Дыхание растений (стр. 1 из 10). Дыхание у растений
Дыхание у растений происходит в клетках органов. В клетках каких органов происходит дыхание у растений?
В дыхании участвуют системы, которые снабжают организм кислородом. У растений оно идентично животному. Этот процесс длится круглосуточно. Дыхание у растений происходит в клетках органов, расположенных на всей поверхности листьев, стеблей и корней. В нем взаимодействуют все клетки организма. Если у представителя флоры произойдет закупорка клеток, то поступление углекислого газа прекратится. В этом случае растение может погибнуть.
Историческая справка
О том, что растения при дыхании выделяют кислород, было написано в научных трудах А.Л. Лавуазье. В 1773-1783 он проводил опыты. Итогом его работ стало открытие, что при горении и дыхании поглощается большое количество кислорода. При этом выделяется углекислый газ и тепло.
На основании своих трудов ученый выявил, что дыхание является горением питательных веществ в живом организме. Позже эту деятельность продолжил Я. Ингенхауз. Он доказал, что и в темноте, и при солнечном свете происходит поглощение углекислого газа и выделение кислорода. Это означает, что растения при дыхании могут перерабатывать как СО2, так и О2, в зависимости от того, участвует ли свет в этом процессе или нет.
Подобные исследования проводили Х.Ф. Шейнбайн и А.Н. Бах. В 1897 году была открыта теория биологического окисления. В этом же году похожие труды представил К. Энглер. В 1955 году О. Хаяиши и Г.С. Мэзон при помощи опытов подтвердили, что кислород является важным элементом органических соединений.
Специфика дыхания у растений
Дыханием называют универсальный процесс. Он считается неотъемлемой частью всех живых организмов. Принято думать, что дыхание у растений происходит в клетках органов и тканей, через которые происходит газообмен. Такую систему связывают с жизнью, а прекращение дыхания – со смертью всего живого.
Проявление жизнедеятельности неразрывно связано с расходованием энергии. При этом происходит развитие, размножение, рост, клеточное деление. Передвигаются и поглощаются питательные вещества, вода, различные синтезы и процессы. Органы дыхания растений являются сложной многозвенной системой. Сопряженные окислительные процессы изменяют химический состав органических соединений.
Клеточное дыхание
Такое дыхание является окислительным процессом. В нем участвует кислород и распад важных питательных веществ. Происходит освобождение энергии и образование активных метаболитов. Клетками они применяются для образования необходимых процессов жизнедеятельности. В этом случае дыхание у растений происходит в клетках органов и рассчитывается с помощью суммарного уравнения:
С6Н12О6 + 602 > 6С02 + 6Н20 + 2875 кДж/моль.
Полученная энергия освобождается не целиком. Часть энергии аккумулируется в аденозинтрифосфат. После синтеза на мембране образовываются разности электрических зарядов. Такое явление предшествует разности концентраций ионов водорода, которые образовываются в двух сторонах мембраны. Дыхание и питание растений происходят при помощи протонного градиента. Он является главным материалом энергии, необходим для тонких процессов, происходящих в клетке. Такие процессы применяются при синтезе, поступлениях, передвижениях воды и питательных элементов. В химической структуре создается разность потенциалов между окружающей средой и цитоплазмой. Энергия, которая не смогла накопиться в протонном градиенте, рассеивается в качестве света.
Каталитические процессы дыхания
Окисление субстратов происходит при помощи ферментов. Их называют белковыми катализаторами. Ферменты обладают некоторыми особенностями:
- очень высокой лабильностью;
- повышенной активностью;
- большой специфичностью по отношению к субстратам.
Дыхание и питание растений зависит от пространственной ориентации, которая изменяется под воздействием внутренних и внешних факторов. Происходит регуляция обмена веществ. С понятием электронов связаны некоторые способы окисления. Типы окислительных реакций:
- отдача электронов;
- присоединение кислорода;
- отнятие водорода;
- возникновение гидратированного соединения;
- отнятие протонов и двух электронов.
Окисление вещества сопряжено с восстановлением акцептора. Такие ферменты принято считать оксидоредуктазами. При этом происходит отсоединение протонов и электронов. Их принимает акцептор. Энзим формирует реакцию переноса. К таким процессам относятся аэробное и анаэробное дыхание.
