Что такое мейоз? Биологическое значение процесса. Мейоз у растений
Мейоз | Биология
Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.
Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным. Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.
Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.
Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.
Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.
Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).
После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.
После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.
Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.
Мейоз I
Профаза I
Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).
Конъюгация — процесс сцепления гомологичных хромосом. Кроссинговер — обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма.
Спаренные гомологичные хромосомы называются бивалентами, или тетрадами. Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.
В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.
На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие — к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.
Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.
Метафаза I
Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.
Анафаза I
Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.
Телофаза I
Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.
Мейоз II
Интерфаза между двумя мейотическими делениями называется интеркинезом, он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.
Профаза II
Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.
Метафаза II
К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.
Анафаза II
Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.
Телофаза II
Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.
Значение мейоза
В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизма полового размножения, при котором сохраняется постоянство числа хромосом у вида.
Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.
Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.
Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов, благодаря которой возможна эволюция живых организмов.
biology.su
Мейоз у животных и растений. Биологический смысл мейоза
Мейоз. Это такое деление эукореотных клеток, при котором дочерние клетки получают в 2-а раза меньше информации, чем было в материнской клетке, поэтому мейоз всегда включает в себя редукционное деление, приводящее к уменьшению кол-ва генетической информации. Мейоз у животных проходит перед образованием гамет, поэтому это организмы с генетической редакцией. Мейоз у растений проходит перед образованием спор, так как для всех растений характерной чертой является чередование поколений. Бесполое поколение участвует в образовании спор и всегда имеет двойной или диплоидный набор хромосом. Так как споры образуются в ходе мейоза, то для них характерен одинарный или гаплоидный набор хромосом. Из споры прорастает половое поколение, на котором за счёт митоза формируются яйцеклетки и сперматозоиды. Они сливаются, образуют зиготу, из которой прорастает бесполое поколение.Для некоторых простейших нормой жизни является гаплоидность, поэтому мейоз проходит после образования зиготы (зиготическая редукция).Таким образом мейоз необходим для образования спор и гамет, а также для сохранения генетической стабильности вида. Типичный мейоз включает в себя 2-а деления: эквационное (2), редукционное (1)
Перед редукционным делением проходит нормальная интерфаза. Между 1 и 2 делением интерфаза сильно сокращена, либо вообще отсутствует. В любом случае удвоение ДНК между этими делениями не происходит. Оба деления включают в себя все фазы. Профаза 1 Делится на несколько периодов: 1.Липтотена – в ходе этого периода ядерная оболочка сохраняется, хромосомы становятся более компактными. 2.Зиготена – начинается сближение гомологичных хромосом. Гомологичными называются хромосомы, сходные по форме, размеру, генетическому содержимому. Гомологичные хромосомы подходят друг к другу и начинается формирование пар или бивалентов. 3.Пахитена – гомологичные хромосомы объединяются в биваленты, таким образом, что находящиеся рядом сестринские хроматиды взаимодействуют друг с другом. Точка взаимодействия называется хиазмой .Кол-во хиазм может быть различным, но существуют правила. Образовавшиеся хиазмы тормозят формирование новых хиазм.(рис 1)
В хиазмах может происходить разрыв в нитях ДНК. Обмен участками между гомологичными хромосомами, а затем сшивание сахарофосфатного остова. Этот процесс получил название кроссинговер. Такой обмен участками между гомологичными хромосомами является основой комбинативной изменчивости. Таким образом, формирование бивалентов необходимо для осуществления процесса кроссинговера и также для нормального расхождения гомологичных хромосом к разным полюсам клетки в ходе анафазы 1. 4.Диплотена и диокинез – гомологичные хромосомы на этой стадии пытаются разойтись, однако их сдерживают хиазмы, которые в данном случае смещаются к теломерным участкам хромосомы и благодаря хиазмам биваленты сохраняются. Этот процесс получил название диокинеза. Практически всю профазу, включая диплотену, ядерная оболочка сохраняется. К концу профазы фрагментируются мембранные органоиды, фрагментируется оболочка ядра, и хромосомы оказываются в цитоплазме клетки в виде бивалентов. Формируются веретено деления, причём к каждому биваленту подходит кинетохорная нить только от одного из полюсов. Благодаря полимеризации этой нити биваленты начинают продвигаться по экватору клетки. Метафаза 1 В ходе метафазы биваленты выстраиваются по экватору клетки, таким образом, что гомологичные хромосомы одной пары лежат по разные стороны от экватора. Так как ориентация бивалентов относительно полюсов клетки произвольна, то возможно несколько вариантов расположения бивалентов друг относительно друга. Анафаза 1 Начинается расхождение гомологичных хромосом к разным полюсам клетки. Так как биваленты произвольно ориентировались относительно полюсов, то возможны различные варианты их расхождения и, следовательно, произвольная ориентация бивалентов в метафазе 1. Варианты расхождения гомологичных хромосом также является основой комбинативной изменчивости. Расхождение обеспечивает основной и дополнительный механизмы.Телофаза 1Около каждой клетки формируется полный набор цитоплазматических органоидов и свой ядерный аппарат. После телофазы проходит цитокинез, и образуется 2-е клетки. Причём кол-во хромосом и генетическая информация уменьшены в 2-а раза. 2-е клетки, которые образованы в ходе редукционного деления подвергаются эквационному делению, которое по своему механизму является типичным митозом. Результатом эквационного деления является образование 4-х клеток.(рис 2) В ходе анафазы 1 редукционного деления к каждому полюсу клетки закономерно показывает только гомологичная хромосома из пары. Поэтому после телофазы и цитокинеза каждая дочерняя клетка содержит только 1 гомологичную хромосому из пары, то есть в ходе редукционного деления кол-во хромосом и информации в дочерних клетках уменьшается. Поскольку в метафазе 1 существовали варианты в расположении хромосом, то изучены варианты расхождения гомологичных хромосом к разным полюсам. Это является основой комбинативной изменчивости .Биологический смысл мейоза Образование гамет или спор, Сохранение генетической стабильности вида, Основа комбинативной изменчивости за счёт процесса кроссинговера, либо за счёт произвольной ориентации бивалентов относительно полюсов клетки. Кроссинговер может наблюдаться в ходе митоза, как исключение в том случае, если гомологичные хромосомы сходятся и кньюгируют. Последствия имеет кроссинговер – появление крупных пигментных пятен и явление разноглазости.
