Одномембранные органоиды у растений. Немембранные органоиды клетки: виды, строение, функции

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Немембранные органоиды: строение и функции. Одномембранные органоиды у растений


Немембранные органоиды: строение и функции

Все клетки живых организмов состоят из плазматической мембраны, ядра и цитоплазмы. В последней находятся органоиды и включения.мембранные и немембранные органоиды Органоиды – это постоянные образования в клетке, каждое из которых исполняет определенные функции. Включения – это временные структуры, которые в основном состоят из гликогена у животных и крахмала у растений. Они выполняют запасную функцию. Включения могут находиться как в цитоплазме, так и в матриксе отдельных органоидов, таких как хлоропласты.

Классификация органоидов

В зависимости от строения, они делятся на две большие группы. В цитологии выделяют мембранные и немембранные органоиды. Первые можно разделить на две подгруппы: одномембранные и двумембранные.

К одномембранным органоидам относятся эндоплазматическая сеть (ретикулум), аппарат Гольджи, лизосомы, вакуоли, везикулы, меланосомы.немембранные органоиды функции

К двумембранным органоидам причисляются митохондрии и пластиды (хлоропласты, хромопласты, лейкопласты). Они имеют самое сложное строение, и не только за счет наличия двух мембран. В их составе также могут присутствовать включения и даже целые органоиды и ДНК. Например, в матриксе митохондрий можно наблюдать рибосомы и митохондриальную ДНК (мтДНК).

К немембранным органоидам относятся рибосомы, клеточный центр (центриоль), микротрубочки и микрофиламенты.

Немембранные органоиды: функции

Рибосомы нужны для того, чтобы синтезировать белок. Они отвечают за процесс трансляции, то есть расшифровке информации, которая находится на иРНК, и формировании полипептидной цепочки из отдельных аминокислот.

к немембранным органоидам относятся

Клеточный центр участвует в образовании веретена деления. Оно образуется как в процессе мейоза, так и митоза.

Такие немембранные органоиды, как микротрубочки, формируют цитоскелет. Он выполняет структурную и транспортную функции. По поверхности микротрубочек могут перемещаться как отдельные вещества, так и целые органоиды, например, митохондрии. Процесс транспортировки происходит с помощью специальных белков, которые называются моторными. Центром организации микротрубочек является центриоль.

Микрофиламенты могут участвовать в процессе изменения формы клетки, а также нужны для передвижения некоторых одноклеточных организмов, таких как амебы. Кроме того, из них могут образовываться разнообразные структуры, функции которых до конца не изучены.

Структура

Как понятно из названия, органоиды немембранного строения не имеют мембран. Они состоят из белков. Некоторые из них содержат также нуклеиновые кислоты.

Структура рибосом

Эти немембранные органоиды находятся на стенках эндоплазматического ретикулума. Рибосома обладает шаровидной формой, ее диаметр составляет 100-200 ангстрем. Эти немембранные органоиды состоят из двух частей (субъединиц) – малой и большой. Когда рибосома не функционирует, они находятся раздельно. Для того, чтобы они объединились, обязательно присутствие ионов магния или кальция в цитоплазме.органоиды немембранного строения

Иногда при синтезе больших молекул белка рибосомы могут объединяться в группы, которые называются полирибосомами или полисомами. Количество рибосом в них может колебаться от 4-5 до 70-80 в зависимости от размера молекулы белка, которая синтезируется ими.

Рибосомы состоят из белков и рРНК (рибосомной рибонуклеиновой кислоты), а также молекул воды и ионов металлов (магния или кальция).

Строение клеточного центра

У эукариот эти немембранные органоиды состоят из двух частей, называемых центросомами, и центросферы – более светлой области цитоплазмы, которая окружает центриоли. В отличии от случая с рибосомами, части этого органоида обычно объединены. Совокупность двух центросом называется диплосомой.

Каждая центросома состоит из микротрубочек, которые закручены в форме цилиндра.немембранные органоиды

Структура микрофиламентов и микротрубочек

Первые состоят из актина и других сократительных белков, таких как миозин, тропомиозин и др.

Микротрубочки представляют длинные цилиндры, пустые внутри, которые растут от центриоли к краям клетки. Их диаметр – 25 нм, а длина может быть от нескольких нанометров до нескольких миллиметров в зависимости от размеров и функций клетки. Эти немембранные органоиды состоят в первую очередь из белка тубулина.

Микротрубочки являются нестабильными органоидами, которые постоянно изменяются. У них наблюдается плюс-конец и минус-конец. Первый постоянно присоединяет к себе молекулы тубулина, а от второго они постоянно отщепляются.

Формирование немембранных органоидов

За образование рибосом отвечает ядрышко. В нем происходит формирование рибосомной РНК, структура которой кодируется рибосомной ДНК, находящейся на специальных участках хромосом. Белки, из которых состоят эти органоиды, синтезируются в цитоплазме. После этого они транспортируются в ядрышко, где и объединяются с рибосомной РНК, образуя малую и большую субъединицы. Затем уже готовые органоиды перемещаются в цитоплазму, а затем на стенки гранулярного эндоплазматического ретикулума.

Клеточный центр присутствует в клетке уже с момента ее образования. Он формируется при делении материнской клетки.

Заключение

В качестве вывода приведем краткую таблицу.