Аэробное дыхание
Такая система дыхания относится к окислительному процессу. При дыхании растение поглощает углекислый газ, выделяя при этом кислород. Субстрат распадается на энергии неорганических веществ. Главными субстратами для дыхания растений являются углеводы. Кроме них, может расходоваться запас белков и жиров.
Такое дыхание включает в себя два главных этапа:
- Бескислородный процесс. В нем происходит медленный постепенный распад субстратов, освобождение атомов водорода и связывание процесса с коферментами.
- Кислородный процесс. Здесь наблюдается последующее отщепление атомов водорода. Они отходят от дыхательного субстрата и постепенно окисляются. В итоге происходит перенос электронов на кислород.
Анаэробное дыхание
Такое дыхание растений происходит при помощи микроорганизмов, живущих на клетках растения. Для окисления веществ они не используют молекулярный кислород. Им необходима азотная соль, угольная и серная кислота, которая при длительных процессах превращается в восстановленные соединения. Необходимая энергия достигается при помощи расщепления сложных молекул органических веществ на наиболее простые. Конечным акцептором электронов считаются карбонаты, сульфаты и нитриты. Азотная соль, серная и угольная кислота превращаются в восстановительные соединения.
Корневая система
Неотъемлемой частью процесса является дыхание корней растений. Для активного произрастания представителям флоры необходим свежий воздух, поступающий к корневой системе. Такое дыхание осуществляется с помощью кислорода, который циркулирует в крупных порах.
При некапиллярной порозности во время затяжных ливней или переизбытке влаги в горшке почва перенасыщается влагой. В этот период корневая система испытывает асфиксию. Некоторые подвиды растений могут дышать благодаря кислороду, растворенному во влаге. При этом поток воды должен циркулировать или быть проточным. При застое влаги корни представителей флоры не получают необходимого кислорода.
В приемлемых условиях при дыхании растение поглощает углекислый газ. Но при застойном режиме оно не может вести полноценный газообмен. Рост значительно замедляется. По отношению к азоту уровень кислорода снижается на 21%. Прекращается использование минеральных ресурсов почвы. Растение захватывает воздух, который поступает за счет листьев, стебля и коры растения.
Значение дыхания
Дыхание у растений происходит в клетках органов и является основным процессом обмена веществ. Энергия, которая выделяется при дыхании, расходуется на рост и активность представителей флоры.
Дыхание растений сравнивают с фотосинтезом. Процесс проходит несколько этапов. На промежуточных стадиях формируются органические соединения. Они применяются в метаболических реакциях. К ним относят пентозы и органические кислоты, которые образуются при дыхательном распаде. Поэтому дыхание принято считать источником метаболитов.
Система дыхания считается поставщиком энергетических эквивалентов НАДФ-Н и АТФ. Растения при дыхании выделяют кислород. В этом процессе у представителей флоры образуется вода. При обезвоживании растения она предохраняет его от гибели.
Иногда энергия дыхания может быть выделена в качестве тепла. В этом случае дыхательный процесс приведет к ненужной затрате сухого вещества. Усиление процесса дыхания для самого растения далеко не во всех случаях является полезным.
fb.ru
Дыхание растений – кратко и понятно о процессе (6 класс)
Дыхание является условием жизни. Именно в процессе дыхания освобождается энергия, используемая организмами для жизнедеятельности. Кратко и понятно о дыхании растений расскажем в данной статье.
Что такое дыхание
Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.
Необходимая растению энергия содержится в химических связях сложных органических веществ. Изначально это энергия солнца, запасённая в сложных молекулах путём фотосинтеза.
Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.
Рис. 1. Схема дыхания растений.
Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.
Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.
Это же справедливо и для растения в целом.
Таким образом, дыхание включает два процесса:
- клеточное дыхание;
- газообмен растения с внешней средой.
Клеточное дыхание растений
Дыхательными центрами клетки являются митохондрии. Они есть и у животных.
Именно в этих органоидах происходит окисление органических веществ. Обычно такими веществами являются углеводы, но дыхание может идти и за счёт белков или жиров.
При окислении выделяется энергия. Вода остаётся в клетке, а углекислый газ путём диффузии покидает клетку и может сразу использоваться в фотосинтезе.