vunivere.ru
5. Мейоз. Размножение организмов
Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении.
Мейоз (от греч. meiosis — уменьшение) — редукционное деление, при котором хромосомный набор клетки уменьшается вдвое.
Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений — I деление и II деление мейоза.
В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.
Стадии мейоза
Как и митозу, мейозу предшествует интерфаза, продолжительность которой зависит от вида организма и бывает различной. Перед делением происходит синтез белка и редупликация ДНК. Клетка увеличивается в размерах за счет удвоения количества органоидов. Каждая хромосома в конце интерфазы состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерой, поэтому хромосомный набор клетки сохраняется диплоидным. Таким образом, перед началом деления набор хромосом и ДНК соответственно составляет 2n4c.
Профаза I. Профаза первого деления мейоза значительно длиннее, чем в митозе, кроме того, она сложнее. Ее подразделяют на пять стадий.
Лептотена. Хромосомы спирализуются, становятся хорошо заметными. Каждая состоит из двух сестринских хроматид, но они тесно сближены и создают впечатление одной тонкой нити. Отдельные участки хромосом интенсивно окрашены за счет более сильной спирализации и называются хромомерами. Гомологичные хромосомы попарно соединяются и накладываются друг на друга — конъюгируют. В результате образуются биваленты — двойные хромосомы.
Зиготена. На этой стадии происходит тесное сближение и соединение гомологичных хромосом — конъюгация. Они накладываются друг на друга, причем однотипные участки с одинаковыми генами четко соприкасаются друг с другом. Пары соединенных (конъюгированных) гомологичных хромосом образуют биваленты (от лат. би — двойной). Каждая гомологичная хромосома состоит из двух сестринских хроматид, значит, биваленты фактически состоят из четырех хроматид и представляют собой тетрады (от лат. тетра — четыре).
Пахитена. Это достаточно длительная стадия, так как именно в этот период между конъюгированными хромосомами может происходить обмен отдельными участками — кроссинговер (рис. 9). Между несестринскими хроматидами двух гомологичных хромосом начинается обмен некоторыми генами, что приводит к рекомбинации генов в хромосомах. Биваленты продолжают укорачиваться и утолщаться.
Рис. 9. Кроссинговер. Последовательность процесса: А — репликация ДНК и удвоение хромосом; Б — конъюгация; В — кроссинговер
Диплотена. На этой стадии гомологичные хромосомы начинают отталкиваться друг от друга. Конъюгация заканчивается, однако хромосомы еще связаны друг с другом в точках, в которых происходил кроссинговер. В таком состоянии они могут находиться довольно долго.
Диакинез. Гомологичные хромосомы продолжают отталкиваться друг от друга и остаются соединенными только в некоторых точках. Они приобретают определенную форму и теперь хорошо заметны. Каждый бивалент состоит из четырех хроматид, сцепленных попарно центромерами. Ядерная мембрана постепенно исчезает, центриоли расходятся к полюсам клетки, и образуются нити веретена деления. Профаза I занимает 90 % от всего времени мейоза (рис. 10).
Рис. 10. Мейоз: А — профаза I; Б — метафаза I; В — анафаза I; Г — телофаза I; Д — профаза II; Е — метафаза II; Ж — анафаза II; 3 — телофаза II
Метафаза I. Гомологичные хромосомы попарно в виде бивалентов выстраиваются в экваториальной зоне клетки над и под плоскостью экватора. Образуется метафазная пластинка. Центромеры хромосом соединяются с нитями веретена деления.
Анафаза I. Гомологичные хромосомы расходятся к полюсам клетки. Это основное отличие мейоза от митоза. Таким образом, у каждого полюса оказывается только одна хромосома из пары, т. е. происходит уменьшение числа хромосом вдвое — редукция. Первое деление мейоза называется редукционным.
Телофаза /. Первое деление мейоза завершается цитокинезом — делится все остальное содержимое клетки. В цитоплазме образуется перетяжка и возникают две клетки с гаплоидным набором хромосом. Формируется ядерная оболочка и ядро. Хромосомы состоят из двух хроматид, но теперь они не идентичны друг другу вследствие кроссинговера. Число хромосом в каждой клетке равно соответственно n, а ДНК — 2c.
Образование двух клеток может происходить не всегда. Иногда телофаза завершается только формированием двух гаплоидных ядер.
Мейоз II. Перед вторым делением мейоза интерфаза очень короткая (у животных), но может и вообще отсутствовать (у растений). В интерфазе II репликации ДНК не происходит, число хромосом и ДНК сохраняются неизменными. Обе клетки или ядра после непродолжительного перерыва одновременно приступают ко второму делению мейоза.
