РАЗДРАЖИМОСТЬ. Раздражимость у растений это
Раздражимость растений - стр.7
РАЗДРАЖИМОСТЬ РАСТЕНИЙ
Чтоже такое раздражимость? Это способность организма воспринимать воздействия внешней и внутренней среды и реагировать изменением процессов жизнедеятельности.
Спектр внешних воздействий, воспринимаемых растением, широк — свет, температура, сила тяжести, химический состав окружающей среды, магнитное поле Земли, механические и электрические раздражения.
У растений так же, как и у животных восприятие раздражения и ответная реакция, например двигательная, пространственно разобщены. Передача раздражения (проведение возбуждения) может осуществляться путем возникновения и распространения по растению электрического потенциала, т. н. потенциала действия.
В существовании электричества у растений можно убедиться на довольно простых опытах.
42. Обнаружение токов повреждения в разрезанном яблоке
Так называемые токи повреждения были впервые обнаружены в конце XVIII в. итальянским ученым Луиджи Гальвани у животных организмов. Если разрезать отпрепарированную мышцу лягушки поперек волокон и подвести электроды гальванометра к срезу и продольной неповрежденной поверхности, гальванометр зафиксирует разность потенциалов около 0,1 В
Первые доказательства существования аналогичных процессов у растений были получены спустя почти 100 лет, когда по аналогии стали измерять токи повреждения на разных растительных тканях. Срезы листьев, стебля, репродуктивных органов, клубней всегда оказывались заряженными отрицательно по отношению к здоровой ткани.
Итак, вернитесь в 1912 г. и повторите опыт с измерением потенциалов надрезанного яблока. Для опыта, кроме яблока, нужен гальванометр, способный измерить разность потенциалов около 0,1 В.
108
Яблоко разрежьте пополам, удалите сердцевину. Если оба электрода, отведенных к гальванометру, приложить к наружной стороне яблока (кожуре), гальванометр не зафиксирует разности потенциалов. Один электрод перенесите во внутреннюю часть мякоти, и гальванометр отметит появление тока повреждения.
Кроме яблока, можно измерить токи повреждения, достигающие 50—70мВ, у срезанных стеблей, черешков, листьев.
Как показали более поздние исследования, средняя скорость тока повреждения в стебле и черешке составляет около 15—18 см/мин.
В неповрежденных органах биотоки тоже постоянно существуют, но для их измерения нужна высокочувствительная аппаратура.
Установлено, что ткань листа заряжена электроотрицательно по отношению к центральной жилке, верхушка побега заряжена положительно по отношению к основанию, листовая пластинка — положительно по отношению к черешку. Если стебель положить горизонтально, то под действием силы земного тяготения нижняя часть его становится более электроположительной по отношению к верхней.
Наличие биоэлектрических потенциалов характерно для любой клетки. Разность потенциалов между вакуолью клетки и наружной средой составляет около 0,15 В. Только в 1 см2 листа может содержаться 2—4 млн клеток, и каждая — маленькая электростанция.
Решающую роль в возникновении растительного, как впрочем и животного, электричества играют
109
мембраны клетки. Проницаемость их для катионов и анионов в направлении из клетки и в клетку не одинакова. Установлено, что если концентрация какого-либо электролита с одной стороны мембраны в 10 раз выше, чем с другой, то на мембране возникает разность потенциалов 0,058 В.
Под действием различных раздражителей проницаемость мембран меняется. Это приводит к изменению величины биопотенциалов и возникновению токов действия. Возбуждение, вызванное раздражителем, может передаваться по растению от корней к листьям, регулируя, например, работу устьиц, скорость фотосинтеза. При смене освещения, изменении температуры воздуха токи действия могут передаваться и в противоположном направлении — от листьев к корням, что приводит к изменению активности работы корня.
Интересно, что вверх по растению биотоки распространяются в 2,5 раза быстрее, чем вниз.
С наибольшей скоростью возбуждение у растений идет по проводящим пучкам, а в них — по клеткам-спутницам ситовидных трубок. Скорость распространения потенциала действия (электрических импульсов) по растению у различных видов не одинакова. Быстрее всех реагируют насекомоядные растения и мимоза—2—12 см/с. У других видов растений эта скорость значительно ниже — около 25 см/мин.