Процесс дыхания ступенчатый. Вода и углекислый газ образуются не сразу, а являются конечными продуктами. До этого в ходе многих реакций образуются и вновь распадаются другие вещества – органические кислоты.
Газообмен с внешней средой
В отличие от животных, растения не имеют специальных органов дыхания. Газообмен осуществляется через отверстия в покровных тканях:
- устьица;
- чечевички.
Устьица располагаются на листьях. Каждое из них имеет клетки, способные менять тургор (наполненность водой) и закрывать устьичную щель. Устьичные щели осуществляют газообмен и испарение воды листьями.
Рис. 2. Устьица под микроскопом.
Чечевички – это более крупные, чем устьица, щели на стеблях.
Рис. 3. Чечевички на стволе берёзы.
Воздух также может поступать в ткани растений в растворённом виде.
Дыхание и фотосинтез
Между процессами дыхания и фотосинтеза существует связь. Это процессы противоположные, и в растении следуют один за другим.
Фотосинтез является способом питания. В ходе этого процесса образуются вещества, содержащие энергию, полученную в виде света.
Дыхание – это способ освобождения энергии, запасённой в питательных веществах.
Дыхание в разных частях растения
Интенсивность дыхания не одинакова в разных органах. Наиболее активно дышат:
- прорастающие семена;
- распускающиеся цветы;
- растущие органы.
Не рекомендуется ставить срезанные цветы в спальной комнате, поскольку они поглощают большое количество кислорода и выделяют углекислый газ.
Корни также, как и надземные органы, дышат. Для нормального дыхания корней необходимо рыхлить почву.
Что влияет на интенсивность дыхания
Факторами, влияющими на интенсивность дыхания, являются:
- температура;
- влажность;
- содержание кислорода в воздухе.
При усилении любого из этих факторов дыхание становится интенсивнее.
Человек управляет дыханием семян и плодов для сохранения урожая и посевного материала. Для этого в помещениях, где хранятся семена, поддерживается необходимая влажность, температура и обеспечивается приток свежего воздуха.
Что мы узнали?
Изучая в 6 классе данную тему, мы выяснили, что дыхание растений – процесс, обеспечивающий клетки энергией. Кислород так же необходим растениям, как углекислый газ. Процессы дыхания и фотосинтеза включают одни и те же вещества. При дыхании кислород и органические вещества являются исходными, а вода и углекислый газ – конечными продуктами. При фотосинтезе – наоборот.
Тест по теме
obrazovaka.ru
Дыхание у растений — урок. Биология, Бактерии. Грибы. Растения (5–6 класс).
Дыхание — сложный процесс, протекающий в клетках живого организма. В ходе этого процесса под действием кислорода происходит распад органических веществ на углекислый газ и воду. При этом выделяется энергия, которая используется растением для процессов жизнедеятельности.
Как протекает процесс дыхания
Растения, как и все живые организмы, дышат.
При этом они поглощают атмосферный кислород, а также используют тот кислород, который образуется у них в процессе фотосинтеза и имеется в межклетниках.
Дышат растения и днём, и ночью.
Днём большая часть атмосферного кислорода поступает в растение через устьица листьев и молодых побегов, кожицу молодых корней, а также чечевички стеблей.
Ночью почти у всех растений устьица закрыты, и растения для дыхания используют в основном кислород, образовавшийся при фотосинтезе и накопленный в межклетниках. По межклетникам кислород проникает во все живые клетки растений.
При дыхании сложные органические вещества распадаются на более простые, из которых они образовались, — воду и углекислый газ.
А энергия солнечного света, которая была запасена растениями в процессе фотосинтеза при образовании органических веществ, освобождается. Растение использует её на рост, размножение и другие процессы жизнедеятельности.
Углекислый газ удаляется из организма через устьица, чечевички или через всю поверхность клеток молодых корней.
Обрати внимание!
Дыхание растений — процесс, противоположный фотосинтезу. Дыхание — непременное условие жизни растений. Растения получают энергию в процессе дыхания.
Источники:
Пасечник В. В. Биология. 6 класс // ДРОФА.