Мейоз II полностью идентичен митозу и протекает в двух клетках (ядрах) синхронно. Здесь происходят два главных события: расхождение сестринских хроматид и образование гаплоидных клеток.
Профаза II. Ядерная мембрана исчезает, образуется веретено деления. Хромосомы спирализуются, укорачиваются и утолщаются. Фаза значительно короче профазы I. При отсутствии интерфазы II иногда профаза II также может практически отсутствовать.
Метафаза II. Хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединены с центромерами. Веретено деления в мейозе II перпендикулярно веретену первого деления.
Анафаза II. Центромеры делятся. К полюсам клетки расходятся сестринские хроматиды, которые теперь становятся хромосомами. У каждого полюса образуется гаплоидный набор хромосом, где каждая хромосома состоит теперь из одной молекулы ДНК.
Телофаза II. Хромосомы деспирализуются, становятся плохо различимыми. Нити веретена деления исчезают. Формируется ядерная мембрана. Далее происходит цитокинез, как и в митозе. Образуются 4 гаплоидных ядра или 4 гаплоидные клетки. Число хромосом и ДНК в каждой клетке равно соответственно n и c.
Биологический смысл мейоза заключается в образовании гаплоидных клеток, которые в результате полового размножения сливаются, и вновь восстанавливается диплоидный набор. Этот процесс обеспечивает постоянный набор хромосом у вновь образующихся организмов.
Поведение хромосом в мейозе
Мейоз обеспечивает появление разнообразных по качеству генетической информации гамет. Это связано с особым поведением хромосом в мейозе (рис. 11).
Рис. 11. Поведение хромосом в мейозе: А — распределение гомологичных хромосом; Б — независимое распределение негомологичных хромосом; В — кроссинговер и нарушение сцепления генов
В мейозе гомологичные хромосомы всегда попадают в разные гаметы. Так как гомологичные хромосомы могут нести разные по качеству признаки, следовательно, гаметы не идентичны по генному набору.
Негомологичные хромосомы расходятся в гаметы произвольно, независимо друг от друга. Это связано со случайным расположением бивалентов в мейозе I и их независимым расхождением в анафазе I. Следовательно, отцовские и материнские хромосомы распределяются в гаметах случайным образом. Этот процесс называется независимым распределением, что увеличивает число типов гамет и является основой для генетического разнообразия организмов.
Число типов гамет у диплоидных организмов можно определить по формуле:
где N — число типов гамет, n — число пар хромосом организма.
Например, у дрозофилы кариотип равен 8, число пар хромосом — 4.
У человека кариотип составляет 46 хромосом, т. е. 23 пары.
Конъюгация и кроссинговер способствуют рекомбинации генов, изменяется сочетание генов в хромосоме, что увеличивает разнообразие гамет и сочетание признаков в организме.
Мейоз в жизненном цикле организмов
Мейоз в жизненном цикле организма от одного полового размножения до другого происходит один раз. У многоклеточных животных и высших растений диплоидная фаза длительная и сложная. Она соответствует взрослому организму. Фаза гаплоидных клеток непродолжительна и проста. Это чаще всего половые клетки или группа клеток, в которых они образуются. Однако у некоторых организмов гаплоидная фаза соответствует взрослому состоянию, а диплоидной является лишь оплодотворенная яйцеклетка — зигота (рис. 12).
Рис. 12. Схема жизненных циклов организмов: А — жизненный цикл низших растений водорослей, грибов; мейоз происходит сразу после образования зиготы, взрослое поколение гаплоидное; Б — жизненный цикл животных; В — жизненный цикл высших растений, чередование гаплоидного и диплоидного поколения
У животных мейоз происходит при образовании гамет. Гаплоидными являются только гаметы. После оплодотворения диплоидный набор хромосом восстанавливается, поэтому зигота и взрослый организм диплоидные.
У высших растений мейоз происходит при образовании спор, из которых потом развивается гаплоидный организм — гаметофит. Он может представлять собой взрослый организм (у мхов) или только несколько клеток на основном растении — спорофите. В обоих случаях на нем в процессе митоза образуются гаметы, а после оплодотворении — диплоидная зигота. Она дает начало спорофиту.
У некоторых низших растений, одноклеточных животных, грибов мейоз происходит сразу же после образования зиготы. Взрослый организм существует только в гаплоидной форме.
Вопросы для самоконтроля
1. Какой тип деления клетки лежит в основе полового размножения?
2. Какие клетки образуются в результате мейотического деления?
3. Охарактеризуйте фазы мейоза.
4. Объясните биологический смысл мейоза.
5. Почему редукционное деление имеет место только при половом размножении?
6. В чем основное отличие мейоза от митоза? Сравните деление мейоза I, мейоза II и митоза. В чем их сходство и отличие?
7. Как распределяются гомологичные и негомологичные хромосомы в мейозе?
8. Объясните, почему при мейозе происходит образование значительного числа типов гамет.
9. Определите, сколько и какие типы гамет образуются из клетки с набором хромосом AaBbCc.
10. Как циклы развития организмов связаны с мейозом?