Общие сведения о немембранных органоидах
ОрганоидЛокализацияФункцииСтроение
Рибосомавнешняя сторона мембран гранулярного эндоплазматического ретикулума; цитоплазмасинтез белков (трансляция)две субъединицы, состоящие из рРНК и белков
Клеточный центрцентральная область цитоплазмы клеткиучастие в процессе образования веретена деления, организация микротрубочекдве центриоли, состоящие из микротрубочек, и центросфера
Микротрубочкицитоплазмаподдержание формы клетки, транспорт веществ и некоторых органоидовдлинные цилиндры из белков (прежде всего тубулина)
Микрофиламентыцитоплазмаизменение формы клетки и др.белки (чаще всего актин, миозин)

Итак, теперь вы знаете все о немембранных органоидах, которые имеются как в растительных, так и в животных и грибных клетках.

fb.ru

Лекция Одномембранные органоиды Органоиды - Лекция

Лекция 6. Одномембранные органоиды

Органоиды – постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. В зависимости от строения, органоиды можно разделить на две группы – мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов состоит из двух мембран.

Органоиды

Мембранные Немембранные

Одномембранные Двумембранные

  1. Эндоплазматическая сеть 1. Митохондрии 1. Рибосомы

  2. Комплекс Гольджи 2. Пластиды 2. Клеточный центр

  3. Лизосомы 3. Ядро 3. Цитоскелет

  4. Вакуоли 4. Жгутики прокариот

  5. Пероксисомы 5. Хромосомы ядра

  6. Реснички и жгутики эукариот 6. Миофибриллы

Рис. . Схема строения эукариотической клетки

1 – пиноцитозный каналец; 2 – межклеточная щель; 3 – шероховатая ЭПС; 4 – плазмалемма; 5 – митохондрия; 6 – базальная мембрана; 7 – лизосома; 8 – центриоли клеточного центра; 9 – комплекс Гольджи; 10 – ядерный сок, кариоплазма с хроматином; 11 – ядрышко; 12 – ядерная оболочка; 13 – рибосомы; 14 – канальцы гладкой ЭПС; 15 – микроворсинки.

Рассмотрим строение и функции одномембранных органоидов.

Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (ЭПР) – одномембранный органоид. Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают три вида ЭПС: шероховатую (гранулярную), содержащую на своей поверхности рибосомы, и представляющую собой совокупность уплощенных мешочков, связанных друг с другом; гладкую (агранулярную), имеющую трубчатое строение, мембраны которой не несут рибосом; и промежуточную, соединяющую шероховатую и гладкую ЭПС.

ЭПС отвечает за транспорт веществ, образует компартменты («отсеки»), в которых происходят различные реакции. На гладкой ЭПС происходит синтез углеводов и липидов, на шероховатой – синтез белка. По каналам ЭПС молекулы белка транспортируются к комплексу Гольджи, отделяются от ЭПС в виде мембранных пузырьков с органическими молекулами, которые сливаются с комплексом Гольджи.

Аппарат Гольджи, комплекс Гольджи – одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи).

Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПР, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации. Важнейшая функция комплекса Гольджи – выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках – «экспортная система» клетки.

У аппарата Гольджи выделяют две разные стороны: формирующую (проксимальную, cis-полюс), обращенную к ЭПС, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды и зрелую (дистальную, trans-полюс), от которой постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы.

Каждая стопка комплекса Гольджи обычно состоит из четырех-шести «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены. Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя – постепенно формируется за счет деятельности ЭПР.

Рис. Комплекс Гольджи

Функции комплекса Гольджи: накопление белков, липидов, углеводов; модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов; место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы – одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

А

Рис. Образование лизосом

втофагия – процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная везикула сливается с первичной лизосомой, в результате также образуется вторичная лизосома – автофагическая вакуоль, в которой эта структура переваривается.

П

Рис. . Образование экзоцитозных пузырьков (А), пищеварительных вакуолей (Б) и автофагических вакуолей (В).

родукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз – саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом. Таким образом, лизосомы отвечают за внутриклеточное разрушение макромолекул органических веществ – «пищеварительная система» клетки и за уничтожение ненужных клеточных и неклеточных структур.

Рис. . Пероксисома.В центре – нуклеоид.

Пероксисомы – органоиды, сходные по строению с лизосомами, пузырьки с диаметром до 1,5 мкм с однородным матриксом, содержащим около 50 ферментов. Важнейшими ферментами являются оксидазы, катализирующие перенос двух атомов водорода с органических молекул (аминокислот, углеводов, жирных кислот) непосредственно на кислород, при этом образуется пероксид водорода, опасный для клетки окислитель:

АН2 + О2 → А + Н2О2

Образующуюся перекись водорода каталаза использует для окисления различных субстратов: Н2О2 + АН2 → А + 2Н2О. В клетках печени пероксисомы крупные и их много, каталаза окисляет этиловый спирт до уксусного альдегида. Избыток Н2О2 и Н2О2, образовавшийся в другом месте клетки, также разрушается каталазой (2Н2О2 → 2Н2О + О2). Наряду с митохондриями пероксисомы активно используют кислород в качестве окислителя. Существует гипотеза, согласно которой пероксисомы – древние органоиды, которые появились раньше митохондрий: когда появился кислород в атмосфере, токсичный для большинства клеток, пероксисомы снижали его концентрацию в клетках, одновременно используя его для окислительных реакций.