43. Опыт с зеленой горошиной
Этот опыт впервые был поставлен крупнейшим исследователем проблемы раздражимости растений
110
индийским ученым Д. Ч. Босом. Он показывает, что резкое повышение температуры вызывает в семенах появление токов действия Для опыта нужны несколько зеленых (несозревших) семян гороха посевного, бобов, фасоли, гальванометр, препаровальная игла, спиртовка.
Соедините внешнюю и внутреннюю части зеленой горошины с гальванометром. Очень осторожно в бюксе нагрейте горошину (не повреждая) приблизительно до 60°С.
При повышении температуры клеток гальванометр регистрирует разность потенциалов до 0,1—2 В. Вот что отметил по поводу этих результатов сам Д. Ч. Бос: если собрать 500 пар половинок горошин в определенном порядке в серии, то суммарное электрическое напряжение составит 500 В, что вполне достаточно для казни на электрическом стуле.
Самыми чувствительными у растений являются клетки точек роста, находящиеся на верхушках побегов и корней. Многочисленные побеги, обильно ветвящиеся и быстро нарастающие в длину кончики корней как бы ощупывают пространство и передают информацию о нем в глубь растения. Доказано, что растения воспринимают прикосновение к листу, реагируя на него изменением биопотенциалов, перемещением электрических импульсов, изменением скорости и направления передвижения гормонов. Например, кончик корня реагирует более чем на 50 механических, физических, биологических факторов и всякий раз при этом выбирает наиболее оптимальную програму для роста.
Убедиться в том, что растение реагирует на прикосновения, особенно частые, надоедливые, можно на следующем опыте.
44. Стоит ли трогать растения без надобности
Познакомьтесь с тигмонастиями — двигательными реакциями растений, вызванными прикосновениями.
Для опыта в 2 горшка высадите по одному растению, желательно без опущения на листьях (бобы, фасоль). После появления 1—2 листьев начинайте воздействие: листья одного растения слегка потрите между большим и указательным пальцем 30—40 раз ежедневно в течение 2 недель.
К концу второй недели различия будут видны отчетливо: растение, подвергавшееся механическому раздражению, отстает в росте (рис. 23).
Результаты опыта свидетельствуют, что длительное воздействие на клетки слабыми раздражителями может привести к торможению процессов жизнедеятельности растений.
Постоянным воздействиям подвергаются растения, высаженные вдоль дорог. Особенно чувствительны ели. Их ветви, обращенные к дороге, по которой часто ходят люди, ездят машины, всегда короче ветвей, расположенных на противоположной стороне
Раздражимость растений, т. е. их способность реагировать на разные воздействия, лежит в основе активных движений у растений, которые не менее разнообразны, чем у животных.
Перед тем как приступить к описанию опытов, раскрывающих механизм движения растений, целесообразно ознакомиться с классификацией этих движений. Если растения
112
Рис. 23 Влияние на рост растений механического воздействия
на осуществление движений затрачивают энергию дыхания, это физиологически активные движения. По механизму изгиба они подразделяются на ростовые и тургорные.
Ростовые движения обусловлены изменением направления роста органа. Это сравнительно медленные движения, например изгибы стеблей к свету, корней к воде.
Тургорные движения осуществляются путем обратимого поглощения воды, сжатия и растяжения специальных двигательных (моторных) клеток, расположенных у основания органа. Это быстрые движения растений. Они свойственны, например, насекомоядным растениям, листьям мимозы.
Более подробно типы ростовых и тургорных движений будут рассмотрены ниже по мере выполнения опытов.
Для осуществления пассивных (механических) движений прямых затрат энергии клетки не требуется. В механических движениях в большинстве случаев цитоплазма не участвует. Наиболее распространены, гигроскопические движения, которые вызываются обезвоживанием и зависят от влажности воздуха.
ГИГРОСКОПИЧЕСКИЕ ДВИЖЕНИЯ
В основе гигроскопических движений лежит способность оболочек растительных клеток к поглощению воды и набуханию. При набухании вода поступает в пространство между молекулами клетчатки (целлюлозы) в оболочке и белка в цитоплазме клетки, что приводит к значительному увеличению объема клетки.
45. Движения чешуи шишек хвойных, сухого мха, сухоцветов
Изучите влияние температуры воды на скорость движения семенных чешуи шишек.
Для опыта нужны по 2—4 сухие шишки сосны и ели, высушенные соцветия акроклиниума розового или гелихризума большого (бессмертники), сухоймох кукушкин лен, часы.
Рассмотрите сухую шишку сосны. Семенные чешуи подняты, хорошо видны места, к которым были прикреплены семена (рис. 24).
Опустите половину шишек сосны в холодную воду, а вторую — в теплую (40—50 °С). Наблюдайте за движением чешуи. Отметьте
114
время, которое потребовалось для полного их смыкания.
Достаньте шишки из воды, стряхните и проследите за движением чешуи в процессе высыхания.
Отметьте время, за которое чешуи вернутся в исходное состояние, занесите данные в таблицу:
Объект наблюдения | Температура воды | Продолжительность | ||
10 °С | 50 °С | смыкания | размыкания | |
Шишки сосны | + | |||
Шишки сосны | + | |||
Шишки ели | + | |||
Шишки ели | + | |||
Соцветие бессмертника | + | |||
Соцветие бессмертника | + |
115
Повторите опыт с теми же шишками несколько раз. Это позволит не только получить более точные данные, но и убедиться в обратимости изучаемого вида движений.
Результаты опыта позволят сделать важные выводы:
1) Движение семенных чешуи шишек обусловлено потерей и поглощением ими воды. Об этом же свидетельствует прямая зависимость движения чешуи от температуры воды: при ее повышении скорость движения молекул воды возрастает, набухание чешуи происходит быстрее.
2) Чтобы набухание чешуи могло изменить их положение в пространстве, строение и химический состав клеток на внешней и внутренней стороне чешуи должны быть различными. Это действительно так. Оболочки клеток верхней стороны чешуи шишек хвойных более эластичны, растяжимы по сравнению с клетками нижней стороны. Поэтому при погружении в воду они поглощают ее больше, быстрее увеличивают свой объем, что приводит к удлинению верхней стороны и движению чешуи вниз. В процессе обезвоживания клетки верхней стороны теряют воду тоже быстрее клеток нижней стороны, что приводит к загибанию чешуи вверх.
Интересно наблюдать вызываемые набуханием движения листьев кукушкина льна либо других листостебельных мхов. У живых растений листья направлены в сторону от стебля, а у сухих — прижаты к нему. Если опустить сухой стебелек в воду, через 1—2 мин листья переходят из вертикального положения в горизонтальное.
116
Очень красивы движения высушенного соцветия бессмертника. Если сухое соцветие опустить в воду, через 1—2 мин листочки обертки приходят в движение и соцветие закрывается.
Задание. Сравните скорость движения чешуи шишек различных видов хвойных. Зависит ли она от размера шишек? Сравните скорость движения чешуи шишек сосны и ели, листьев мхов и листочков обертки соцветия бессмертника, выявите черты сходства и различия.
46. Гигроскопические движения семян. Гигрометр из семян аистника
Гигроскопические движения играют важную роль в распространении семян различных растений.
Для опыта нужны семена аистника (грабельника), василька синего, лист плотной бумаги, часы, предметное стекло.
Аистник — распространенное в Белоруссии растение. Свое название получило благодаря сходству плода с головой аиста (рис. 25).
Рассмотрите внимательно строение сухого плода аистника. Доли зрелого коробочковидного плода снабжены длинной остью, в нижней части спирально закрученной. Плод покрыт жесткими волосками.
На предметное стекло нанесите каплю воды и опустите в нее сухой плод. Закрученная спиралью нижняя часть начинает раскручива-
117
ться и плод, не имеющий опоры на стекле, совершает вращательные движения.
После полного выпрямления ости перенесите плод на сухую часть стекла. По мере высыхания нижняя часть снова закручивается в спираль и вызывает вращение плода.
Проведите хронометраж опыта, сравнивая скорости процессов раскручивания и закручивания спирали.
Механизм движения плода аистника тот же, что и чешуи шишек хвойных — различие в гигроскопичности клеток ости.
Наблюдения за движением плода в капле воды позволяют понять поведение его в почве. Когда плод падает на землю, верхний конец ости, загнутый под прямым углом, цепляется за окружающие его стебельки и остается неподвижным. При закручивании и
Рис. 25. Аистник.
118
раскручивании спирального участка нижняя часть плода с семенем ввинчивается в землю. Путь назад преграждают жесткие, отогнутые вниз волоски, покрывающие плод.
Чтобы изготовить примитивный гигрометр, в кусочке картона или дощечке, покрытой белой бумагой, проделайте отверстие и закрепите в нем нижний конец плода. Для калибровки прибора сначала высушите, затем смочите ость водой и отметьте крайнее положение (рис. 26). Размещать прибор лучше на улице, где колебания влажности выражены более резко, чем в помещении.
Аистник — не единственное растение, способное к самозакапыванию семян. Сходное строение и механизм распространения имеют ковыли, овсюг, лисохвост.
Плоды василька (семянки с хохолком из твердых щетинок) не способны к самозакапыванию. При колебаниях влажности почвы щетинки попеременно опускаются и поднимаются, толкая плод вперед.
Задание. Соберите семена василька, лисохвоста, овсюга. Изучите поведение их во влажной и сухой среде, сравните с аистником.
Рис 26. Гигрометр из аистника.
119
ТРОПИЗМЫ
В зависимости от строения органа и действия факторов внешней среды различают два вида ростовых движений: тропизмы и настии.
Тропизмы (от греч. «тропос»—поворот), тропические движения — это движения органов с радиальной симметрией (корень, стебель) под влиянием факторов внешней среды, которые действуют.на растение односторонне. Такими факторами могут быть свет (фототропизм), химические факторы (хемотропизм), действие силы земного тяготения (геотропизм), магнитное поле Земли (магнитотропизм) и др.
Эти движения позволяют растениям располагать листья, корни, цветки в положении, наиболее благоприятном для жизнедеятельности.
47. Гидротропизм корня
Одно из наиболее интересных видов движения—движение корня к воде (гидротропизм). Наземные растения испытывают постоянную потребность в воде, поэтому корень всегда растет в ту сторону, где содержание воды выше. Гидротропизм присущ прежде всего корням высших растений. Наблюдается также у ризоидов мхов и заростков папоротников.
120
Для опыта нужно 10—20 наклюнувшихся семян гороха (люпина, ячменя, ржи), 2 чашки Петри, немного пластилина.
Плотно прикрепленным ко дну пластилиновым барьером разделите площадь чашки на 2 равные части. На барьер положите наклюнувшиеся семена, слегка вдавливая их в пластилин, чтобы при росте корня семена не сдвинулись с места. Корешки должны быть направлены строго вдоль барьера (рис. 27).
Эти этапы работы в контрольной и опытной чашках одинаковы. Теперь предстоит создать различные условия увлажнения. В контрольной чашке влажность в левой и правой частях должна быть одинакова. В опытной чашке вода наливается только в одну половину, а вторая остается сухой.
Рис. 27. Схема расположения семян при изучении гидротропизма корня.
Обе чашки накройте крышками и поместите в теплое место. Ежедневно наблюдайте за положением корешков. Когда ориентация их станет хорошо заметной, подсчитайте количество семян, корни которых проявили положительный гидротропизм (рост органа в сторону воды).
Наблюдения за движением корешка к воде ясно показывают, что тропизмы — это ростовые движения. Корешок растет в сторону воды, при этом происходит, если это необходимо растению, изгиб корня.
Гидротропизм — частный случай хемотропизма (ростовой реакции растений на неравномерное распределение в окружающей среде какого-либо вещества). Способность корней растений, грибных гифов, пыльцевых трубок, проростков паразитических растений (повилики, например) распознавать химическое вещество на некотором расстоянии от него удивительна. Установлено, что воспринимает воздействие
121
химических веществ зона роста органа, а изгиб образуется на некотором расстоянии от нее, т. е. происходит передача раздражения по корню (рис. 28).
Задание. По описанной выше схеме опыта проверьте способность растений распознавать не только воду, но и нужные растению растворы минеральных солей, например 0,3-процентный раствор нитрата калия или аммония.
Рис. 28 Хемотропический изгиб корней
48. Влияние силы земного тяготения на рост стебля и корня
Большинство растений растет вертикально. При этом главную роль играет не располо-
122
жение их относительно поверхности почвы, а направление радиуса Земли. Именно поэтому на горных склонах растения растут под любым углом к почве, но вверх. Главный стебель обладает отрицательным геотропизмом — он растет в сторону, противоположную действию силы земного тяготения. Главный корень, напротив, обладает положительным геотропизмом.
Наиболее интересно поведение боковых побегов и корней: в отличие от главного корня и стебля, они способны расти горизонтально, обладая промежуточным геотропизмом. Побеги и корни второго порядка вообще не воспринимают действие силы земного тяготения и способны расти в любом направлении. Неодинаковое восприятие побегами и корнями различных порядков действия силы земного тяготения позволяет им равномерно распределяться в пространстве.
Чтобы убедиться в противоположной реакции главного стебля и главного корня на одно и то же воздействие силы земного тяготения, можно поставить следующий опыт.
Для опыта нужны наклюнувшиеся семена подсолнечника посевного, пластинки из стекла и пенопласта 10Х10 см, фильтровальная бумага, пластилин, стакан.
На пластинку из пенопласта положите несколько слоев увлажненной фильтровальной бумаги. Наклюнувшиеся семена разместите на ней так, чтобы их острые концы были направлены вниз. По углам пластинки прикрепите кусочки пластилина. Положите на них, слегка прижимая, стеклянную пластинку, чтобы зафиксировать семена в нужном положении. Оберните несколькими слоями увлажненной фильтровальной
123
бумаги и в вертикальном положении (острые концы семян должны быть направлены вниз) поместите в теплое место.
Когда корешки достигнут 1—1,5 см, пластинку переверните на 90°, чтобы корешки были расположены горизонтально.
Ежедневно контролируйте состояние проростков. Фильтровальная бумага должна быть влажной.
Проведите хронометраж опыта и отметьте время (в сутках от начала опыта) проявления геотропического изгиба.
Результаты опыта свидетельствуют, что при любом положении проростка в пространстве главный корень всегда изгибается вниз, а стебель — вверх. Причем ответная реакция осевых органов может проявиться довольно быстро (1—2 ч).
Геотропическая чувствительность растений высока, некоторые способны воспринимать отклонение от вертикального положения в 1°. Проявление ее зависит от сочетания внешних и внутренних условий. Под влиянием низкой температуры воздуха отрицательный геотропизм стеблей может переходить в поперечный, что приводит к их горизонтальному росту.
Каким же образом стебель или корень «ощущают» свое положение в пространстве? У корня зона, воспринимающая геотропическое раздражение, находится в корневом чехлике. Если его удалить, геотропическая реакция затухает. В стебле силы земного тяготения также воспринимаются верхушкой.
Непосредственный изгиб корня или стебля осуществляется ниже, в зоне, где клетки проходят растяжение. При этом под действием
124
одного и того же фактора — силы земного тяготения — в горизонтально лежащем стебле усиливается рост клеток нижней стороны, что приводит к изгибу его вверх, в корне же — рост клеток верхней и изгибу вниз.
Задание. Изучите характер геотропической реакции стеблей разного порядка двудольного растения. Для этого вырастите проростки, закройте поверхность почвы, чтобы она не высыпалась, и переверните горшки. Наблюдения ведите до тех пор, пока не появятся боковые стебли первого и второго порядка.
textarchive.ru
РАЗДРАЖИМОСТЬ - это... Что такое РАЗДРАЖИМОСТЬ?
способность живых клеток, тканей или целого организма реагировать на внеш. или внутр. воздействия — раздражители; лежит в основе их приспособления к изменяющимся условиям среды. Р. проявляется на всех уровнях развития жизни и сопровождается комплексом неспецифич. изменений, выражающихся в сдвигах обмена веществ, электрич. потенциала, состояния протоплазмы, а у высокоорганизов. животных связана с выполнением специфич. функций (проведение нервного импульса, сокращение мышцы, выделение секрета железистой тканью и т. д.). У растений обусловлена структурными и функц. изменениями мембран и лежит в основе их регуляторной системы. Наиб, ярко она проявляется в реакциях на свет (фототропизм, фотопериодизм), на гравитац. поле (геотропизм), в двигат. реакциях (настии). У животных, не имеющих нервной системы, реакции на раздражения охватывают всю протоплазму и выражаются гл. обр. в форме двигат. реакций (таксисов). У многоклеточных животных нервная и мышечная ткани обеспечивают быстрые и точные ответные реакции на раздражения; развиваются формы опосредованной реактивной связи с раздражителем (рефлекторно) через высшую нервную деятельность и сознание. Способность нервных и мышечных клеток отвечать на раздражение наз. возбудимостью. Иногда местные реакции тканей или клеток наз. реактивностью, а возникновение волнообразного распространяющегося процесса — возбудимостью; часто термин «Р.» используется как синоним возбудимости.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
раздражи́мость свойство живых организмов реагировать на различные воздействия (раздражители) соответствующими изменениями на уровне клетки, ткани или всего организма. Раздражимость связана с приспособлением организма к изменяющимся условиям внешней среды. У растений проявляется в реакциях на свет, гравитацию, в двигательных (как и у низших животных) реакциях (см. Тропизмы, Настии). Многоклеточным животным и человеку свойственны более точные, быстрые и разнообразные реакции в ответ на раздражение. Их обеспечивают рефлексы и высшая нервная деятельность. Часто термин «раздражимость» используют как синоним «возбудимости»..(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)
.
- РАДУЛА
- РАЗДРАЖИТЕЛЬ
Смотреть что такое "РАЗДРАЖИМОСТЬ" в других словарях:
раздражимость — изменение физиологического состояния целостного организма, его органов, тканей или клеток под влиянием внешних воздействий, называемых раздражителями. Минимальная величина раздражителя, достаточная для возникновения такого изменения, называется… … Большая психологическая энциклопедия
РАЗДРАЖИМОСТЬ — способность живых клеток, тканей или целого организма реагировать на воздействие факторов (раздражителей) внешней или внутренней среды изменением своего состояния или деятельности. Лежит в основе их приспособления к изменяющимся условиям среды.… … Экологический словарь
РАЗДРАЖИМОСТЬ — 1) возбудимость; 2) возрастающая восприимчивость и встречное действие по отношению к раздражению. Историк Лампрехт («Zur jьngsten deutschen Vergangenheit», 2 Bde., 1921 – 1922), проводя в духовно исторической области аналогию с психологическим… … Философская энциклопедия
РАЗДРАЖИМОСТЬ — РАЗДРАЖИМОСТЬ, раздражимости, мн. нет, жен. (книжн.). отвлеч. сущ. к раздражимый; свойство, способность раздражаться. Раздражимость нерва. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
РАЗДРАЖИМОСТЬ — РАЗДРАЖИМОСТЬ, свойство живых организмов или их частей специфически изменять свои состояния под влиянием изменений в окружающей среде или в других частях организма. Очень часто такое же определение дается понятию возбудимости. Существует большая… … Большая медицинская энциклопедия
РАЗДРАЖИМОСТЬ — свойство организмов отвечать на воздействия внешней среды изменениями своего состояния или деятельности … Большой Энциклопедический словарь
Раздражимость — способность живых организмов реагировать на внешние воздействия изменениями, которые могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложных, высокоспециализированных реакций человека … Психологический словарь
РАЗДРАЖИМОСТЬ — англ. irritability; нем. Erregbarkeit. Способность живых организмов реагировать на внешние воздействия определенным комплексом функциональных и структурных изменений. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии
раздражимость — сущ., кол во синонимов: 1 • раздражительность (19) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
Раздражимость — Эта статья о свойстве живых организмов. О человеческой черте см. Раздражительность. Раздражимость (возбудимость) способность живого организма реагировать на внешнее воздействие изменением своих физико химических и… … Википедия
dic.academic.ru
Раздражимость | Авторская платформа Pandia.ru
Раздражимость, возбудимость, свойство внутриклеточных образований, клеток, тканей и органов реагировать изменением структур и функций на сдвиги различных факторов внешней и внутренней среды.
У растений раздражителями могут быть различные агенты, но особенно чувствительны они к таким жизненно важным факторам, как свет, температура, сила тяжести, влажность, аэрация, концентрация и состав солей, кислотность и щёлочность почвенного раствора. Реакции растения на раздражители определяют расположение его органов в воздушном и почвенном пространстве (см. Движения у растений, Тропизмы). Свойством Р. обладают все живые клетки растений, но наиболее чувствительны к указанным раздражителям верхушки побегов и кончики корней, с которых возбуждение передаётся в зоны роста этих органов и вызывает соответствующее изменение в направлении их роста. Стеблям, черешкам листьев и усикам вьющихся и лазящих растений, а также тычинкам и пестикам некоторых растений присуща очень высокая контактная чувствительность (см. Гаптотропизм). Цветки и листья многих растений чутко реагируют на изменения освещённости или температуры (см. Настии, «Сон» растений). Быстрыми реакциями на раздражения обладают особо чувствительные, в том числе и насекомоядные, растения (например, мимоза, мухоловка, росянка) и гифы хищных грибов. Под влиянием раздражителей могут меняться движения цитоплазмы, ядра, хромосом, хлоропластов, митохондрий и др. структур растительной клетки, а также движения не прикрепленных к субстрату низших растений, зооспор и спермиев.
Явления Р. у растений и животных имеют много общего, хотя их проявления у растений резко отличаются от привычных форм двигательной и нервной деятельности животных. В ответ на раздражение у растений также возникает состояние возбуждения, т. е. временное усиление жизнедеятельности его клеток, тканей и органов. Степень возбуждения, как правило, пропорциональна количеству раздражения (произведению силы раздражителя на время его действия). Возбуждённый участок ткани или органа приобретает по отношению к невозбуждённым участкам отрицательный заряд вследствие изменения ионной проницаемости клеточных мембран в месте раздражения. При слабых раздражениях возбуждение будет местным, при достаточно сильных — распространяющимся на соседние клетки в виде главным образом биотоков (см. Биоэлектрические потенциалы, Мембранная теория возбуждения) и с участием фитогормонов. Так, у многоклеточных водорослей (нителла и др.), у особо чувствительных растений (мимоза, мухоловка), а также в проводящих тканях обычных растений открыты потенциалы действия, сходные с потенциалами действия в тканях животных. Скорость распространения возбуждения у растений зависит от вида и состояния растения, типа ткани и свойств раздражителя. Наиболее медленно распространяется геотропическое и фототропическое возбуждение (около 1 см/ч), быстрее — возбуждение, связанное с передвижением органических веществ по флоэме (десятки см/ч), ещё быстрее — возбуждение, связанное с водным потоком по ксилеме (5—10 м/ч), и, наконец, самой большой скоростью распространения обладают токи действия (50—100 м/ч), распространяющиеся по клеткам-спутникам, окружающим ситовидные клетки проводящих пучков. Очень сильные раздражения угнетают жизнедеятельность растения. Чем выше физиологическая активность раздражителя, тем скорее достигается переход от стимулирующих к угнетающим дозам и концентрациям.
Каждая растительная клетка содержит всю генетическую программу роста и развития данного растения. Вместе с тем она в зависимости от своей функции и специализации обладает высокой избирательной чувствительностью к внешним и внутренним раздражениям. Наследственно обусловленные потребности и изменяющиеся условия внешней среды требуют на каждом этапе развития растения сложной и согласованной деятельности всех клеток, тканей и органов. Эта согласованность достигается у растений системой регуляции, включающей плазматические, гормональные, сосудистые и биоэлектрические связи и объединяющей миллиарды клеток растения в целостный организм.
О Р. у животных см. в статьях Возбудимость, Возбуждение.
Лит.: Талиев В. И., Единство жизни. (Растение как животное), М., [1925]; Дарвин Ч., Способность к движению у растений, Соч., т. 8, М. — Л., 1941; Гунар И. И., Проблема раздражимости растений и дальнейшее развитие физиологии растений, «Известия Тимирязевской сельскохозяйственной академии», 1953, в. 2; Бос Дж. Ч., Избранные произведения по раздражимости растений, [т.] 1—2, М., 1964; Леопольд А., Рост и развитие растений, пер. с англ., М., 1968; Коган А. Б., Электрофизиология, М., 1969, гл. 4; Гунар И. И., Паничкин Л. А., О передаче электрического возбуждения у растений, «Известия Тимирязевской сельскохозяйственной академии», 1970, в. 5; Нобел П., Физиология растительной клетки. (Физико-химический подход), пер. с англ., М., 1973.
И. И. Гунар.
pandia.ru