Поделитесь на страничкеСледующая глава >
bio.wikireading.ru
Мейоз | Student Guru
Мейоз (редукционное деление) – особый тип деления клеток половых желез, результатом которого из диплоидных (2n) клеток образуются половые клетки, которые имеют гаплоидный (n) набор хромосом. У растений мейоз происходит при образовании спор – специализированных клеток бесполого размножения, характерных для водорослей, грибов, мхов, хвощей, плаунов и папоротников. У голосеменных и покрытосеменных растений мейоз происходит при образовании в пыльниках микроспор, из которых в дальнейшем развивается пыльца, и при образовании в семяпочке макроспор, одна из которых дает начало зародышевому мешку. У животных мейоз или редукционное деление происходит при образовании мужских и женских гамет — сперматозоидов и яйцеклеток.
Для мейоза характерны те же процессы и стадии, которые наблюдаются при митотическом делении клеток, однако они значительно растянуты во времени. Перед началом мейоза в конце интерфазы происходит процесс удвоения генетического материала и синтез необходимых для деления белков. Сам мейоз протекает в два этапа (мейоз I и мейоз II ), которые быстро сменяют друг друга практически без интерфазы, причем, каждый из этих этапов, как и митоз, делится, в свою очередь, на 4 фазы – профаза I, метафаза I, анафаза I, телофаза I и профаза II, метафаза II, анафаза II и телофаза II. В результате мейоза I число хромосом в клетке уменьшается вдвое (собственно редукционное деление), а при мейозе II — сохраняется гаплоидный набор хромосом. В процессе оплодотворения гаплоидные ядра половых клеток сливаются, в результате чего зигота получает двойной набор хромосом.
Таким образом за счет мейоза при половом размножении поддерживается постоянство хромосомного набора и количества ДНК в клетках животных и растений.
Перейти к оглавлению.
You can leave a response, or trackback from your own site.www.studentguru.ru
Мейоз как основа полового размножения
Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).
Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э.Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900).
Хотя мейоз открыт более 100 лет назад, но изучение мейоза продолжается до сих пор. Интерес к мейозу резко возрос в конце 60-х годов, когда выяснилось, что одни и те же контролируемые генами ферменты могут принимать участие во многих процессах, связанных с ДНК. В последнее время ряд биологов развивают оригинальную идею: мейоз у высших организмов служит гарантом стабильности генетического материала, ибо в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на точность и восстановление повреждений, затрагивающих сразу обе нити. Изучение мейоза связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветки знания — цитогенетики, тесно соприкасающейся ныне с молекулярной биологией и генной инженерией.
Биологическое значение мейоза заключается в следующих процессах:
1.Благодаря редукции числа хромосом в результате мейоза в ряду поколений при половом размножении обеспечивается постоянство числа хромосом.
2.Независимое распределение хромосом в анафазе первого деления обеспечивает рекомбинацию генов, относящихся к разным группам сцепления (находящихся в разных хромосомах). Мейотическое распределение хромосом по дочерним клеткам называется сегрегацией хромосом.
3.Кроссинговер в профазе I мейоза обеспечивает рекомбинацию генов, относящихся к одной группе сцепления (находящихся в одной хромосоме).
4. Случайное сочетание гамет при оплодотворении вместе с вышеперечисленными процессами способствует генетической изменчивости.
5. В процессе мейоза происходит еще одно существенное явление. Это процесс активации синтеза РНК (или транскрипционной деятельности хромосом) в ходе профазы (диплотены), связанный с формированием хромосом типа «ламповых щеток» (обнаружены у животных и некоторых растений).
Эта реверсия профазы к интерфазному состоянию (при митозе только в интерфазе идет синтез и-РНК) является специфической характеристикой мейоза как особого типа деления клеток.
Следует отметить, что у простейших наблюдается значительное разнообразие процессов мейоза.
В соответствии с положением в жизненном цикле различают три типа мейоза:
Зиготный (исходный) мейоз происходит в зиготе, т.е. непосредственно после оплодотворения. Он характерен для организмов, в жизненном цикле которых преобладает гаплоидная фаза (аскомицеты, бизидиомицеты, некоторые водоросли, споровики и др.).
Гаметный (терминальный) мейоз происходит во время формирования гамет. Он наблюдается у многоклеточных животных (в т.ч. у человека), а также среди простейших и некоторых низших растений, в жизненном цикле которых преобладает диплоидная фаза.
Промежуточный (споровый) мейоз протекает во время спорообразования у высших растений, включаясь между стадиями спорофита (растения) и гаметофита (пыльца, зародышевый мешок).
Таким образом, мейоз - это форма ядерного деления, сопровождающаяся уменьшением числа хромосом с диплоидного до гаплоидного и изменением генетического материала. Результат мейоза — образование клеток с гаплоидным набором хромосом (половых клеток).
Продолжительность мейоза может отличаться в зависимости от вида растений и животных (табл. 1).
Таблица 1. Продолжительность мейоза у различных видов растений
Вид | 2n | Мейотический цикл, час |
Secate sereate (рожь культурная) | 51,2 | |
Allium сера (лук репчатый) | 96,0 | |
Tradescantia paludosa | 126,0 | |
Lilium herry | 170,0 | |
Lilium longiflorum | 192,0 | |
Trillium erectum (трилиум прямостоячий) | 274,0 |
Типичный мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.
Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n). Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном.
Количество геномов в клетке называется геномным числом (n). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.
Морфология мейоза — характеристика фаз
Интерфаза
Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с.
При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.
Первое деление мейоза
ДНК прошла репликацию. Начитается профаза I, самая продолжительная стадия мейоза.