Образуются пероксисомы отпочковываваясь от ранее существующих, т.е. относятся к самовоспроизводящимся органоидам, несмотря на то, что не содержат ДНК. Растут благодаря поступлению в них ферментов, ферменты пероксисом образуются на шероховатой ЭПС и в гиалоплазме. В крупных пероксисомах выявляется плотная сердцевина – нуклеоид, соответствующий области конденсации ферментов.

Вакуоли – одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи.

Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна.

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Р

Рис. Строение жгутиков и ресничек эукариот

еснички и жгутики. Эти органоиды участвуют в процессах движения и представляют собой каркас из микротрубочек, называемый аксонемой, окруженный плазмалеммой. Длина ресничек – до 10 мкм, жгутики отличаются только размерами и их длина достигает 70 мкм. В основании ресничек и жгутиков находится базальное тельце, в котором 9 триплетов микротрубочек.

Аксонема образована 9 периферическими парами микротрубочек и одной центральной парой, напоминает велосипедное колесо: ось – пара микротрубочек, спицы – особые белки, соединяющие центральную пару микротрубочек с периферическими парами, и обод, образованный 9 парами микротрубочек. Реснички имеют клетки дыхательных путей человека, эпителий маточных труб. Жгутики у человека имеются только у мужских половых клеток – сперматозоидов. У прокариот строение жгутиков иное, и они не окружены мембраной.

Многие клетки могут иметь на поверхности тонкие выпячивания – микроворсинки для увеличения поверхности (клетки тонкого кишечника, извитых канальцев почек). В отличии от ресничек они не способны совершать движения, у них под мембраной отсутствуют микротрубочки аксонемы.

Ключевые термины и понятия

1. Гранулярная, гладкая, промежуточная ЭПС. 2. Цис-, транс-полюса комплекса Гольджи. 3. Диктиосома. 4. Первичные, вторичные лизосомы. 5. Автофагические вакуоли, автолиз. 6. Нуклеоид пероксисомы. 7. Тонопласт. 8. Вакуолярная сеть клетки. 9. Алейроновые зерна. 10. Аксонема.

Основные вопросы для повторения

  1. Характеристика ЭПР.

  2. Строение и функции комплекса Гольджи.

  3. Характеристика лизосом.

  4. Строение, функции и образование пероксисом.

  5. Виды вакуолей и их функции.

  6. Строение жгутиков и ресничек эукариот.

  7. Отличие ресничек от микроворсинок.

refdb.ru

Одномембранные органоиды.

Наружная цитоплазматическая мембрана отделяет клетку от внешней среды. Мембрана имеет белки, которые выполняют разные функции. Различают белки-рецепторы, белки-ферменты, белки-насосы, белки-каналы. Наружная мембрана обладает избирательной проницаемостью, обеспечивая транспорт веществ через мембрану.

У некоторых мембран выделяют элементы надмембранного комплекса - клеточная стенка у растений, гликокаликс и микроворсинки клеток эпителия кишечника у людей.

Имеется аппарат контакта с соседними клетками (например, десмосомы) и субмембранный комплекс (фибриллярные структуры), обеспечивающий устойчивость и форму мембраны.

Эндоплазматическая сеть (ЭПС) - это система мембран, образующих цистерны и каналы для взаимосвязей внутри клетки.

Различают гранулярную (шероховатую) и гладкую ЭПС.

На гранулярной ЭПС имеются рибосомы, где происходит биосинтез белков.

На гладкой ЭПС синтезируются липиды и углеводы, окисляется глюкоза (бескислородный этап), обезвреживаются эндогенные и экзогенные (ксенобиотики-чужеродные, в том числе, лекарственные) вещества. Для обезвреживания на гладкой ЭПС имеются белки-ферменты, катализирующие 4 главных типа химических реакций: окисление, восстановление, гидролиз, синтез (метилирование, ацетилирование, сульфатирование, глюкуронирование). В содружестве с аппаратом Гольджи ЭПС принимает участие в формировании лизосом, вакуолей и других одномембранных органоидов.

Аппарат Гольджи (пластинчатый комплекс) - это компактная система из плоских мембранных цистерн, дисков, пузырьков, которая тесно связана с ЭПС. Пластинчатый комплекс принимает участие в формировании оболочек (например, для лизосом и секреторных гранул) отграничивающих гидролитические ферменты и другие вещества от содержимого клетки.

Лизосомы - пузырьки с гидролитическими ферментами. Лизосомы активно участвуют во внутриклеточном пищеварении, в фагоцитозе. Они переваривают захваченные клеткой объекты, сливаясь с пиноцитарными и фагоцитарными пузырьками. Могут переваривать собственные изношенные органоиды. Лизосомы фагов обеспечивают иммунную защиту. Лизосомы опасны тем, что при разрушении их оболочки может произойти аутолизис (самопереваривание) клетки.

Пероксисомы - это мелкие одномембранные органоиды, содержащие фермент каталазу, который нейтрализует перекись водорода. Пероксисомы - это органоиды защиты мембран от свободнорадикального перекисного окисления.

Вакуоль - это одномембранные органоиды, характерные для растительных клеток. Их функции связаны с поддержанием тургора и (или) запасанием веществ.