Пономарёва И. Н., Корнилова О. А., Кучменко B. C. Биология. 6 класс // ИЦ ВЕНТАНА-ГРАФ.
Викторов В. П., Никишов А. И. Биология. Растения. Бактерии. Грибы и лишайники. 7 класс // Гуманитарный издательский центр «ВЛАДОС».
www.yaklass.ru
Дыхание растений
8
Образующиеся в ходе фотосинтеза сахара и другие органические соединения используются клетками растительного организма в качестве питательных веществ. На клеточном уровне этот процесс называется дыханием.
Клеточное дыхание– это окислительный, с участием О2распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.
Суммарное уравнение дыхания:
С6Н12О6+ О26СО2+ 6Н2О + 2875 кДж/моль
Значение дыхания не ограничивается тем, что это процесс поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения (органические кислоты и пентозы), которые затем используются в различных метаболических реакциях. Кроме того, вода, образующаяся при дыхании, в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. Таким образом, дыхание – центральный метаболический процесс, переплетающийся многочисленными связями с другими процессами обмена.
Ферменты дыхания
С химической точки зрения дыхание – это медленное окисление, связанное с отнятием от субстрата электронов и протонов, а кислород играет роль их конечного акцептора, что отличает процесс дыхания от брожения (анаэробный процесс).
Окисление дыхательного субстрата осуществляется с участием ферментов оксидоредуктаз (I класс)
ДН2 Е АН2Д – донор электронов и протонов
А - акцептор
Д ЕН2А Е - энзим
Существует 3 группы оксидоредуктаз:
Анаэробные дегидрогеназы (передают электроны различным акцепторам, но не кислороду). В качестве кофермента – NAD+, NADP+. Например: лактатдегидрогеназа, малатдегидрогеназа.
Аэробные дегидрогеназы(передают энергию различным акцепторам, в том числе и кислороду). В качестве простетической группы содержат рибофлавин (витамин В2). Различают два кофермента этой группы: FMN или жёлтый дыхательный фермент Варбурга и FAD.
Пример: сукцинатдегидрогеназа.Доноры электронов для аэробных дегидрогеназ – анаэробные дегидрогеназы, а акцепторы – хиноны, цитохромы, кислород.
Оксидазы (передают электроны только кислороду). При этом образуются вода, перекись водорода и супероксидный анион кислорода – О2-.
4е Н2О (цитохромоксидаза, полифенолоксидаза)
АН2
+ 2е Н2О2(оксидазы аминокислот)
О21е
О2-+ Н+(ферменты типа ксантиноксидазы)
Н2О2и О2весьма токсичные, поэтому в клетках быстро трансформируются в воду и кислород.
Среди оксидаз очень важную роль играют железосодержащие ферменты и переносчики, относящиеся к цитохромной системе. В неё входят цитохромы и цитохромоксидаза. Именно они передают электроны от флавопротеинов на кислород.
Все компоненты цитохромной системы содержат железопорфириновую простетическую группу; при переносе электронов железо обратимо восстанавливается и окисляется, приобретая или отдавая электроны и изменяя таким образом свою валентность.
Другие растительные оксидазы (полифенолоксидаза, аскорбатоксидаза) являются медьсодержащими и немитохондриальными (окисляют соответственно фенолы и аскорбиновую кислоту).
К оксидазам относятся также пероксидазы (используют в качестве окислителя перекись водорода) и каталаза (расщепляет перекись водорода на воду и кислород). Простетической группой каталазы и пероксидазы служит гем.
studfiles.net
Дыхание у растений и животных — Науколандия
Дыхание присуще всем живым организмам. Ведь благодаря дыханию организм получает энергию для жизни: растет, развивается, питается, размножается, двигается, воспринимает окружающий мир.
Из чего же организм получает энергию? Из органических веществ. В клетках организма органическое вещество окисляется с помощью кислорода. В результате образуются более простые органические вещества или углекислый газ, а также выделяется энергия. Эта энергия «связывается» в специальных молекулах — АТФ. И уже благодаря им энергия используется там, где она нужна. Например, при синтезе белка, делении клетки и т. д. АТФ образуются в митохондриях.
Существуют бактерии, которым для окисления веществ и получения энергии не нужен кислород. Однако подавляющему большинству организмов он нужен. Это касается всех растений и животных. Поэтому важно обеспечить поступление в их организмы кислорода. Растения и животные решают эту проблему несколько по-разному.