Стадия профазы I подразделяется на следующие стадии:
лептотена — стадия тонких нитей;
зиготена — стадия двойных нитей;
пахитена — стадия толстых нитей;
диплотена — кроссинговер;
диакинез — исчезновение ядерной оболочки и ядрышка.
В ранней профазе (лептотене) происходит подготовка к конъюгации хромосом. Хромосомы уже удвоены, но сестринские хроматиды в них еще неразличимы. Хромосомы начинают упаковываться (спирализоваться).
В отличие от профазы митоза, где хромосомы расположены по мембране ядра конец в конец и, упаковываясь, притягиваются к мембране, лептотенные хромосомы своими теломерными участками (концами) располагаются в одном из полюсов ядра, образуя фигуру «букета» у животных и сжатие в клубок «синезис» — у растений. Такое расположение или ориентации в ядре позволяет хромосомам быстрее и легче осуществлять конъюгацию гомологичных локусов хромосом (рис. 1).
Центральное событие — таинственный процесс узнавания гомологичных хромосом и их попарное сближение друг с другом происходит в зиготене профазы I. При конъюгации (сближении) гомологичных хромосом происходит образование пар — бивалентов и хромосомы заметно укорачиваются. С этого момента начинается формирование синаптонемного комплекса (СК). Формирование синаптонемного комплекса и синопсис хромосом — синонимы.
Рис. 1. Стадия профазы
В ходе следующей стадии профазы I – пахитене между гомологичными хромосомами усивается тесное соприкосновение, которое и называется синапсисом (от греч. synopsis — соединение, связь). Хромосомы в этой стадии сильно спирализованы, что делает возможным наблюдение их под микроскопом.
В ходе синапсиса гомологи переплетаются, т.е. конъюгируют. Конъюгирующие биваленты связаны хиазмами. Каждый бивалент состоит из двух хромосом и четырех хроматид, где каждая хромосома пришла от своего родителя. При образовании синапсиса (СК), происходит обмен участками между гомологичными хроматидами. Этот процесс, называемый кроссинговером, приводит к тому, что хроматиды теперь имеют иной состав генов.
Синаптонемный комплекс (СК) в пахитене достигает наибольшего развития и в этот период представляет собой лентовидную структуру, располагающуюся в пространстве между параллельно лежащими гомологичными хромосомами. СК состоит из двух параллельных латеральных элементов, сформированных плотно уложенными белками и менее плотного центрального элемента, протягивающегося между ними (рис. 2).
Рис. 2. Схема синаптонемного комлекса
Каждый латеральный элемент формируется парой сестринских хроматид в виде продольной оси лептотенной хромосомы и до того, как становится частью СК, носит название осевого элемента. Боковые петли хроматина лежат вне СК, окружая его со всех сторон.
Развитие СК в процессе мейоза:
лептотена—структура хромосом, вступивших в лептотену, сразу же оказывается необычной: в каждом гомологе наблюдается продольный тяж, идущий по оси хромосом на всем ее протяжении;
зиготена — на этой стадии осевые тяжи гомологов сближаются, при этом концы осевых тяжей, прикрепленных к ядерной мембране, как бы скользят по ее внутренней поверхности навстречу друг к другу;
пахитена. Наибольшее развитие СК достигает в пахитене, когда все элементы его приобретают максимальную плотность, а хроматин — вид плотной сплошной «шубы» вокруг него.
Функции СК:
1.Полностью развитый синаптонемный комплекс необходим для нормального удержания гомологов в биваленте так долго, как это необходимо для осуществления кроссинговера и закладки хиазм. Хромосомы соединяются с помощью синаптонемного комплекса на некоторое время (от 2 ч у дрожжей до 2–3 сут. у человека), в течение которого между гомологичными хромосомами совершается обмен гомологичными участками ДНК — кроссинговер (от англ, crossing over — образование перекреста).
2.Предотвращение слишком прочного соединения гомологов и удержание их на определенном расстоянии, сохранение их индивидуальности, создание возможности оттолкнуться в диплотене и разойтись в анафазе.
Процесс кроссинговера связан с работой определенных ферментов, которые при образовании хиазм между сестринскими хроматидами, «разрезают» их в месте перекреста с последующим воссоединением образовавшихся фрагментов. В большинстве случаев указанные процессы не приводят к каким-либо нарушениям в генетической структуре гомологичных хромосом, т.е. происходит правильное соединение фрагментов хроматид и восстановление их первоначального строения.
Однако, возможен и другой (более редкий) вариант событий, который связан с ошибочным воссоединением фрагментов разрезанных структур. При этом происходит взаимный обмен участками генетического материала между конъюгирующими хроматидами (генетическая рекомбинация).
На рис. 3 приведена упрощенная схема некоторых возможных вариантов одиночного либо двойного кроссинговера с участием двух хроматид из пары гомологичных хромосом. Необходимо подчеркнуть, что кроссинговер представляет собой случайное событие, которое с той или иной вероятностью может возникнуть на любом участке (либо на двух и большем числе участков) гомологичных хромосом. Следовательно, на этапе созревания гамет эукариотического организма в профазе первого деления мейоза действует универсальный принцип случайного (свободного) комбинирования (рекомбинации) генетического материала гомологичных хромосом.
В цитологических исследованиях синапсиса в последние два десятилетия важную роль играет метод распластывания профазных мейотических клеток животных и растений под действием гипотонического раствора. Метод вошел в цитогенетику после работ Мозеса и сыграл такую же роль, какую в свое время сыграл метод приготовления «давленых» препаратов для исследования метафазных хромосом, избавив цитогенетиков от микротомных срезов.