Похожие статьи:

poznayka.org

Немембранные органоиды клетки: виды, строение, функции

Клетки животных, растений и грибов состоят из трех основных частей: плазматической мембраны, ядра и цитоплазмы. Бактерии отличаются от них тем, что не обладают ядром, однако они также имеют мембрану и цитоплазму.

Как устроена цитоплазма?

Это внутренняя часть клетки, в которой можно выделить гиалоплазму (жидкую среду), включения и органоиды (органеллы). Включения — это непостоянные образования в клетке, которые в основном представляют собой капли или кристаллы запасных питательных веществ. Органоиды — это постоянные структуры. Как в организме главными функциональными единицами являются органы, так в клетке все основные функции выполняют органеллы.

Мембранные и немембранные органоиды клетки

Первые делятся на одномембранные и двумембранные. Последних только два - это митохондрии и хлоропласты. К одномембранным относятся лизосомы, комплекс Гольджи, эндоплазматическая сеть (эндоплазматический ретикулум), вакуоли. О немембранных органоидах мы поговорим подробнее в этой статье.

Органоиды клетки немембранного строения

К ним относятся рибосомы, клеточный центр, а также цитоскелет, сформированный микротрубочками и микрофиламентами. Также к данной группе можно причислить органоиды движения, которыми обладают одноклеточные организмы, а также мужские половые клетки животных. Давайте рассмотрим по порядку немембранные органоиды клетки, их строение и функции.

Что такое рибосомы?

Это немембранные органоиды клетки, которые состоят из рибонуклеопротеинов. В их строение входит две части (субъединицы). Одна из них малая, одна - большая. В спокойном состоянии они находятся раздельно. Соединяются они тогда, когда рибосома начинает функционировать.немембранные органоиды клетки

Отвечают эти немембранные органоиды клетки за синтез белков. А именно за процесс трансляции - соединение аминокислот в полипептидную цепочку в определенном порядке, информация о котором скопирована с ДНК и записана на иРНК.

Размер рибосом составляет двадцать нанометров. Количество этих органоидов в клетке может достигать до нескольких десятков тысяч штук.

У эукариот рибосомы находятся как в гиалоплазме, так и на поверхности шероховатого эндоплазматического ретикулума. Также они присутствуют внутри двумембранных органоидов: митохондрий и хлоропластов.

Клеточный центр

Этот органоид состоит из центросомы, которая окружена центросферой. Центросома представлена двумя центриолями - пустыми внутри цилиндрами, состоящими из микротрубочек. Центросфера состоит из отходящих от клеточного центра радиально микротрубочек. Также в ее состав входят промежуточные филаменты и микрофибриллы.

Клеточный центр выполняет такие функции как образование веретена деления. Также он является центром организации микротрубочек.немембранные органоиды клетки таблица

Что касается химического строения данного органоида, то основным веществом является белок тубулин.

Этот органоид находится в геометрическом центре клетки, поэтому он и имеет такое название.

Микрофиламенты и микротрубочки

Первые представляют собой нити из белка актина. Их диаметр составляет 6 нанометров.

Диаметр микротрубочек составляет 24 нанометра. Их стенки построены из белка тубулина.

Эти немембранные органоиды клетки образуют цитоскелет, который помогает поддерживать постоянную форму.

Еще одна функция микротрубочек - транспортная, по ним могут перемещаться органоиды и вещества в клетке.мембранные и немембранные органоиды клетки

Органоиды передвижения

Они бывают двух видов: реснички и жгутики.

Первыми обладают такие одноклеточные организмы, как инфузории-туфельки.

Жгутики есть у хламидомонад, а также у сперматозоидов животных.

Органоиды передвижения состоят из сократительных белков.органоиды клетки немембранного строения

Заключение

В качестве вывода приводим обобщенную информацию.

Немембранные органоиды клетки (таблица)
ОрганоидРасположение в клеткеСтроениеФункции
РибосомыСвободно плавают в гиалоплазме, а также находятся на внешней стороне стенок шероховатого эндоплазматического ретикулумаСостоят из малой и большой частей. Химический состав - рибонуклеопротеины.Синтез белка
Клеточный центрГеометрический центр клеткиДва центриоли (цилиндры из микротрубочек) и центросфера - радиально отходящие микротрубочки.Формирование веретена деления, организация микротрубочек
МикрофиламентыВ цитоплазме клеткиТонкие нити из сократительного белка актинаСоздание опоры, иногда - обеспечение движения (например, у амеб)
МикротрубочкиВ цитоплазмеПолые трубки из тубулинаСоздание опоры, транспорт элементов клетки
Реснички и жгутикиС внешней стороны плазматической мембраныСостоят из белковПередвижение одноклеточного организма в пространстве

Вот мы и рассмотрели все немембранные органоиды растений, животных, грибов и бактерий, их строение и функции.

fb.ru

Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Одномембранные органоиды

Одномембранные органоиды — органоиды, окруженнные одной мембраной. К ним относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы и вакуоли.

Эндоплазматическая сеть (греч. endon — внутри и plasma — образование) (ЭПС), или эндоплазматический ретикулум (лат. reticulum — сеточка) (ЭПР) — это универсальный для всех эукариотических клеток одномембранный органоид, представляющий собой систему полостей, каналов, трубочек и образующий внутри клетки мембранную сеть, объединенную в единое целое с наружной мембраной ядерной оболочки. 