Растения поглощают кислород из воздуха всей поверхностью. У них нет специальных органов дыхания. Однако есть специальные приспособления: устьица на листьях, чечевички на коре деревьев, межклетники, заполненные воздухом.
Больше всего кислорода требуется для растущих частей растения, так как там процесс дыхания идет более интенсивно. Очень слабо дышат семена. Корни растений также дышат, однако в почве воздуха и, соответственно, кислорода меньше, чем на поверхности. Поэтому плотно прибитая почва затрудняет дыхание корней.
Более просто устроенные животные (например, губки, черви) дышат также всей поверхностью тела. У остальных животных есть специальные системы органов дыхания. Причем они отличаются у разных групп организмов. Так членистоногие имеют разветвленную систему трахей во всем теле, рыбы дышат жабрами, у лягушек появляются легкие, а также они дышат через кожу, у пресмыкающихся, птиц и млекопитающих в основном легочное дыхание.
Водные животные получают кислород из воды, наземные - из воздуха. В воде кислорода находится меньше, туда он попадает из воздуха. Поэтому важно, чтобы водная поверхность контактировала с воздушной средой. Когда водоемы полностью затягивает льдом или на их поверхности по вине человека разливается нефть, то водные организмы могут задохнуться.
Основная задача дыхательной системы животных доставить в кровь кислород и забрать из нее углекислый газ. То есть осуществить газообмен. Когда из легких кислород попадает в кровь, уже она доставляет его во все клетки организма. Из клеток в кровь поступает углекислый газ.
Углекислый газ, как ненужный продукт дыхания, должен выводится из организма. У растений это происходит также как и поступление кислорода — через всю поверхность растения. У животных — посредством дыхательной и кровеносной систем.
Для дыхания нужен не только кислород, но и органическое вещество. Его окисление с выделением энергии можно сравнить с горением. Однако менее интенсивным. Как известно, при горении выделяется много энергии в виде тепла и света. И горят в основном органические вещества.
У животных и растений различается источник поступления органических веществ. Растения получают органическое вещество для окисления в митохондриях в результате фотосинтеза. То есть они сами синтезируют органическое вещество из неорганических в хлоропластах. Животные же вынуждены поглощать исходные органические вещества, так как не могут их синтезировать из неорганических веществ.
Таким образом, у животных и растений процесс дыхания сходен на клеточном и молекулярном уровне. Однако отличается способ поглощения кислорода из внешней среды и его доставка в клетки организма. «Горючее», т. е. органическое вещество для дыхания растения получают сами. Животные получают его из пищи. И у растений, и у животных в результате дыхания выделяется углекислый газ.
scienceland.info
Дыхание растений
Введение
Дыхание — процесс универсальный. Оно является неотъемлемым свойством всех организмов, населяющих нашу планету, и присуще любому органу, любой ткани, каждой клетке, которые дышат на протяжении всей своей жизнедеятельности. Дыхание всегда связано с жизнью, тогда как прекращение дыхания — с гибелью живого.
Жизнь организма в целом, как и каждое проявление жизнедеятельности, необходимо связаны с расходованием энергии. Клеточное деление, рост, развитие и размножение, поглощение и передвижение воды и питательных веществ, разнообразные синтезы и все другие процессы и функции осуществимы лишь при постоянном удовлетворении обусловленных ими потребностей в энергии и пластических веществах, которые служат клетке строительным материалом.
Источником энергии для живой клетки служит химическая (свободная) энергия потребляемых ею питательных веществ. Распад этих веществ, происходящий в акте дыхания, сопровождается освобождением энергии, которая и обеспечивает удовлетворение жизненных потребностей организма.
Сам же процесс дыхания представляет собой сложную многозвенную систему сопряженных окислительно-восстановительных процессов, в ходе которых имеет место изменение химической природы органических соединений и использование содержащейся в них энергии.
1. Дыхание. Определение. Уравнение. Значение дыхания в жизни растительного организма. Специфика дыхания у растений
Клеточное дыхание — это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.