Метод Мозеса и его модификации стали более удобными, чем анализ СК на ультратонких срезах. Этот метод был положен в основу исследований мейоза и постепенно охватил вопросы генного контроля мейоза у животных и растений.
Рис. 3. Отдельные варианты одиночного и двойного кроссинговера с участием двух хроматид: 1 исходные хроматиды и вариант без кроссинговера; 2 одиночный кроссинговер на участке А В и кроссоверные хроматиды; 3 одиночный кроссинговер на участке В-С и кроссоверные хроматиды; 4 двойной кроссинговер и кроссоверные хроматиды нескольких разных участках на основе гомологичности генетического материала этих участков. Полагают, что с каждой стороны в процессе конъюгации могут участвовать либо одна из двух сестринских хроматид соответствующей хромосомы либо обе хроматиды.
В диппотене гомологичные хромосомы после спаривания и кроссинговера начинают отталкиваться друг от друга. Процесс отталкивания начинается с центромер. Расхождению гомологов препятствуют хиазмы - место соединения несестринских хроматид, возникших в результате перекреста. По мере расхождения хроматид некоторые хиазмы смещаются к концу плеча хромосомы. Обычно перекрестов бывает несколько, и чем длиннее хромосомы, тем их больше, поэтому в диплотене, как правило, несколько хиазм в одном биваленте.
В стадии диакинеза происходит уменьшение числа хиазм. Биваленты располагаются по периферии ядра. Ядрышко растворяется, мембрана разрушается и начинается переход к метафазе I. На протяжении всей профазы сохраняется ядрышко и ядерная оболочка. Перед профазой в период синтетического периода интерфазы происходит репликация ДНК и репродукция хромосом. Однако полностью этот синтез не заканчивается: ДНК синтезируется на 99,8%, а белки — на 75%. Синтез ДНК заканчивается в пахитене, белков — в диплотене.
В метафазе I становится заметной веретеновидная структура, образуемая микротрубочками. В ходе мейоза к центромерам хромосом каждого бивалента прикрепляются отдельные микрокрубочки. Затем пары хромосом перемещаются в экваториальную плоскость клетки, где выстраиваются в случайном порядке. Центромеры гомологичных хромосом располагаются в противоположных сторонах от экваториальной плоскости; в метафазе митоза, напротив, центромеры отдельных хромосом располагаются в экваториальной плоскости.
В метафазе I биваленты располагаются в центре клетки, в зоне экваториальной пластинки (рис. 4).
Рис. 4. Стадии мейоза: профаза I — метафаза I
Анафаза начинается с расхождения гомологичных хромосом и движения их в направлении полюсов. У хромосом без центромера крепления не может существовать. В анафазе митоза центромеры делятся и идентичные хроматиды расходятся. В анафазе I мейоза центромеры не делятся, хроматиды остаются вместе, а разъединяются гомологичные хромосомы. Однако из-за обмена фрагментами в результате кроссинговера хроматиды не идентичны, как в начале мейоза. В анафазе I конъюгирующие гомологи расходятся к полюсам.
В дочерних клетках число хромосом вдвое меньше (гаплоидный набор), при этом масса ДНК уменьшается также вдвое и хромосомы остаются дихроматидными. Точное расхождение гомологичных пар к противоположным полюсам лежит в основе редукции их числа.
В телофазе I происходит сосредоточение хромосом у полюсов, некоторая их деконденсация, за счет чего спирализация хромосом ослабевает, они удлиняются и снова становятся неразличимыми (рис. 5). По мере того как телофаза постепенно переходит в интерфазу, из эндоплазматического ретикулума возникает ядерная оболочка (в том числе и из фрагментов оболочки ядра материнской клетки), а также клеточная перегородка. Наконец вновь образуется ядрышко и возобновляется синтез белка.
Рис. 5. Стадии мейоза: анафаза I — телофаза I
В интеркинезе образуются ядра, в каждой из которых находится n дихроматидных хромосом.
Особенность второго деления мейоза состоит, прежде всего, в том, что в интерфазе II не происходит удвоения хроматина, поэтому каждая клетка, вступающая в профазу II, сохраняет прежнее соотношение n2с.
Второе деление мейоза
В период второго деления мейоза сестринские хроматиды каждой хромосомы расходятся к полюсам. Поскольку в профазе I мог произойти кроссинговер и сестринские хроматиды могли стать неидентичными, то принято говорить, что второе деление протекает по типу митоза, однако это не настоящий митоз, при котором в норме дочерние клетки содержат хромосомы идентичные по форме и набору генов.
В начале второго мейотического деления хроматиды все еще связаны центромерами. Это деление похоже на митоз: если в телофазе I образовалась ядерная оболочка, то теперь она разрушается, и к концу короткой профазы II исчезает ядрышко.
Рис. 6. Стадии мейоза: профаза II—метафаза II
В метафазе II снова можно увидеть веретено и хромосомы, состоящие из двух хроматид. Хромосомы прикрепляются центромерами к нитям веретена и выстраиваются в экваториальной плоскости (рис. 6). В анафазе II центромеры делятся и расходятся, а сестринские хроматиды, ставшие теперь хромосомами, движутся к противоположным полюсам. В телофазе II образуются новые ядерные оболочки и ядрышки, сжатие хромосом ослабевает и в интерфазном ядре они становятся невидимыми (рис. 7).