ЭПС была открыта в 1945 году К. Портером (США) в клетках соединительной ткани. За изучение структуры и функций ЭПС румыно-американский биолог Дж. Паладе удостоен в 1974 году Нобелевской премии.

Мембрана ЭПС имеет типичное жидкостно-мозаичное строение. Площадь мембраны ЭПС составляет около половины площади всех мембран клетки, а объем содержимого ЭПС — более 10% объема цитоплазмы. Морфологически ЭПС дифференцирована на шероховатую и гладкую ЭПС, которые выполняют разные функции.

Шероховатая, или гранулярная, ЭПС представлена совокупностью соединяющихся между собой уплощенных мембранных цистерн, на наружной поверхности которых находится большое количество рибосом, синтезирующих белки.

Часть синтезированных полипептидных цепочек поступает в полость шероховатой ЭПС или встраивается в ее мембрану и функционирует в самой ЭПС, другая часть модифицируется (например, разрезается на части или превращается в гликопротеиды) и выводится из эндоплазматической сети и используется для нужд клетки.

Таким образом, главной функцией шероховатой ЭПС является синтез полипептидных молекул и их модификация.

Гладкая ЭПС представлена системой сообщающихся между собой мембранных трубочек, стенки которых в некоторых местах переходят в мембрану шероховатой ЭПС. В отличие от гранулярной эндоплазматической сети на мембранах гладкой сети нет рибосом.

Этот отдел выполняет ряд важнейших клеточных функций. Мембрана гладкой ЭПС содержит ферменты синтеза липидов и углеводов. Образующиеся здесь фосфолипиды остаются в билипидном слое ЭПС или транспортируются специальными белками в другие клеточные мембраны; синтезированные углеводы используются в отделах шероховатой ЭПС для модификации белковых молекул или транспортируются в различные части клетки в неизменном виде.

Гладкая ЭПС также обезвреживает токсичные (ядовитые) для организма вещества. Так, при некоторых отравлениях в клетках печени появляются обширные зоны, заполненные гладкими мембранами ЭПС.

Функции эндоплазматической сети

Функция Пояснение
Синтез белков, липидов и углеводов На мембранах гладкой ЭПС синтезируются липиды и углеводы; рибосомы шероховатой ЭПС синтезируют полипептиды
Модификация синтезированных молекул В полостях ЭПС синтезированные молекулы подвергаются модификации, при этом из полипептидных цепочек формируются специфические для данной клетки белки, также образуются гликопротеиды и липопротеиды
Транспорт синтезированных молекул Продукты синтеза ЭПС по ее каналам и трубочкам поступают в разные части клетки
Защита от токсинов Гладкая часть ЭПС принимает участие в защите клетки от токсических веществ

Комплекс Гольджи (аппарат Гольджи) — одномембранный органоид эукариотической клетки, главной функцией которого является транспорт и химическая модификация поступающих в него из эндоплазматической сети веществ.

Структуру, известную теперь как аппарат Гольджи, впервые обнаружил в клетках в 1898 году Камилло Гольджи, итальянский врач и цитолог, лауреат Нобелевской премии 1906 году по физиологии и медицине. Детальное исследование этого органоида было сделано позже с помощью электронного микроскопа.

Комплекс Гольджи представляет собой стопку уплощенных мембранных цистерн и связанную с ними систему пузырьков, называемых пузырьками Гольджи. На одном конце этой стопки постоянно образуются новые цистерны путем слияния пузырьков, отпочковывающихся от эндоплазматической сети. Эти цистерны содержат еще незрелые молекулы органических веществ, синтезированные в ЭПС. В цистернах комплекса Гольджи подвергаются модификации белки, предназначенные для секреции, белки плазматической мембраны, ферменты лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам. На другом конце стопки завершается модификация молекул и созревание цистерн, которые вновь распадаются на пузырьки. Таким образом, цистерны в стопке постепенно смещаются от одного конца к другому.

Функции комплекса Гольджи

Функция Пояснение
Химическая модификация веществ Исходным субстратом для химической модификации являются вещества, поступающие в из ЭПС. Ферменты мембран аппарата Гольджи осуществляют различные химические реакции, в результате которых образуются вещества, необходимые клетке
Транспорт веществ Аппарат Гольджи принимает участие в транспорте липидов. При переваривании липиды расщепляются и всасываются в тонкой кишке в виде жирных кислот и глицерина. В гладкой ЭПС клеток кишечной ворсинки липиды ресинтезируются. Они покрываются белковой оболочкой и через аппарат Гольджи транспортируются к плазматической мембране, через которую путем экзоцитоза покидают клетку и поступают в лимфатическую систему
Формирование лизосом В цистернах аппарата Гольджи происходит созревание ферментов лизосом, их сортировка и упаковка в мембранные оболочки 

Комплекс Гольджи встречается почти во всех клетках (исключение — эритроциты и сперматозоиды). Располагается обычно около ядра; клетка может иметь один или несколько комплексов Гольджи.

Лизосомы (лат. lysis — расщепление и soma — тело) — органоиды клетки, главной функцией которых является внутриклеточное пищеварение.

Лизосомы открыл в 1949 году бельгийский цитолог и биохимик Кристиан Рене Де Дюв, лауреат Нобелевской премии по физиологии и медицине 1974 году.