Суммарное уравнение процесса дыхания :
С6 Н12 О6 + 602 ► 6С02 + 6Н2 0 + 2875 кДж/моль
Не вся энергия, высвобождаемая при дыхании, может быть использована в процессах жизнедеятельности. Используется организмом в основном та энергия, которая аккумулируется в АТФ. Синтезу АТФ во многих случаях предшествует образование разности электрических зарядов на мембране, что, в свою очередь, связано с разностью концентраций ионов водорода по разные стороны от мембраны. Согласно современным представлениям, е только АТФ, но и протонный градиент служат источником энергии для различных процессов жизнедеятельности клетки. Обе формы энергии могут быть использованы на процессы синтеза, процессы поступления, передвижения питательных веществ и воды, создание разности потенциалов между цитоплазмой и внешней средой. Энергия, не накопленная в протонном градиенте и АТФ, в основном рассеивается в виде тепла или света и является для растения бесполезной.
Значение дыхания в жизни растения.
Дыхание — один из центральных процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и нaподдержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно_ восстановительный процесc, идущий через ряд этапов. На его промежуточных стадияхобразуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ-Н), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.
2. Основные этапы становления учения о дыхании растений
Научные основы учения о роли кислорода в дыхании были заложены трудами А.Л.Лавуазье. В 1774 г. кислород независимо открыли Пристли и Шееле, а Лавуазье дал название этому элементу. Изучая одновременно процесс дыхания животных и горение, Лавувзье в 1773-1783 гг. пришел к выводу, что при дыхании, как и при горении, поглощается кислород и образуется углекислый газ, причем в том и другом случаях выделяется тепло. На основании своих опытов он заключил, что процесс горения состоит в присоединении кислорода к субстрату и что дыхание есть медленно текущее горение питательных веществ в живом организме.
Я.Ингенхауз в 1778-1780 гг. показал, что зеленые растения в темноте, а незеленые части растений и в темноте, и на свету поглощают кислород и выделяют углекислый газ. В своей работе, опубликованной в 1779 г. он писал:
«Когда солнце, поднявшееся над горизонтом, разбудит своими лучами заснувшие за ночь растения, оно сделает их способными исполнять свою целительную функцию – исправлять воздух для животных; во мраке ночи эта деятельность совсем прекращается; днем же совершается с тем большим оживлением, чем светлее день и чем выгоднее расположено растение в отношении солнечных лучей. Затененные высокими зданиями или другими растениями, они не исправляют воздух, а, наоборот, выделяют вредный для дыхания животных воздух. К концу дня выработка очищенного воздуха ослабевает и при заходе солнца совершенно прекращается».
Первые точные исследования процесса дыхания у растений принадлежат Соссюру (1804). Он брал свежие листья и помещал их на ночь в сосуд, наполненный воздухом. При этом кислород воздуха поглощался и выделялся углекислый газ. Если на следующий день листья снова выставлялись на солнечный свет, то они выделяли почти такое же количество кислорода, какое поглотили ночью. Свои исследования Соссюр распространил и на незеленые части растений: стебли древесных растений, цветки, корни, плоды, и доказал, что дыхание наблюдается также в клетках этих органов. Он обнаружил, что при дыхании потеря в весе растения равна весу выделенного углерода.
Соссюр обратил внимание и на то, что молодые, растущие части растения, например новые побеги и распускающиеся цветки, дышат интенсивнее и потребляют кислорода больше, чем части растения, прекратившие рост.
Если, по Лавуазье, дыхание имеет сходство с процессом горения, то каким же образом органические вещества могут «гореть» при обычной температуре тела организма, да еще в водной среде, (ведь на 70 — 90% масса живых организмов состоит из воды)? Возникло предположение о том, что в живых клетках существуют механизмы, активирующие кислород. Швейцарский химик X. Ф. Шейнбайн, открывший озон, изучал причины быстрого потемнения пораненной поверхности растительных тканей, таких, как ткани яблок, картофеля, плодовых тел грибов. В 1845 г. он выступил со своей теорией окислительных процессов, согласно которой в живых клетках имеются соединения, способные легко окисляться в присутствии 02 и таким образом активировать молекулярный кислород. Если ткань прокипятить, то потемнения не происходит. Следовательно, потемнение тканей — каталитический окислительный процесс. Шейнбайн ошибочно полагал, что активация кислорода — это образование озона.
Исследования, начатые Шейнбайном, продолжил А. Н. Бах, который в 1897 г. разработал перекисную теорию биологического окисления, приложив ее к процессам дыхания. Несколько позже, в том же 1897 г., аналогичные взгляды высказал немецкий исследователь К. Энглер.
Суть перекисной теории биологического окисления Баха заключается в следующем. Молекулярный кислород имеет двойную связь и для того чтобы его активировать, необходимо эту двойную связь расщепить. Легко окисляющееся соединение А взаимодействует с кислородом и, разрывая двойную связь, образует пероксид А02 Таким образом, по мысли Баха, активация кислорода есть образование пероксида. В свою очередь пероксидное соединение, взаимодействуя с соединением В, окисляет его; затем эта реакция повторяется со вторым атомом кислорода и второй молекулой соединения В. Получается полностью восстановленное исходное соединение — акцептор кислорода А и полностью окисленное вещество В.
Много позднее, в 1955 г., две группы исследователей — О. Хаяиши с сотр. в Японии и Г. С. Мэзон с сотр. в США, используя современные методы, проанализировали возможность включения кислорода в органические соединения.
В настоящее время известно, что путь включения кислорода в органические соединения в соответствии с перекисной теорией биологического окисления Баха и Энглера не имеет отношения к дыханию, однако работы этих исследователей сыграли большую роль в изучении химизма дыхания, заложив основы современного понимания механизмов активации кислорода.
История современного учения о дыхании растений неразрывно связана с именем академика В.И. Палладина.
В годы первого петербургского периода работы Палладин исследовал ферментативную природу дыхательного процесса. Палладин показал, что и анаэробная, и аэробная фазы дыхания обеспечиваются специфическими ферментами, последовательно перерабатывающими продукты дыхания. Итоги работ этого периода изложены в монографии В.И. Палладина «Дыхание как сумма ферментативных процессов» (1907).
Одновременно с Палладиным проблемой дыхания занимались в целом ряде крупнейших научно-исследовательских институтов и лабораторий Западной Европы. Наибольшую популярность приобрели две новые школы – Виланда и Варбурга.
Т. Виланд развивал взгляды на роль дегидраз и водородных акцепторов, вполне аналогичные взглядам Палладина. Расхождение их теорий заключалось в том, что Виланд категорически отрицал какую бы то ни было роль оксидаз как специфических активаторов кислорода, считая молекулярный кислород способным самостоятельно отнимать водород от водородного акцептора. По мнению же Палладина, водородные акцепторы не могут самопроизвольно освобождаться от водорода, но требуют для этого участия оксидаз, которые поэтому являются обязательным фактором в реакции, выраженной во втором уравнении Палладина.
mirznanii.com
Процесс дыхания растений
В конце XVIII века рядом ученых было установлено, что растения не только поглощают углекислый газ, но и выделяют его. Это открытие получило название процесс дыхания растений.
Процесс дыхания растенийИстория изучения химизма дыхания
В конце XIX столетия А. Н. Бахом была разработана теория активации молекулярного кислорода. Молекулярный кислород не может вступать в соединения с окисляемым веществом, так как обе его связи заняты. Для того чтобы его активировать, необходимо освободить связи. Активированный кислород может соединяться с окисляемым веществом, образуя перекись, которая, распадаясь, осуществляет дальнейшее окисление.
В работах В. И. Палладина указывается, что в процессе дыхания происходит активация водорода дыхательного вещества. Активация водорода заключается в том, что ферменты дегидрогеназы отнимают водород от дыхательного материала, вследствие чего последний окисляется, а активированный водород соединяется с кислородом.
В настоящее время общепризнано, что в процессе дыхания активируется как кислород, так и водород. В дальнейшем работами С. П. Костычева была доказана связь между дыханием и брожением.
Начальная фаза превращения сахара происходит одинаково и при дыхании, и при брожении и образуются одинаковые промежуточные продукты. Затем при дыхании эти продукты окисляются до СО2 и Н2О, а при брожении образуются спирт и СО2. В последнем случае выделяется мало энергии: на одну грамм-молекулу сахара — 48 ккал.
В разработке химизма дыхания принимали участие многие ученые. Л. А. Иванов показал значение фосфорной кислоты в процессе дыхания: окислению подвергается не свободная молекула сахара, а ее фосфорный эфир.
Это указывает на то, что в процессе дыхания не только распадаются, но и синтезируются сложные органические соединения. А. Сент-Джорджи, X. Кребс и С. М. Джонсон детально исследовали химизм дыхания и показали роль органических кислот в этом процессе.
Дыхание и фотосинтез
Дыхание это процесс, свойственный всем живым организмам. Оно представляет собой окислительный распад сложных органических соединений (в первую очередь углеводов), конечными продуктам которого являются углекислый газ и вода с выделением энергии. Дыхание как физиологический процесс может быть представлено следующей схемой:
С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 686 ккал.
Однако процесс окисления не столь прост, как показано на схеме, а идет через ряд промежуточных этапов. Значение дыхания состоит не только в освобождении энергии, но и в том, что при постепенном распаде углеводов образуется ряд различных промежуточных соединений, которые могут служить для синтеза органических веществ, например белков, жиров и других.
Дыхание и фотосинтезТаким образом дыхание — окислительный распад сложных органических соединений — является главным руслом превращения веществ и энергии в растении.
Сравнивая суммарные уравнения фотосинтеза и дыхания, видим, что при фотосинтезе образуются органические вещества с использованием солнечной энергии, а при дыхании растений эта энергия, накопленная в органическом веществе, освобождается:
6СО2 + 6Н2O → (энергия света(686ккал)/хлорофилл) → С6Н12О6 + 6О2 (фотосинтез),
С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 686 ккал (дыхание).
При образовании одной грамм-молекулы сахара в процессе фотосинтеза затрачивается 686 ккал солнечной энергии; такое же количество энергии выделяется и при ее окислении в процессе дыхания. Таким образом, в энергетическом отношении дыхание — прямая противоположность фотосинтезу.
У растений в отличие от животных нет специальных органов дыхания, и кислород непосредственно поступает в каждую живую клетку. Благодаря большому развитию поверхностей, тесно связанных с воздушным питанием, доступ воздуха к каждой клетке облегчен, и поэтому для поступления кислорода в клетку и освобождения ее от образовавшегося углекислого газа не требуется никаких дополнительных органов.
Процесс дыхания у разных зеленых растений и их органов неодинаков и его сравнивают по интенсивности, т. е. по количеству выделенного в процессе дыхания углекислого газа на единицу веса в единицу времени.
Дыхание тесно связано с ростом, поэтому чем интенсивнее идет рост растения, тем сильнее процесс дыхания. Интенсивность дыхания также зависит от возраста растений: у молодых растений дыхание протекает более энергично, с возрастом интенсивность дыхания уменьшается. Ниже показано изменение интенсивности дыхания в процессе индивидуального развития (по Б. А. Рубину).
Листья капусты белокочанной (сорт Амагер) | |||||
Возраст растений (в сутках) | 3 | 8 | 24 | 31 | 70 |
Дыхание (в мг С02 на кг сырого веса в час) | 314 | 155 | 52 | 67 | 27 |
Листья подсолнечника | |||||
Возраст растений (в сутках) | 22 | 36 | 50 | 64 | 99 |
Дыхание (в мг С02 на кг сырого веса в час) | 300 | 87 | 46 | 59 | 25 |
Интенсивность дыхания различных органов растения зависит от наличия в клетках живого содержимого. Наиболее интенсивно дышат цветки.
При дыхании массивных цветков, например Амазонской Виктории регии (Victoria regia), внутри цветков поднимается температура, превышающая температуру воздуха на 12°.
При дыхании цветков кувшинки Виктории регии температура в них поднимается выше температуры воздухаПроцесс дыхания растений можно наглядно наблюдать на прорастающих семенах пшеницы. Прорастающие семена также отличаются высокой интенсивностью дыхания. Если их поместить в хорошо изолированный от потери тепла приемник, например в дьюаровский сосуд, то можно наблюдать значительное повышение температуры, достигающее 30 —50°.
Прорастающие семена пшеницы в дьюаровском сосудеВ этом случае семена могут даже погибнуть в связи с высокой температурой.
libtime.ru