Рис. 7. Стадии мейоза: анафаза II — телофаза II
Завершается мейоз формированием гаплоидных клеток — гаметы, тетрады спор - потомков исходной клетки с редукционным вдвое (гаплоидным) набором хромосом и гаплоидной массой ДНК (исходная клетка 2n, 4с, — споры, гаметы — n, с).
Общая схема распределения хромосом гомологичной пары и содержащихся в них двух пар различающихся аллельных генов во время двух делений мейоза приведена на рис.8. Как видно из этой схемы, возможны два принципиально разных варианта такого распределения. Первый (более вероятный) вариант связан с образованием двух типов генетически различающихся гамет с хромосомами, не претерпевшими кроссинговеров на участках, где локализованы рассматриваемые гены. Такие гаметы принято называть некроссоверными. При втором (менее вероятном) варианте наряду с некроссоверными возникают также кроссоверные гаметы как результат генетического обмена (генетической рекомбинации) в участках гомологичных хромосом, расположенных между локусами двух неаллельных генов.
Рис. 8. Два варианта распределения хромосом гомологичной пары и содержащихся в них неаллельных генов как результат двух делений мейоза
Похожие статьи:
poznayka.org
Деление клеток - митоз (непрямое) и мейоз (прямое).
Размножение клеток – один из важнейших биологических процессов, является необходимым условием существования всего живого. Репродукция осуществляется путем деления исходной клетки.
Клетка – это наименьшая морфологическая единица строения любого живого организма, способная к самопроизводству и саморегуляции. Время ее существования от деления до гибели или же последующей репродукции называется клеточным циклом.
Ткани и органы состоят из различных клеток, которые имеют свой период существования. Каждая из них растет и развивается, чтобы обеспечивать жизнедеятельность организма. Длительность митотического периода различна: клетки крови и кожи входят в процесс деления каждые 24 часа, а нейроны способны к репродукции только у новорожденных, а затем вовсе утрачивают способность к размножению.
Существует 2 вида деления — прямое и непрямое. Соматические клетки размножаются непрямым путем, гаметам или половым клеткам присущ мейоз (прямое деление).
Митоз — непрямое деление
Митотический циклМитотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.
Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:
-
- Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.
- Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
- Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.
После окончания премитотического периода начинается митотическое деление. Процесс включает 4 фазы:
- Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
- ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
- поздняя — прослеживаются отдельные части хромосом.
- Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
- Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
- Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.
Мейоз — прямое деление
Мейоз — прямое делениеСуществует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление). Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.
Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.
Профаза 1:
- Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
- Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
- Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
- Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
- Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.
Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.
Метафаза 1: биваленты расположены посередине клетки.
Анафаза 1:к противоположным полюсам движутся удвоенные хромосомы.
Телофаза 1:завершается процесс деления, клетки получают по 23 бивалента.
Без последующего удвоения материала клетка вступает во второй этап деления.
Профаза 2: снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.
Метафаза 2: две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.
Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.
Телофаза 2: процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.
Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.
animals-world.ru
Что такое мейоз? Биологическое значение процесса :: SYL.ru
Мейоз – один из способов деления клетки. Он связан с образованием гамет, а значит, играет роль в половом размножении. Это важный процесс в эволюционном плане, который позволяет создавать организмам разнообразные популяции в ответ на изменения окружающей среды. Без понимания значимости мейоза невозможно дальнейшее изучение таких разделов биологии как селекция, генетика, экология.
Что такое мейоз
Этот способ деления характерен для образования гамет у животных, растений и грибов. В результате мейоза образуются клетки, обладающие гаплоидным набором хромосом, также называемых половыми клетками.
В отличие от другого варианта умножения клеток – митоза, при котором количество хромосом дочерних особей характерно материнской, при мейозе происходит уменьшение количества хромосом вдвое. Это происходит в два этапа – мейоз 1 и мейоз 2. Первая часть процесса сходна с митозом – перед ней происходит удвоение ДНК, увеличение количества хромосом. Далее следует редукционное деление. В результате образуются клетки с гаплоидным (а не диплоидным) набором хромосом.
Основные понятия
Для того чтобы понять, что такое мейоз, необходимо вспомнить определения некоторых понятий, чтобы не возвращаться к ним впоследствии.
- Хромосома – структура в ядре клетки, имеющая нуклеопротеидную природу и сосредоточившая большую часть наследственной информации.
- Соматические и половые клетки – клетки организма, имеющие разный набор хромосом. В норме (исключая полиплоиды) соматические клетки диплоидны (2n), а половые гаплоидны (n). При слиянии двух половых клеток образуется полноценная соматическая клетка.
- Центромера – участок хромосомы, отвечающий за экспрессию генов и связывающий хроматиды между собой.
- Теломера – концевые участки хромосом, выполняют защитную функцию.
- Митоз – способ деления соматических клеток, создающий в процессе идентичные им копии.
- Эухроматин и гетерохроматин – участки хроматина в ядре. Первый сохраняет деспирализованное состояние, второй спирализован.
Стадии процесса
Мейоз клетки состоит из двух последовательных делений.
Первое деление. В период профазы 1 можно рассмотреть хромосомы даже в световой микроскоп. Строение двойной хромосомы составляют две хроматиды и центромеры. Происходит спирализация и, как следствие, укорочение хроматид в хромосоме. Мейоз начинается с метафазы 1. Гомологичные хромосомы располагаются в экваториальной плоскости клетки. Это называется выстраиванием тетрад (бивалентов) хроматида к хроматиде. В этот момент происходят процессы конъюгации и кроссинговера, они описаны ниже. При этих действиях часто теломеры перекрещиваются и накладываются друг на друга. Начинает распадаться оболочка ядра, пропадает ядрышко и становятся видны нити веретена деления. В период анафазы 1 целые хромосомы, состоящие из двух хроматид, отходят к полюсам, причем случайным образом.
В результате первого деления в стадии телофазы 1 образуются две клетки с одинарным набором ДНК (в отличие от митоза, дочерние клетки которого диплоидны). Интерфаза непродолжительна, так как не требует удвоения ДНК.
Во втором делении в стадии метафазы 2 к экваториальной части клетки отходит уже одна хромосома (из двух хроматид), образуя метафазную пластинку. Центромера каждой хромосомы делится, хроматиды расходятся к полюсам. На стадии телофазы этого деления образуются две клетки, содержащей по гаплоидному набору хромосом. Наступает уже нормальная интерфаза.
Конъюгация и кроссинговер
Конъюгация – процесс слияния гомологичных хромосом, а кроссинговер – обмен соответствующими участками гомологичных хромосом (начинается в профазе первого деления, заканчивается в метафазе 1 или в анафазе 1 при расхождении хромосом). Это два смежных процесса, которые участвуют в дополнительной рекомбинации генетического материала. Таким образом, хромосомы в гаплоидных клетках не аналогичны таковым в материнской, а существуют уже с заменами.
Разнообразие гамет
Гаметы, образованные в процессе мейоза, не гомологичны друг другу. Хромосомы расходятся в дочерние клетки независимо друг от друга, поэтому могут принести разнообразные аллели будущему потомству. Рассмотрим простейшую классическую задачу: определим типы гамет, образованные у родительского организма по двум простым признакам. Пусть у нас будет темноглазый и темноволосый родитель, гетерозиготный по этим признакам. Формула аллелей, характеризующая его, будет выглядеть как AaBb. Половые клетки будут иметь следующий вид: AB, Ab, aB, ab. То есть четыре типа. Естественно, количество аллелей в живом организме со множеством признаков будет многократно выше, значит и вариантов разнообразия гамет будет во много раз больше. Эти процессы усиливаются конъюгацией и кроссинговером, протекающими в процессе деления.
Существуют ошибки в репликации и расхождениях хромосом. Это приводит к образованию дефектных гамет. В норме такие клетки должны подвергнуться апоптозу (клеточной смерти), но иногда они сливаются с другой половой клеткой, образуя новый организм. Например, таким образом формируется болезнь Дауна у человека, связанная с одной дополнительной хромосомой.
Следует упомянуть, что образовавшиеся половые клетки в разных организмах претерпевают дальнейшее развитие. Например, у человека из одной родительской клетки образуются четыре равноценных сперматозоида – как в классическом мейозе, что такое яйцеклетка - выяснить несколько сложнее. Из четырех потенциально одинаковых клеток образуется одна яйцеклетка и три редукционных тельца.
Мейоз: биологическое значение
Почему в процессе мейоза количество хромосом в клетке уменьшается, понятно: если бы этого механизма не было, то при слиянии двух половых клеток происходило бы постоянное увеличение хромосомного набора. Благодаря редукционному делению, в процессе размножения из слияния двух гамет выходит полноценная диплоидная клетка. Таким образом, сохраняется постоянство вида, стабильность его хромосомного набора.
Половина ДНК дочернего организма будет содержать материнскую, а половина отцовскую генетическую информацию.
Механизмы мейоза лежат в основе стерильности межвидовых гибридов. Из-за того, что в клетках таких организмов находятся хромосомы от двух видов, в процессе метафазы 1 они не могут вступить в конъюгацию и процесс образования половых клеток нарушается. Плодовитые гибриды возможны только между близкими видами. В случае полиплоидных организмов (например, многие сельскохозяйственные растения) в клетках, обладающих четным набором хромосом (октоплоиды, тетраплоиды) хромосомы расходятся как и при классическом мейозе. В случае триплоидов хроматиды образуются неравномерно, велик риск получить дефектные гаметы. Эти растения размножают вегетативно.
Таким образом, понимание, что такое мейоз - фундаментальный вопрос биологии. Процессы полового размножения, накопления случайных мутаций, а также передача их потомству лежит в основе наследственной изменчивости и неопределенного отбора. Современная селекция сформирована на основе этих механизмов.
Варианты мейоза
Рассмотренный вариант деления в мейозе характерен главным образом для многоклеточных. У простейших механизм выглядит несколько иначе. В процессе него протекает одно мейотическое деление, фаза кроссинговера соответственно, тоже смещается. Такой механизм считается более примитивным. Он послужил основой делению гаплоидных клеток современных животных, растений, грибов, протекающему в две фазы и обеспечивающему лучшую рекомбинацию генетического материала.
Отличия мейоза от митоза
Подытоживая различия между этими двумя типами деления, нужно отметить плоидность дочерних клеток. Если при митозе количество ДНК, хромосом в обоих поколениях одна и та же – диплоидная, то в мейозе образуются гаплоидные клетки. При этом в результате первого процесса образуются две, а в результате второго - четыре клетки. В митозе отсутствует кроссинговер. Разнится и биологическое значение этих делений. Если цель мейоза - образование половых клеток и их последующее сливание у разных организмов, т. е. рекомбинация генетического материала в поколениях, то цель митоза – поддержание стабильности тканей, целостности организма.
www.syl.ru