Лизосомы представляют собой простые мембранные мешочки округлой формы диаметром ~0,2 — 0,5 мкм, стенки которых состоят из одного слоя мембраны. Лизосомы наполнены пищеварительными гидролитическими ферментами, активными в кислой среде (pH меньше 7). Ферменты в лизосомах изолированы от всех остальных структур клетки, что предохраняет эти структуры от переваривания. Заключенные в лизосомах ферменты синтезируются шероховатой ЭПС и транспортируются к аппарату Гольджи. Позже от него отпочковываются пузырьки Гольджи, содержащие ферменты, подвергшиеся необходимым превращениям. Они называются первичными лизосомами.

Лизосомы выполняют функции, связанные с внутриклеточным перевариванием и с секрецией пищеварительных ферментов.

Функции лизосом

Функции Пояснение
Переваривание материалов, поглощенных путем эндоцитоза Первичные лизосомы могут сливаться с пузырьками или вакуолями, образовавшимися в процессе эндоцитоза. При этом образуются вторичные лизосомы, в которых происходит переваривание материалов, поступивших в клетку путем эндоцитоза. Вторичную лизосому называют также пищеварительной вакуолью
Выделение ферментов из клетки посредством экзоцитоза Ферменты, содержащиеся в первичных лизосомах, могут выделяться из клеток наружу. Это происходит, например, в процессе развития костной ткани, когда хрящ заменяется костной тканью. Клетки пищеварительных желез выделяют таким образом ферменты, образовавшиеся в цистернах аппарата Гольджи, в кишечную полость
Автофагия Автофагия (греч. autós — сам и phagos — пожиратель) — это процесс уничтожения клеткой ненужных ей структур. Сначала такие структуры окружаются мембраной, отделяющейся от ЭПС, затем этот мембранный мешочек сливается с первичной лизосомой. В результате этого образуется вторичная лизосома, в которой происходит переваривание. Автофагия — завершение жизненного цикла органоидов, более не способных выполнять свои функции
Автолиз Cаморазрушение клетки, наступающее в результате высвобождения содержимого ее лизосом. В результате автолиза клеток, например, происходит перестройка органов (хвоста) у головастика при превращении его в лягушку. Иногда автолиз является следствием повреждения или гибели клетки

Лизосомы расположены в цитоплазме почти всех эукариотических клеток. Особенно много лизосом в тех клетках, которые обладают способностью к фагоцитозу. 

Вакуоль (франц. vacuole — пустота, от лат. vacuus — пустой) является обязательной принадлежностью растительной клетки. Она представляет собой крупный мембранный пузырек, заполненный клеточным соком, состав которого отличается от окружающей цитоплазмы. Вакуоль накапливает запасные питательные вещества и регулирует водно-солевой обмен, контролируя поступление воды в клетку и из клетки.

Пищеварительные вакуоли — одномембранные пузырьки, образующиеся в цитоплазме клеток хищных простейших и способных к фагоцитозу клеток многоклеточных организмов.

У простейших пищеварительные вакуоли образуются после захвата частиц пищи. У многоклеточных организмов пищеварительные вакуоли присутствуют в клетках, способных к фагоцитозу.

Формирование пищеварительной вакуоли в лейкоците: 1 — приближение бактерии к лейкоциту; 2 — прилипание бактериальной клетки к оболочке лейкоцита; 3,4 — эндоцитоз; 5 — слияние пищеварительной вакуоли с первичными лизосомами; 6 — процесс переваривания

После поглощения клеткой бактерии или какой-то другой частицы пищеварительная вакуоль оказывается в цитоплазме. Там она сливается с первичной лизосомой, отделившейся от комплекса Гольджи. Пузырек — результат этого слияния — называют вторичной лизосомой. После этого захваченная частица начинает растворяться. Минут через 20 внутри вторичной лизосомы виднеются только несколько непереваренных бесформенных кусочков. Затем вторичная лизосома подплывает к мембране клетки и сливается с ней, выбрасывая из клетки наружу непереваренные фрагменты, либо пищеварительная вакуоль превращается в специальную вакуоль накопления.

< Предыдущая страница "Немембранные органоиды"

Следующая страница "Двухмембранные органоиды" >

biolicey2vrn.ru

Живые системы | Одномембранные клеточные органоиды

В клетках эукариот присутствует сеть каналов, ограниченная одной мембраной - эндоплазматический ретикулум (ЭР). Мембраны ЭР образуют внешнюю ядерную мембрану. Часть мембран ЭР усеяна мельчайшими гранулами - это гранулярный, или шероховатый ЭР(рис. 7). Гранулы представляют собой рибосомы, органоиды, обеспечивающие процесс синтеза белка. Другая часть мембран ЭР рибосом не содержит - это гладкий ЭР. Функции гладкого ЭР связаны с метаболизмом липидов и некоторых внутриклеточных полисахаридов.

Клетки всех эукариот содержат особую структуру – комплекс, или аппарат Гольджи (АГ)(рис.7). Эта структура состоит из стопок пузырьков или цистерн, ограниченных одиночной мембраной. У большинства клеток эти стопки соединены между собой каналами и образуют единую систему. В цистернах АГ происходит модификация белков и их сортировка. Кроме того, АГ также ответственен за вывод ряда белков из клетки. От цистерн АГ отшнуровываются мембранные пузырьки (везикулы), содержащие определенные белки. Чаще всего в них находятся ферменты внутриклеточного пищеварения, тогда эти пузырьки участвуют в образовании органоидов внутриклеточного пищеварения лизосом. Другие везикулы движутся к поверхности клетки, и их мембраны сливаются с клеточной мембраной, а содержимое изливается наружу. Этот процесс называется экзоцитозом (рис. 8Б).

Для животных клеток характерен процесс поглощения веществ извне путем эндоцитоза (рис. 8А). Захват твердых частиц называется фагоцитозом, капель раствора – пиноцитозом. Содержимое фагоцитозного или пиноцитозного пузырька сливается с содержимым лизосом, в которых находятся гидролитические ферменты. Внутри образовавшихся пузырьков происходит процесс внутриклеточного пищеварения, в результате крупные молекулы расщепляются до более мелких, которые затем попадают в цитоплазму и используются в процессах клеточного обмена веществ (метаболизма).

Рис. 8. Схема процессов эндоцитоза (А) и экзоцитоза (Б)

Специфическими одномембранными органоидами, характерными для клеток растений и грибов, являются цитоплазматические вакуоли (рис.7). Вакуоли – это полости, отделенные от основного содержимого клетки мембраной и заполненные клеточным соком (водным раствором сахаров, разнообразных солей и других веществ). В клеточном соке происходят различные химические превращения. Вакуоли играют важную роль в поддержании упругости растительной ткани.

3ys.ru

Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Цитоплазма. Одномембранные органоиды: ЭПС, аппарат Гольджи, лизосомы, пероксиомы, вакуоли. / Двумембранные органоиды клетки: митохондрии, пластиды (хлоропласты, хромопласты, лейкопласты) / Немембранные органоиды клетки: рибосомы, цитоскелет, клеточный центр, базальные тельца, жгутики и реснички, включения

Цитоплазма — это особый рабочий аппарат клетки, в котором происходят основные процессы обмена веществ и превращения энергии и сосредоточены  органоиды.

Функциональный аппарат цитоплазмы состоит из:

  • гиалоплазмы основной цитоплазмы. Это коллоидные растворы белков и других органических веществ с истинными растворами минеральных солей;
  • немембранных структур;
  • мембранных структур и их содержимого.

Цитоплазма

гиалоплазма

органоиды

цитозоль, матрикс – растворимая часть цитоплазмы – сложная коллоидная система, состоящая из белков, нуклеиновых кислот, углеводов, воды, пронизанная белковыми нитями (цитоскелет)

одномембранные

двумембранные

немембранные

Функции:

  • Внутренняя среда клетки.
  • Объединяет все клеточные структуры.
  • Определяет местоположение органоидов.
  • Обеспечивает внутриклеточный транспорт благодаря циклозу.

Аппарат цитоплазмы находится в тесной связи с поверхностным и ядерным аппаратом клетки, составляя с ним целостную структуру.

Одномембранные органоиды клетки

Эндоплазматическая сеть (ЭПС), или ретикулум (ЭР) — это система каналов и полостей различной формы, пронизывающая всю цитоплазму. Мембраны покрыты мелкими рибосомами (шероховатая, гранулярная) или лишены их (гладкая, агранулярная). Здесь скапливаются ферменты липидного и углеводного обмена.

ЭПС соединяет все клеточные мембранные структуры в единую систему. Является поверхностью, на которой происходят все внутриклеточные процессы. Пространственно разделяет клетку. Здесь идёт синтез полипептидов, липидов, углеводов, их частичная модификация и транспорт.

Функция / локализация

Гранулярная ЭПС: транспорт белка, синтезируемого на рибосомах. Железистые и нервные клетки. Агранулярная ЭПС: место синтеза липидов и стероидов. Сальные железы, клетки печени, семена растений.

Комплекс Гольджи (аппарат Гольджи) — это стопка уплощённых мембранных мешочков — цистерн, трубочек и связанных с ними пузырьков. Здесь идёт транспорт веществ: белков и липидов, поступающих из ЭПС, предварительная их химическая перестройка, накопление, упаковка в пузырьки, формирование лизосом.

Комплекс Гольджи встречается почти во всех клетках (исключение — эритроциты и сперматозоиды). Располагается обычно около ядра; клетка может иметь один или несколько комплексов Гольджи.

Функция / локализация

Накопление, модификация, упаковка, секреция и транспорт органических веществ, обновление биомембран, образование лизосом. Аппарат Гольджи развит в клетках, вырабатывающих белковый секрет, в яйцеклетках, нейронах.

Лизосомы — это небольшие округлые тельца, одномембранные пузырьки разнообразной формы и размеров. Содержат различные протеолитические ферменты (около 40), участвуют во внутриклеточном пищеварении.

Функция / локализация

Участие во внутриклеточном переваривании, расщепление и удаление отмерших органоидов (автофагия), разрушение структуры самой клетки после ее отмирания (автолиз). Особенно много в лейкоцитах.

Пероксисомы - сферические одномембранные органоиды, содержащие каталазу – фермент, расщепляющий пероксид водорода.

Функция / локализация

Интоксикация веществ, окислительные реакции. Много в клетках печени.

Вакуоли - мембранные мешки, заполненные клеточным соком и ограниченные одинарной мембраной – тонопластом.

Функция / локализация

Хранение продуктов обмена веществ, осмотические свойства клеток, функция лизосом. В растительных клетках – одна большая вакуоль, в животных – много мелких: пищеварительные, сократительные.

ЭПС, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функций мембран.

Двумембранные органоиды

Митохондрии встречаются почти во всех клетках (кроме зрелых эритроцитов млекопитающих). В разных типах клеток может быть от 50 до 500 митохондрий.

Их наружная мембрана гладкая, внутренняя образует многочисленные складки — кристы. На кристах находятся ферменты, участвующие в синтезе АТФ. Внутреннее содержимое митохондрий — матрикс — содержит одну кольцевую молекулу ДНК, РНК, рибосомы, белки, фосфолипиды. Здесь идёт синтез АТФ (универсального источника энергии для всех биохимических процессов клетки) и стероидных гормонов.

Состав и строение митохондрий

Элемент структуры Особенности строения Особенности химического состава
Наружная мембрана Гладкая Липиды и белки плазматической мембраны
Внутренняя мембрана Имеет кристы (выросты) Дыхательные ферменты; АТФ-синтетаза
Матрикс Вязкая жидкость, содержит рибосомы Белки, углеводы, липиды, РНК, ДНК, АТФ и др.

Митохондрии в клетках живых существ отвечают за выработку энергии. Они обладают собственным генетическим аппаратом и передаются по материнской линии.

Пластиды — органоиды, характерные только для растительных клеток.

Хлоропласты, как и митохондрии, размножаются делением. Основная характеристика, объединяющая эти органоиды, состоит в том, что они имеют собственную генетическую информацию и синтезируют собственные белки.

Хлоропласты легко могут перерождаться в другие типы пластид. Мы наблюдаем это при пожелтении и покраснении созревающих плодов или листьев осенью. В темноте хлоропласты способны обесцвечиваться, превращаясь в лейкопласты. Однако эти процессы необратимы: лейкопласты и хромопласты никогда не превращаются обратно в хлоропласты.

Хромопласты образуются из хлоропластов и лейкопластов в результате внутренней перестройки. Имеют двойную мембрану, но, в отличие от лейкопластов и хлоропластов, не имеют внутренней мембранной структуры.

Немембранные органоиды

Рибосома состоит из двух субъединиц.

70S рибосома (у прокариот) - Малая субчастица: 1 молекула рРНК и 21 молекула белка + Большая субчастица: 2 молекулы рРНК и 34 молекулы белка + Нуклеопротеид.

80S рибосома (у эукариот) - Малая субчастица: 1 молекула рРНК и 21 молекула белка + Большая субчастица: 3 молекулы рРНК и больше молекул белка + Нуклеопротеид.

Встречаются в прокариотических и эукариотических клетках. Лежат свободно в цитоплазме или соединены с мембраной ЭПС. Есть в митохондриях, пластидах. Состоят из рРНК и белков, иона магния. Могут образовывать комплексы – полисомы (полирибосомы) – много рибосом на иРНК. Осуществляют биосинтез белка.

Цитоскелет - внутренний скелет клетки, образованный сетью белковых волокон:

  • микротрубочки - Ø 25 нм, белок тубулин;
  • промежуточные филаменты - Ø 8-10 нм;
  • микрофиламенты - Ø 5-7 нм, белок актин.

Функции: внутриклеточное движение, поддержание формы клетки.

Клеточный центр принимает участие в делении клеток животных и низших растений. Он представляет собой ультрамикроскопический органоид немембранного строения. Состоит из двух центриолей. Центриоли расположены перпендикулярно друг другу.

Центриоли клеточного центра встречаются в клетках животных и водорослей, высших грибов. Центриоли состоят из белковых микротрубочек, участвующих в образовании нитей веретена деления (при делении клетки центриоли расходятся к полюсам, к ним прикрепляются нити веретена деления, которые равномерно распределяют хромосомы по дочерним клеткам), а также участвуют в образовании жгутиков и ресничек цитоскелета. Микротрубочки обеспечивают внутриклеточное движение организмов.

Базальные тельца по структуре идентичны центриолям, лежат в основании жгутиков и ресничек, укрепляют их в цитоплазме.

Органоиды движения — реснички и жгутики. Это выросты мембраны диаметром около 0,25 мкм, содержащие внутри микротрубочки. Такие органоиды имеются у многих клеток: у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например в дыхательном эпителии.

Реснички — многочисленные цитоплазмические выросты на поверхности мембраны. Жгутики — единичные цитоплазматические выросты на поверхности клетки.

Микроворсинки – выросты мембраны, содержащие пучки актина и миозина.

Клеточные включения  — непостоянные образования, возникающие и исчезающие в процессе жизнедеятельности клетки. Основное место их локализации — цитоплазма. Химический состав включений разнообразен. Они могут накапливаться в виде кристаллов, гранул, капель.

Жировые включения в виде капель встречаются в цитоплазме простейших, у млекопитающих — в специальных жировых клетках соединительной ткани. Семена некоторых растений содержат очень много жира.

Углеводы могут накапливаться в виде гранул гликогена у животных в печени или в цитоплазме простейших. У растений гранулы крахмала по форме специфичны для каждого вида. Белковыми гранулами богата цитоплазма яйцеклеток.

biolicey2vrn.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта