Чередование поколений наблюдается у всех растений. Чередование поколений - это... Чередование поколений у растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Чередование поколений - это... Чередование поколений у растений. Чередование поколений наблюдается у всех растений


Чередование поколений

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника ⇐ ПредыдущаяСтр 41 из 157Следующая ⇒

 

Организмам, размножающимся только половым путем, характерно чередование гаплоидной и диплоидной фаз в их развитии. У многих организмов, включая млекопитающих, это чередование имеет регулярный характер, и на нем основано сохранение видовых признаков организмов. Диплоидия способствует накоплению разных аллелей. Напротив, для организмов, которые могут размножаться как половым, так и бесполым путем, характерно чере дование (смена) поколений, когда одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.

Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое — в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое — спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита — диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.

Если проследить за соотношением между спорофитом и гаметофитом у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергался спорофит, тогда как для гаметофиты была характерной редукция. Например, у мхов преобладающим является гаметофит (гаплоидное поколение), на котором живет спорофит. Но уже у папоротникообразных преобладающим является спорофит (диплоидное поколение) в виде хорошо развитого растения со стеблями и корнями, а гаметофит представлен слоем клеток, которые образуют пластину, прикрепляющуюся к почве с помощью ризоидов. Далее, у голосеменных гаметофит уменьшается до небольших количеств клеток, а у покрытосеменных мужской гематофит представлен лишь двумя клетками, женский — семью, тогда как спорофитом у голосеменных являются деревья (сосна, ель и другие), а покрытосеменных — деревья, кустарники, травы.

Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором — гетероморфным.

Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом — путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного — половым путем (оплодотворение яиц, образование личинок и развитие полипов).

 

mykonspekts.ru

Тли, чередование поколений - Справочник химика 21

    У всех растений происходит чередование поколений [c.55]

    Эта (сокращенная) цитата из замечательной статьи Менделя, опубликованной в 1865 г., вводит основную концепцию генетики существует единица наследственности в виде некоторого фактора, который передается от родителей потомству. Этот дискретный фактор не что иное, как хорошо нам теперь известный ген. Работа Менделя пролила свет на общее поведение гена при наследовании в ряду поколений. Из этой работы следовало, что отдельный живой организм-это способ, которым ген экспрессируется и увековечивает себя. Суть этого представления изображена на рис. 1.1 в виде чередования поколений. [c.8]

    Привести примеры зеленых водорослей, в циклах развития которых совершается чередование поколений. У каких из перечисленных видов доминирует гаплоидная фаза, а у каких — диплоидная  [c.72]

    В. Гофмейстер открыл чередование поколений у высших растений — полового и бесполого. [c.452]

    Немногие виды организмов размножаются только бесполым путем. Обычно вслед за одним или несколькими поколениями, возникшими бесполым путем, наступает половое размножение. Эта смена поколений особей, размножающихся половым и бесполым путем, называется чередованием поколений. У некоторых видов организмов чередование поколений происходит регулярно, у других — через неопределенные периоды. В последнем случае это явление находится в тесной зависимости от условий существования. [c.103]

    Чередование поколений у растений [c.104]

    Была разработана сравнительная анатомия растений, открыты гомологичные органы и у них. Немецкий ботаник В. Гофмейстер (1827—1874) обнаружил чередование поколений у растений (см. главу VI) и указал на гомологию органов размножения цветковых и споровых растений. Так, по словам К. А. Тимирязева, был [c.237]

    О Шамиссо в отличие от других натуралистов, участво-ваших в русских кругосветных экспедициях, имеется значительная литература. Несомненно, что основной причиной этого была слава Шамиссо как поэта, так как его ботанические и зоологические работы посвящены специальным, чаще всего узким во -просам открытое им чередование поколений у сальп в течение долгого времени не привлекало к себе внимания его взгляды по вопросу о происхождении коралловых островов не нашли широкого признания и вскоре были вытеснены более глубокими и разработанными теориями Дарвина и других ученых. [c.254]

    Весьма интересно указание в путевом дневнике Шамиссо на производившиеся им вместе с Эшшольцем (13 и 14 октября 1815 г., по пути из Англии к Канарским островам) наблюдения над сальпами и на открытие чередования поколений у этих животных 2°. [c.257]

    Чередование поколений у салш Шамиссо описал следующим образом Вид сальп обнаруживается в двойной форме одна—это поколение, в течение всей жизни несходное с родителем, и другая, происшедшая от первой, подобна этому родителю, так что любая сальна несходна с матерью и дочерьми, но сходна с бабкой, внучками и сестрами. И то и другое поколение, как у безголовых моллюсков, обоеполое или чисто женское, и то и другое живородящее, но одно является одиночным живот- [c.265]

    В середине XIX в. А. Крон обнаружил чередование поколений у других видов сальп. В России дальнейшие серьезные исследования в этом направлении были проведены В. В. Заленским (1877, 1878). Вопрос о том, что нового было внесено всеми этими исследователями в познание смекы поколений у сальп, обстоятельно освещен в недавно опубликованном труде Л. Я. Бляхера . [c.266]

    Если принять во внимание, что важнейшие достижения, которыми зоология обязана экспедиции на Рюрике ,— открытие новых видов беспозвоночных, чередования поколений у сальп, разработка происхождения коралловых островов,— обычно связываемые с именем А. Шамиссо, принадлежат и И. Ф. Эшшольцу, то роль этого выдающегося эстонского зоолога в зоологических исследованиях первой кругосветной экспедиции Коцебу представится выдающейся. [c.282]

    Чередование поколений, при котором преобладает гаметофитное поколение Нет проводящей ткани, т. е. нет ни ксилемы, ни флоэмы [c.56]

    Чередование поколений, при котором доминирует спо-рофитное поколение [c.59]

    Для книдарий характерны два основных типа строения тела — полип и медуза (рис. 2.47). Полип имеет цилиндрическую форму и ведет при-1Ц)епленный образ жизни. Такие организмы остаются прикрепленными к поверхности, например к скале, на протяжении всей своей жизни. Способность к передвижению у них очень ограничена, либо вовсе отсутствует. Медуза — свободноплавающее животное, напоминающее по форме зонтик. В жизненном цикле определенных книдарий наблюдается чередование поколений, и тогда медузы обеспечивают расселение животного (см. ниже). В этом случае полипы размножаются бесполым путем, отпочковывая медузы, а медузы размножаются половым путем с образованием личинок, из которых развиваются полипы. Индивидуальные полипы в одной колонии могут различаться по форме. Например, одни из них могут быть специализированы для захвата пищи, другие — для бесполого размножения (см. ниже). Наличие в пределах одного вида особей, существующих в двух или более различных формах, назьшается полиморфизмом. [c.76]

    Схема жизненного цикла цветковых растений представлена на рис. 21.15, 4. Если вы изучаете некий ряд растений, то полезно помнить, что в их жизненном цикле происходит смена поколений, как это в упрошенном виде показано на рис. 21.15, Более подробно об этом говорится в разд. 2.7.1. У цветковых растений гаметофитное поколение практически отсутствует и не представлено свободноживущей особью. Было бы трудно себе представить, что чередование поколений вообще происходит, если бы не возможность сравнивать нынеживушие растения с их более примитивными предками. [c.56]

    Этот отдел занимает особое положение. Окраска зеленых водорослей такая же, как у высших растений. В качестве запасного вещества в клетках, как и у высших, обычно откладывается крахмал. У многих зеленых водорослей наблюдается свойственное высщим расстениям правильное чередование поколений полового и бесполого. И наконец, ряд этих водорослей покинули водную [c.191]

    Гаплофазный тип характеризуется отсутствием чередования поколений. Вся вегетативная жизнь водорослей проходит в гаплоидном состоянии, т. е. они являются гаплонтами. Диплоидна лишь зигота, прорастание которой сопровождается редукционным делением ядра (зиготическая редукция). Развивающиеся при этом растения оказываются гаплоидными. Примером являются многие зеленые (вольвоксовые, большинство хлорококковых, конъюгаты) и харовые водоросли. [c.11]

    Класс Циклоспоровые объединяет водоросли, у которых в цикле развития чередование поколений отсутствует. Их диплоидные талломы несут только органы полового размножения, развивающиеся в специальных округлых вместилищах — концептакулах. Мейоз у циклоспоровых происходит перед образованием гамет. [c.115]

    У животных мейоз проходит при образовании гамет и является составной частью овогенеза и сперматогенеза, а у цветковых растений — во время микро- и мегаспорогенеза, т. е. до образования гамет. У растений продуктом мейоза являются гаплоидные микро- и мегаспоры, а гаметы образуются позднее, после двух митотических делений гаплоидных микроспор или трех митотических делений гаплоидных мегаспор. Кроме того, у растений мейоз связан с процессом чередования поколений — спорофита и гаметофита — в одном жизненном цикле. [c.190]

    По мнению В. В. Скрипчинского (1977, 1985), эволюция способов размножения у растений происходила следующим образом. На первом этапе из форм, размножающихся простым делением клеток, возникли спорообразующие, а позже — способные к половому размножению организмы. В результате объединения бесполого и полового типов размножения появились виды с чередованием поколений. У наиболее высокоорганизованных водорослей одно поколение стало доминирующим, наиболее приспособленным к условиям существования. У наземных растений эта тенденция выражена еще более четко у мхов спорофит вообще не способен к самостоятельному существованию и живет за счет гаметофита. У остальных выс- [c.370]

    Первичная смена поколений встречается у организмов, которые в процессе эволюции приобрели способность к половому размножению, но сохранили и более низшую форму — бесполое размножение. Она встречается у ряда водорослей, всех высших растений и простейших, относящихся к классу споровиков (Зрогогоа). Заключается первичная смена поколений в правильном чередовании поколений, размножающихся половым пу-туем с бесполым размножением. [c.104]

chem21.info

Реферат Чередование поколений

скачать

Реферат на тему:

План:

    Введение
  • 1 Бесполое размножение
  • 2 Половое размножение
    • 2.1 Гермафродитизм
    • 2.2 Партеногенез и апомиксис
  • 3 Чередование поколений
    • 3.1 Чередование поколений у растений
  • 4 Эволюция размножения
  • Примечания

Введение

Спаривание виноградных улиток

Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни[1]

Для организмов, обладающих клеточным строением, в основе всех форм размножения лежит деление клетки [1]

Разные способы размножения подразделяются на три основных типа: бесполое, вегетативное и половое[1]

1. Бесполое размножение

Бесполое размножение — форма размножения, не связанная с обменом генетической информацией между особями — половым процессом.

Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов (бактерии, сине-зелёные водоросли, хлореллы, амёбы, инфузории). Этот способ имеет свои преимущества: в нём отсутствует необходимость поиска партнёра, а полезные наследственные изменения сохраняются практически навсегда. Однако при таком способе размножения изменчивость, необходимая для естественного отбора, достигается только за счёт случайных мутаций и потому осуществляется очень медленно. Тем не менее, следует отметить, что способность вида только к бесполому размножению не исключает способности к половому процессу, но когда эти события разнесены во времени.

Наиболее распространённый способ размножения одноклеточных организмов — деление на две части, с образованием двух отдельных особей.

Среди многоклеточных организмов способностью к бесполому размножению обладают практически все растения и грибы — исключением является, например, вельвичия. Бесполое размножение этих организмов происходит вегетативным способом или спорами.

Среди животных способность к бесполому размножению чаще встречается у низших форм, но отсутствует у более развитых. Единственный способ бесполого размножения у животных — вегетативный.

Широко распространено ошибочное мнение, что особи, образовавшиеся в результате бесполого размножения, всегда генетически идентичны родительскому организму (если не брать в расчёт мутации). Наиболее яркий контрпример — размножение спорами у растений, так как при спорообразовании происходит редукционное деление клеток, в результате чего в спорах содержится лишь половина генетической информации, имеющейся в клетках спорофита (см. Жизненный цикл растений).

2. Половое размножение

Половое размножение сопряжено с половым процессом (слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмов мужского пола и организмов женского пола).

При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением.

По сходству-различию возникающих гамет между собой выделяют несколько типов гаметообразования:

  1. изогамия — гаметы одинакового размера и строения, со жгутиками
  2. анизогамия — гаметы различного размера, но сходного строения, со жгутиками
  3. оогамия — гаметы различного размера и строения. Мелкие, имеющие жгутики мужские гаметы, называются сперматозоидами, а крупные, не имеющие жгутиков женские гаметы — яйцеклетками.

При слиянии двух гамет (в случае оогамии обязательно слияние разнотипных гамет) образуется зигота, обладающая теперь диплоидным (двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей.

2.1. Гермафродитизм

Животное, имеющее и мужские, и женские гонады, называется гермафродитом. Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Аналогичный признак у растений называется однодомностью (в отличие от двудомности) и сопряжен с общей эволюционной продвинутостью вида в меньшей степени, чем у животных.

2.2. Партеногенез и апомиксис

Партеногенез — это особый вид полового размножения, при котором новый организм развивается из неоплодотворенной яйцеклетки, таким образом обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называется апомиксис.

3. Чередование поколений

Зонтиковидные спорофиты на слоевищном гаметофите маршанции из отдела Печёночные мхи

У многих водорослей, у всех высших растений, у части простейших и кишечнополостных в жизненном цикле происходит чередование поколений, размножающихся соответственно половым и бесполым путём — метагенезис. У некоторых червей и насекомых наблюдается гетерогония — чередование разных половых поколения, например чередование раздельнополых поколений с гермафродитными, или с размножающимися партеногенетически.

3.1. Чередование поколений у растений

Гаметофит развивается из споры, имеет одинарный набор хромосом и имеет органы полового размножения — гаметангии. У разногаметных организмов мужские гаметангии, то есть производящие мужские гаметы, называются антеридиями, а женские — архегониями. Так как гаметофит, как и производимые им гаметы, имеет одинарный набор хромосом, то гаметы образуются простым митотическим делением.

При слиянии гамет образуется зигота, из которой развивается спорофит. Спорофит имеет двойной набор хромосом и несет органы бесполого размножения — спорангии. У разноспоровых организмов из микроспор развиваются мужские гаметофиты, несущие исключительно антеридии, а из мегаспор — женские. Микроспоры развиваются в микроспорангиях, мегаспоры — в мегаспорангиях. При спорообразовании происходит мейотическая редукция генома, и в спорах восстанавливается одинарный набор хромосом, свойственный гаметофиту.

4. Эволюция размножения

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве.

Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости.

Примечания

  1. ↑ 123 Значение слова "Размножение" в Большой советской энциклопедии - bse.sci-lib.com/article095196.html

wreferat.baza-referat.ru

Чередование поколений

С бесполым и половым размножением

 

Большинство организмов, обычно размножающихся бесполым путем, способно к половому размножению. При этом ряд поколений с бесполым размножением сменяется поколением особей, размножающихся с помощью гамет или же осуществляющих половой процесс. Вслед за этим вновь наблюдается бесполое размножение. Смена (чередование) половых и бесполых поколений происходит у разных видов с разной периодичностью, регулярно или через неодинаковые промежутки времени.

Первичное чередование поколений заключается в смене полового размножения спорообразованием. Оно наблюдается у представителей классов споровиков, жгутиконосцев, некоторых растений и отражает сохранение в филогенезе соответствующих организмов как более древней (бесполой), так и более прогрессивной (половой) форм размножения. Вторичное чередование поколений заключается в переходе на некоторых стадиях жизненного цикла к бесполому или партеногенетическому размножению животных, освоивших половое размножение. Оно распространено у кишечнополостных, членистоногих.

Включение в цикл развития организмов, размножающихся преимущественно бесполым путем, полового поколения время от времени активизирует комбинативную изменчивость и этим способствует преодолению генетического однообразия потомков, расширяя эволюционные и экологические перспективы группы.

 

 

ПОЛОВЫЕ КЛЕТКИ

 

По сравнению с другими клетками функция гамет уникальна. Они обеспечивают передачу наследственной информации между особями разных поколений, чем сохраняют жизнь во времени. Был период в биологии, когда половые и соматические клетки противопоставляли друг другу, наделяя лишь первые всей полнотой свойств жизни, проносимых ими через поколения. В настоящее время экспериментально доказана возможность развития полноценного организма на основе наследственной информации ядра дифференцированной соматической клетки, например кишечного эпителия (рис. 5.3).

 

В 1990-х годах группе английских ученых, использовавших принципиально аналогичный подход, удалось вырастить (клонировать) овцуДолли. Это был пример успешного решения задачи получения взрослой особи на основе генетического материала соматической клетки у млекопитающих. Напомним, что клоны представлены генетически идентичными клетками, образовавшимися путем последовательных митотических делений исходно одной клетки-родоначальницы и ее потомков. Вытекающая из этого техническая возможность клонирования людей порождает серьезные морально-этические проблемы, так как допускает преднамеренное «тиражирование» избранного человека с присущим только ему набором физических психо-эмоциональных свойств и даже интеллектуального потенциала. В настоящее время общественностью, в том числе и научной, признается недопустимым клонирование людей. Вместе с тем, использование технологии клонирования для получения достаточного числа клеток определенного типа, генетически неотличимых от клеток данного организма и, следовательно, иммунологически с ним совместимых, рассматривается как перспективное направление в области трансплантации тканей.

 

 

Рис. 5.3. Опыт, показывающий функциональную полноценность наследственного материала дифференцированной клетки:

 

1 — яйцеклетка с убитым УФ-лучами ядром — источник цитоплазмы, 2 — эпителиальные клетки кишечника головастика — источник наследственного материала, 3 — ядро, 4 — пересадка ядра из эпителиальной клетки в яйцеклетку, 5 — головастик, 6 — лягушка

 

Гаметы представляют собой одно из многих направлений дифференцировки клеток многоклеточного организма. Они образуют «клеточную линию», специализированную к выполнению репродуктивной функции. Предполагают, что клетки указанной линии возникают из бластомеров, имеющих на вегетативном полюсе цитоплазму особого рода — так называемую зародышевую плазму1, богатую РНК.

В сравнении с другими линиями соматических клеток (эпителиальные, нервные, мышечные) гаметы характеризуются рядом отличий. Важнейшее из них — гаплоидный набор хромосом в ядрах, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного числа хромосом.

Действительно, оплодотворение сперматозоидом яйцеклетки, ядра которых содержат по 23 хромосомы, обусловливает формирование зиготы с 46 хромосомами, что типично для соматических клеток человека. Гаметы отличаются необычным для других клеток значением ядерно-цитоплазматического отношения. У яйцеклеток оно снижено благодаря увеличенному объему цитоплазмы, в которой размещен питательный материал (желток) для развития зародыша. У сперматозоидов благодаря малому количеству цитоплазмы ядерно-цитоплазматическое отношение высокое. Это находится в соответствии с главной функциональной задачей мужской гаметы — транспортировкой наследственного материала к яйцеклетке.

Половые клетки отличаются низким уровнем обменных процессов, близким к состоянию анабиоза. Мужские гаметы не вступают в митотический цикл. У яйцеклеток эта способность восстанавливается при оплодотворении или действии фактора, активирующего партеногенез.

По ряду признаков женские и мужские гаметы отличаются друг от друга, что связано с различными функциями яйцеклетки и сперматозоида в процессе размножения. Яйцеклетки имеют оболочки, которые выполняют защитную функцию, обеспечивают требуемый уровень обмена веществ, препятствуют проникновению в яйцеклетку более одного спермия, способствуют внедрению (имплантации) зародыша в стенку матки у плацентарных животных, поддерживают форму зародыша.

Для яйцеклетки характерна плазматическая сегрегация. После оплодотворения (у асцидий уже через 5 мин) в еще не дробящемся яйце происходит закономерное перераспределение цитоплазмы. В дальнейшем цитоплазма разного состава также закономерно распределяется по клеткам тканей разных зачатков. По-видимому, на ранних стадиях способность бластомеров развиваться в определенном направлении зависит от наследования ими веществ, концентрирующихся в разных участках цитоплазмы яйцеклетки.

Сперматозоид имеет аппарат движения в виде жгутика. В семенной жидкости мужская гамета человека развивает скорость до 5 см/ч. Поясним приводимую цифру следующим примером. Если учесть соотношение преодолеваемого расстояния и длины движущегося объекта, то при названной скорости сперматозоид человека перемещается в 1,5 раза быстрее, чем пловец олимпийского ранга. Яйцеклетка, лишенная аппарата активного движения, преодолевает расстояние до полости матки, равное примерно 10 см, за 4—7 сут. Сперматозоиды некоторых видов животных имеют акросомный аппарат, выбрасывающий при контакте с яйцеклеткой длинную нить. Он обеспечивает проникновение ядра мужской гаметы в цитоплазму яйцеклетки путем растворения особыми ферментами ее оболочек. Описаны и другие приспособления, способствующие оплодотворению.

Гаметогенез

 

Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) —подразделяется наряд стадий (рис. 5.4).

В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.

Так как способом размножения клеток-предшественниц женских и мужских гамет является митоз, то овогоний и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. В ходе митотического цикла их хромосомы имеют либо однонитчатую (после митоза и до завершения синтетического периода интерфазы), либо двунитчатую (постсинтетический период, профаза и метафаза митоза) структуру в зависимости от количества биспиралей ДНК. Если в одинарном, гаплоидном наборе число хромосом обозначить как п, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2п2с до S-периода и 2n4c после него.

 

 

Рис. 5.4. Схема гаметогенеза:

 

1 — сперматогенез, 2 — овогенез, n — количество хромосомных наборов,

с — количество ДНК, РТ — редукционные тельца

 

На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая — связана с последующими делениями. Важным событием этого периода является репликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2n4с.

Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное, которые вместе составляют мейоз (см. разд. 5.3.2). После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (пс).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.

Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомный аппарат, играющий большую роль в оплодотворении. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.

 

Мейоз

 

Центральным событием гаметогенеза является особая форма клеточного деления — мейоз. В отличие от широко распространенного митоза, сохраняющего в клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы формируют организм нового поколения с диплоидным кариотипом (пс + пс == 2n2c). В этом заключается важнейшее биологическое значение мейоза, который возник и закрепился в процессе эволюции у всех видов, размножающихся половьм путем (см. разд. 3.6.2.2).

Мейоз состоит из двух быстро следующих одно за другим делений, происходящих в периоде созревания. Удвоение ДНК для этих делений осуществляется однократно в периоде роста. Второе деление мейоза следует за первым практически сразу так, что наследственный материал не синтезируется в промежутке между ними (рис. 5.5).

Первое мейотическое деление называют редукционным, так как оно приводит к образованию из диплоидных клеток (2п2с) гаплоидных клеток п2с. Такой результат обеспечивается благодаря особенностям профазы первого деления мейоза. В профазе I мейоза, так же как в обычном митозе, наблюдается компактная упаковка генетического материала (спирализация хромосом). Одновременно происходит событие, отсутствующее в митозе: гомологичные хромосомы конъюгируют друг с другом, т.е. тесно сближаются соответствующими участками.

В результате конъюгации образуются хромосомные пары, или биваленты, числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух хроматид, то бивалент содержит четыре хроматиды. Формула генетического материала в профазе I остается 2n4c. К концу профазы хромосомы в бивалентах, сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза начинается формирование веретена деления, с помощью которого хромосомный материал будет распределяться между дочерними клетками (рис. 5.5).

 

 

Рис. 5.5. Стадии мейоза

 

Отцовские хромосомы обозначены черным цветом, материнские —неокрашснные. На рисунке не изображена метафаза I, в которой биваленты располагаются в плоскости экватора веретена деления, и телофаза I, быстро переходящая в профазу II

Процессы, происходящие в профазе I мейоза и определяющие его результаты, обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах (рис. 5.5).

Лептотена —наиболее ранняя стадия профазы I мейоза, в которой начинается спирализация хромосом, и они становятся видимыми в микроскоп как длинные и тонкие нити. Зиготена характеризуется началом конъюгации гомологичных хромосом, которые объединяются синаптонемальным комплексом в бивалент (рис. 5.6). Пахитена — стадия, в которой на фоне продолжающейся спирализации хромосом и их укорочения, между гомологичными хромосомами осуществляется кроссинговер — перекрест с обменом соответствующими участками. Диплотена характеризуется возникновением сил отталкивания между гомологичными хромосомами, которые начинают отдаляться друг от друга в первую очередь в области центромер, но остаются связанными в областях прошедшего кроссинговера — хиазмах (рис. 5.7).

Диакинез — завершающая стадия профазы I мейоза, в которой гомологичные хромосомы удерживаются вместе лишь в отдельных точках хиазм. Биваленты приобретают причудливую форму колец, крестов, восьмерок и т.д. (рис. 5.8).

 

 

Рис. 5.6. Образование бивалентов конъюгирующими хромосомами в зиготене:

1 — центрмеры

 

Таким образом, несмотря на возникающие между гомологичными хромосомами силы отталкивания, в профазе I не происходит окончательного разрушения бивалентов. Особенностью мейоза в овогенезе является наличие специальной стадии — диктиотены, отсутствующей в сперматогенезе. На этой стадии, достигаемой у человека еще в эмбриогенезе, хромосомы, приняв особую морфологическую форму «ламповых щеток», прекращают какие-либо дальнейшие структурные изменения на многие годы. По достижении женским организмом репродуктивного возраста под влиянием лютеинизирующего гормона гипофиза, как правило, один овоцит ежемесячно возобновляет мейоз.

В метафазе I мейоза завершается формирование веретена деления. Его нити прикрепляются к центромерам хромосом, объединенных в биваленты, таким образом, что от каждой центромеры идет лишь одна нить к одному из полюсов веретена. В результате нити, связанные с центромерами гомологичных хромосом, направляясь к разным полюсам, устанавливают бивалентны в плоскости экватора веретена деления.

 

 

Рис. 5.7. Стадии диплотены в мейозе кузнечика

 

В анафазе I мейоза ослабляются связи между гомологичными хромосомами в бивалентах и они отходят друг от друга, направляясь к разным полюсам веретена деления. При этом к каждому полюсу отходит гаплоидный набор хромосом, состоящих из двух хроматид (см. рис. 5.5).

 

 

Рис. 5.8. Стадия диакинеза в мейозе у человека.

Стрелками указаны хиазмы

 

В телофазе I мейоза у полюсов веретена собирается одинарный, гаплоидный набор хромосом, каждая из них содержит удвоенное количество ДНК.

Формула генетического материала образующихся дочерних клеток соответствует п2с.

Второе мейотическое (эквационное) деление приводит к образованию клеток, в которых содержание генетического материала в хромосомах будет соответствовать их однонитчатой структуре пс (см. рис. 5.5). Это деление протекает, как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом. В процессе такого деления материнские двунитчатые хромосомы, расщепляясь, образуют дочерние однонитчатые.

Одна из главных задач мейоза — создание клеток с гаплоидным набором однонитчатых хромосом —достигается благодаря однократной редупликации ДНК для двух последовательных делений мейоза, а также благодаря образованию в начале первого мейотического деления пар гомологичных хромосом и дальнейшего их расхождения в дочерние клетки.

Процессы, протекающие в редукционном делении, обеспечивают также не менее важное следствие — генетическое разнообразие гамет, образуемых организмом. К таким процессам относят кроссинговер, расхождение гомологичных хромосом в разные гаметы и независимое поведение бивалентов в первом мейотическом делении (см. разд. 3.6.2.3).

Кроссинговер обеспечивает перекомбинацию отцовских и материнских аллелей в группах сцепления (см. рис. 3.72). Ввиду того что перекрест хромосом может происходить в разных участках, кроссинговер в каждом отдельном случае приводит к обмену разным по количеству генетическим материалом. Необходимо отметить также возможность возникновения нескольких перекрестов между двумя хроматидами (рис. 5.9) и участия в обмене более чем двух хроматид бивалента (рис. 5.10). Отмеченные особенности кроссинговера делают этот процесс эффективным механизмом перекомбинации аллелей.

 

 

Рис. 5.9. многократный кроссинговер между гомологичными хромосомами:

А—Е, а—е — локусы хромосом

Расхождение гомологичных хромосом в разные гаметы в случае гетерозиготности приводит к образованию гамет, различающихся по аллелям отдельных генов (см. рис. 3.74).

Случайное расположение бивалентов в плоскости экватора веретена деления и последующее их расхождение в анафазе I мейоза обеспечивают перекомбинацию родительских групп сцепления в гаплоидном наборе гамет (см. рис. 3.75).

 

 

Рис. 5.10. Множественный обмен участками на стадии четырех хроматид

в пахитене мейоза

 

В кроссинговер могут вступать все четыре хроматиды бивалента, латинскими буквами обозначены мутантные аллели; знаком «+» —нормальные аллели

Последние стадии овогенеза воспроизводятся и вне организма женщины, в искусственной питательной среде. Это позволило осуществить зачатие человека «в пробирке». Перед овуляцией хирургическим путем яйцо извлекается из яичника и переносится в среду со сперматозоидами. Возникающая в результате оплодотворения зигота, будучи помещена в подходящую среду, осуществляет дробление. На стадии 8—16 бластомеров зародыш переносится в матку женщины-реципиента, которая осуществляет донашивание и роды. Число успешных результатов такого переноса в последнее время возрастает.

Гаметогенез отличается высокой производительностью. За время половой жизни мужчина продуцирует не менее 500 млрд. сперматозоидов. На пятом месяце эмбриогенеза в зачатке женской половой железы насчитывается 6—7 млн. клеток-предшественниц яйцеклеток. К началу репродуктивного периода в яичниках обнаруживается примерно 100 000 овоцитов. От момента полового созревания до прекращения гаметогенеза в яичниках созревает 400—500 овоцитов.

 

 

Похожие статьи:

poznayka.org

Чередование поколений - это... Чередование поколений у растений

Видео: Биология с Дарвином. Подготовка к ЕГЭ. Чередование поколений.

В современном мире стало привычным называть техническими терминами все, что нас окружает. Механизм размножения... Именно так «окрестили» ученые умы чудо зарождения новой жизни. Чудо, в котором любая составляющая настолько гармонична, многообразна и в то же время незаменима, что порой остается только удивляться. Много тысячелетий человечество ломает себе голову над вопросом о первичности яйца и курицы, а у природы уже давно есть ответ на все вопросы. Рационализм и многообразие решений в сохранении стабильности отдельного вида и в то же время приобретении разнообразия признаков в живой природе не знают себе равных.

Генетическая основа жизни

Одним из таких приспособлений является чередование поколений. Многообразие видов животного и растительного мира достигается за счет создания различных комбинаций генного материала. Чередование поколений - это особая форма сохранения вида в изменяющихся условиях внешней среды обитания, встречающаяся в основном у многих растений и низших беспозвоночных животных. Она представляет собой смену полового и бесполого размножения. Что вызывает запуск того или иного способа размножения и какие цели они преследуют? Для ответа на данный вопрос следует более глубоко разобраться, что собой представляют и чем отличаются половое и бесполое размножение, какие преимущества для биологического вида и минусы они несут.

Половое размножение

Процесс полового размножения предполагает участие в сотворении новой жизни двух особей, которые, каждая сама по себе, являются носителями своего индивидуального набора хромосом в спиральной двойной цепочке ДНК. Этот уникальный набор генного материала выражается в наличии у данной особи, причем только у нее, определенных признаков, которые она частично передает своему потомству.

При участии в процессе полового размножения двух особей, каждая из которых дает потенциальному продолжателю вида свой половинный набор хромосом, следующему поколению будут присущи признаки обоих родительских организмов. Именно поэтому чередование поколений наблюдается как у простых, так и у сложных форм жизни, осуществляющих воспроизводство за счет полового размножения.

Видео: Митоз, мейоз и половое размножение

Какой вклад в генофонд вида вносит половое размножение

Даже внутри относительно небольшой популяции набор комбинаций генного материала может быть бесконечно широким. Этот вид размножения преследует политику внесения разнообразия в генетический фон видовой популяции. Разнообразие может быть достигнуто также за счет использования внутри устоявшейся популяции новых экземпляров данного вида, которые разными способами могут проникать извне. Или, как, например, у растений или некоторых кишечнополостных, за счет половых клеток «с доставкой на дом» при помощи ветра, воды или насекомых.

Видео: Размножение

Немаловажным моментом при половом размножении необходимо указать возможность участия в нем преимущественно здоровых и наиболее сильных особей. Таким образом, этот вид размножения дает возможность реализации естественного отбора, что способствует возможности закрепления признаков, работающих на благо данного вида.

Бесполое размножение как формула множителя числа особей

Чередование поколений – это система, задействованная для увеличения и сохранения вида, в которой немаловажную роль играет бесполое размножение. Из его преимуществ можно смело отметить возможность стремительно нарастить численность популяции при наступлении благоприятных для данного биологического вида условий природной среды. Сохранение и преумножение генетического фонда популяции при помощи множественного клонирования уже существующих комбинаций генов, что заметно увеличивает шанс вида на участие этих комбинаций в дальнейшем половом размножении.

Видео: Митоз

Чередование фенотипов у различных царств

Чередование поколений у водорослей зависит от температурного фона, химического состава воды (особенно концентрации соли в ней), длительности суточного светового периода, интенсивности освещения, смены времени года. Все эти факторы регулируют производство тех или иных репродуктивных клеток. Некоторые растения продуцируют споры, основу бесполого размножения, и называются спорофитами. Растения, которые для репродукции производят гаметы для полового размножения (половой клетки с одинарным набором хромосом в ядре), называют гаметофитами. Есть водоросли, производящие оба типа половых клеток (гаметы и споры), их, соответственно, назвали гаметоспорофитами. Водоросли всех этих типов могут отличаться между собой как морфологически, так и биологически. Так красная водоросль Порфира Тенера в форме спорофита выглядит как нити, ветвящиеся в один ряд, внедряющиеся в субстрат, которым могут служить известковые скалы или раковины моллюсков. Спорофиты этого вида живут на большой глубине, предпочитают слабое освещение. Особи, участвующие в производстве клеток для полового размножения (гаметофиты), живут в виде пластинок в зоне приливов и отливов на небольшой глубине при интенсивном освещении. Красные водоросли, являясь более высокоорганизованными, демонстрируют многообразные и наиболее сложные циклы развития, в которых наблюдается смена разных форм существования организмов одного вида во время жизненного цикла - гетероморфное развитие.

Видео: Митоз

Для кого характерно размножение посредством гаметоспорофитов

Гаметоспорофиты типичны для многих видов зеленых, бурых и красных водорослей. Чередование поколений наблюдается у них в выработке репродуктивных клеток обоих типов: спор и гамет, происходящей в разное время и обусловленной изменениями в условиях внешней среды. Согласованность между проявлениями признаков в фенотипе и соответствующими изменениями среды – основной эволюционный фактор, обеспечивающий движущую форму отбора.

Чередование поколений у растений и у животных: в чем похожи два разных царства

Классификация, разделяющая живой мир на 4 царства, значительно упрощает восприятие биологической науки на ранних этапах ее изучения. Однако при более углубленном курсе становится понятно, что в существующей классификации имеется множество промежуточных случаев. Так, чередование поколений у кишечнополостных носит особенный интересный характер. В жизненном цикле поколения полового и бесполого размножения имеют различный внешний вид, ведут радикально отличающийся друг от друга образ жизни, обитают в разных местах и по-разному питаются. В метагенезе происходит чередование жизненных форм: полипов и медуз. Прикрепленные к субстрату полипы ведут оседлый образ жизни. Для полипов характерно бесполое размножение путем отпочковывания от материнского организма новых идентичных по генетическому составу дочерних особей, которые проводят свою жизнь также в форме полипов. Питание осуществляется путем фильтрации масс воды, с током которой приносятся микроскопические частицы органики, служащие питанием для организма.

Полипы могут организовывать огромные сообщества. Подобным образом чередование поколений у кишечнополостных организмов создает в течение длительного времени колониальные формы полипов в виде коралловых рифов. Когда наступают определенные условия, которые для каждого вида индивидуальны (смена температурного режима, времени года, изменение подводных течений, фаза Луны, время миграций и прочее), полипы отпочковывают маленьких медуз. Медузы мобильны, легко перемещаются в толще воды, по образу питания являются хищниками. Дорастая до возраста половой готовности, медузы продолжают цикл развития вида при помощи полового размножения. Из оплодотворенных клеток развиваются подвижные личинки, которые оседают на дно, прикрепляются к субстрату, теряют подвижность и вырастают в полип. Чередование поколений - это жизненный цикл, претерпеваемый видом, который неизменно замыкается, возвращаясь к своей исходной стадии, но уже с другим набором хромосом, а следовательно, и с другими признаками.

Мхи тоже размножаются половым способом

Чередование поколений наблюдается у высших растений, в том числе у мхов. Характерной особенностью жизненного цикла этого отдела растений является тот факт, что доминирующей жизненной формой является гаметофит в виде зеленого многолетнего растения, имеющего листоподобные выросты и ризоиды, которое мы наблюдаем. Чередование поколений у мхов обеспечивает спорофит, являющийся бесполой стадией цикла развития, представленный маленькой коробочкой на ножке со спорами, связанный с гаметофитом стопами, через которые происходит физиологическое обеспечение спор. Спорофит имеет короткий срок жизни, не может укореняться самостоятельно. Усыхает после созревания и высыпания спор.

Почему в биологии 1+1=3

Констатируя вышесказанное, можно сделать вывод, что оба способа размножения имеют свое эволюционное значение. Чередование поколений - это процесс, обеспечивающий закрепление нужных признаков и отторжение ненужных, проявившихся в фенотипе, за счет естественного отбора. Только в случае с бесполым размножением «на суд» естественного отбора будут «выставлены» спонтанные мутации, а в случае с половым, помимо мутаций, в фенотипе проявятся признаки обоих родительских особей.

Почему же в эволюционной биологии, когда говорят о половом размножении, сумма двух единиц не равна двум (1+1&ne-2)? Потому что в результате оплодотворения детская особь получает набор генов, неидентичный какой-либо родительской особи. Особь будет нести не материнский и не отцовский ген, но развиваться исходя из той информации, которая поступила от родителей. