходимы при внесении высоких доз фосфора.

Многими исследователями доказана связь между обеспеченностью растений цинком и образованием и содержанием в них ауксинов. Цинковое голодание вызывается отсутствием активного ауксина в стеблях растений и пониженной его деятельностью в листьях.

Значение цинка для роста растений тесно связано с его участием в азотном обмене

Значение цинка для роста растений тесно связано с его участием в азотном обмене. Дефицит цинка приводит к зничительному накоплению растворимых азотных соединений — амидов и аминокислот, что нарушает синтез белка. Многие исследования подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.

Под влиянием цинка повышаются синтез сахарозы, крахмала, общее содержание углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержание аскорбиновой кислоты, сухого вещества и хлорофилла в листьях кукурузы. Цинковые удобрения повышают засухо-, жаро- и холодоустойчивость растений.

Марганец

Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфорилировании. Благодаря способности переносить электроны путем изменения валентности он участвует в различных окислительно-восстановительных реакциях. В световой реакции фотосинтеза он участвует в расщеплении молекулы воды.

Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов.

Признаки дефицита марганца у растений чаще всего наблюдаются на карбонатных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН выше 6,5.

Недостаток марганца становится заметным сначала на молодых листьях по более светлой зеленой окраске или обесцвечиванию (хлорозу). В отличие от железистого хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зеленые или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением. Признаки марганцевого голодания у двудольных такие же, как при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень скоро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа.

Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При недостатке марганца понижается синтез органических веществ, уменьшается содержание хлорофилла в растениях, и они заболевают хлорозом. Внешние симптомы марганцевого голодания: серая пятнистость листьев у злаков; хлороз у сахарной свеклы, зернобобовых, табака и хлопчатника; у плодово-ягодных насаждений недостаток марганца вызывает пожелтение краев листьев, усыхание молодых веток.

Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной. При недостатке марганца в растениях накапливается избыток железа, который и вызывает хлороз. Избыток марганца задерживает поступление железа в растение, следствием чего также является хлороз, но уже от недостатка железа. Накопление марганца в токсических для растений концентрациях наблюдается на кислых дерново-подзолистых почвах. Токсичность марганца устраняет молибден.

Согласно многочисленным исследованиям выявлено наличие антагонизма между марганцем и кальцием, марганцем и кобальтом; между марганцем и калием антагонизм отсутствует.

На песчаных почвах нитраты и сульфаты уменьшают подвижность марганца, а сульфаты и хлориды заметного влияния неоказывают. При известковании почв марганец переходит в малодоступные для растений формы. Поэтому путем известкования можно устранить токсическое действие этого элемента на некоторых подзолистых (кислых) почвах нечерноземной полосы.

Доля марганца в первичных продуктах фотосинтеза составляет 0,01—0,03%. Повышение под влиянием марганца интенсивности фотосинтеза в свою очередь оказывает действие на другие процессы жизнедеятельности растений: увеличивается содержание в растениях сахаров и хлорофилла и повышается интенсивность дыхания, а также плодоношения растений.

Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфорилировании. Благодаря способности переносить электроны путем изменения валентности он участвует в различных окислительно-восстановительных реакциях. В световой реакции фотосинтеза он участвует в расщеплении молекулы воды.

Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов.

Признаки дефицита марганца у растений чаще всего наблюдаются на карбонатных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН выше 6,5.

Недостаток марганца становится заметным сначала на молодых листьях по более светлой зеленой окраске или обесцвечиванию (хлорозу). В отличие от железистого хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зеленые или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением. Признаки марганцевого голодания у двудольных такие же, как при недостатке железа, только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме того, очень скоро появляются бурые некротические пятна. Листья отмирают даже быстрее, чем при недостатке железа.

Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При недостатке марганца понижается синтез органических веществ, уменьшается содержание хлорофилла в растениях, и они заболевают хлорозом. Внешние симптомы марганцевого голодания: серая пятнистость листьев у злаков; хлороз у сахарной свеклы, зернобобовых, табака и хлопчатника; у плодово-ягодных насаждений недостаток марганца вызывает пожелтение краев листьев, усыхание молодых веток.

Марганцевая недостаточность у растений обостряется при низкой температуре и высокой влажности. В связи с этим озимые хлеба наиболее чувствительны к его недостатку ранней весной. При недостатке марганца в растениях накапливается избыток железа, который и вызывает хлороз. Избыток марганца задерживает поступление железа в растение, следствием чего также является хлороз, но уже от недостатка железа. Накопление марганца в токсических для растений концентрациях наблюдается на кислых дерново-подзолистых почвах. Токсичность марганца устраняет молибден.

На песчаных почвах нитраты и сульфаты уменьшают подвижность марганца, а сульфаты и хлориды заметного влияния не оказывают. При известковании почв марганец переходит в малодоступные для растений формы. Поэтому путем известкования можно устранить токсическое действие этого элемента на некоторых подзолистых (кислых) почвах нечерноземной полосы.

Повышение под влиянием марганца интенсивности фотосинтеза в свою очередь оказывает действие на другие процессы жизнедеятельности растений: увеличивается содержание в растениях сахаров и хлорофилла и повышается интенсивность дыхания, а также плодоношения растений.

Кремний

Для большинства высших растений кремний (Si) — полезный химический элемент. Он способствует повышению механической прочности листьев и устойчивости растений к грибковым заболеваниям. В присутствии кремния растения лучше переносят неблагоприятные условия: дефицит влаги, несбалансированность питательных элементов, токсичность тяжелых металлов, засоление почв, действие экстремальных температур.

По даным исследователей, применение кремния повышает устойчивость растений к дефициту влаги. Кремний растения могут поглощать через листья при листовых подкормках  микроудобрениями. В растениях кремний откладывается приемущественно в эпидермиальных клетках, образуя двойной кутикулярно-кремниевый слой (прежде всего на листьях и корнях), а также клетках ксилемы. Его избыток трансформируется в различные виды фитолитов.

Утолщение стенок эпидермиальных клеток вследствие аккумуляции в них кремниевой кислоты и образования кремнецеллюлозной мембраны способствует более экономичному расходованию влаги. При полимеризации поглощенных растением монокремниевых кислот происходит выделение воды, которую используют растения. С другой стороны положительное вличние кремния на развитие корневой системы, увеличение ее биомассы способствует улучшению поглощения растением воды.  Это способствует обеспеченности тканей растений водой в условиях водного дефицита, что в свою очередь, влияет на физиолого-биохимические процессы, протекающие в них.

Направленность и интенсивность этих процессов в значительной степени определяется балансом эндогенных фитогормонов, являющихся одним из ведущих факторов регуляции роста и развития растений.

Многие эффекты, вызываемые кремнием, объясняют его модифицирующим влиянием на сорбционные свойства клеток (клеточных стенок), где он может накапливаться в форме аморфного кремнезема и связываться различными органическими соединениями: липидами, белками, углеводами, органическими кислотами, лигнином, полисахаридами. Зафиксировано увеличение в присутствии кремния сорбции клеточными стенками марганца и, как следствие, устойчивости растений к его избытку в среде. Подобный же механизм лежит в основе положительного влияния на растения кремния в условиях избытка ионов алюминия, устраняемого путем формирования Al-Si-комплексов. В форме силикатов возможна иммобилизация избытка ионов цинка в цитоплазме растительной клетки, что установлено на примере устойчивого к повышенным концентрациям цинка. В присутствии кремния ослабляется негативное воздействие на растения кадмия вследствие ограничения транспорта последнего в побеги. В условиях засоленных почв кремний способен препятствовать накоплению в побегах натрия.

Очевидно, при избыточном содержании в среде многих химических элементов кремний полезен для растений. Его соединенияспособны адсорбировать ионы токсичных элементов, ограничивая их мобильность как в среде обитания, так и в тканях растений. Действие кремния на растения при недостатке химических элементов, особенно необходимых в небольшом количестве, например, микроэлементов, до сих пор не исследовано.

В проведенных исследованиях установлено, что влияние кремния на концентрацию в листьях пигментов (хлорофиллов а, b каротиноидов) проявляется при недостатке железа и двойственно по своей направленности. Выявлены факты торможения в присутствии кремния развития хлороза, что отмечается исключительно у молодых двудольных растений.

Согласно результатам исследований клетки Si-обработанных растений способны связывать железо с прочностью, достаточной для ограничения его перемещения по растению.

Соединения кремния увеличивают хозяйственно-ценную часть урожая при тенденции к уменьшению биомассы соломы. В начале вегетации, в фазе кущения, влияние кремния на рост вегетативной массы является существенным и составляет, в среднем 14-26 %.

Обрабтка семян соединениями кремния оказывает большое влияние на содержание в зерне фосфора, повышет массу 1000 зерен.

Натрий

Натрий относится к потенциалобразующим элементам, необходимым для поддержания специфических электрохимическихпотенциалов и осмотических функций клетки. Ион натрия обеспечивает оптимальную конформацию белков-ферментов (активация ферментов), образует мостиковые связи, балансировочные анионы, контролирует проницаемость мембран и электропотенциалы.

Неспецифические функции натрия, связанны с регуляцией осмотического потенциала.

Недостаток натрия появляются только у натриелюбивых растений, например у сахарной свеклы, мангольда и турнепса. Недостаток натрия у этих растений приводит к хлорозу и некрозам, листья растений становятся темно-зелеными и тусклыми, быстро увядают при засухе и растут в горизонтальном направлении, краях листьев могут появиться бурые пятна в виде ожогов.

glicerol.kz


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта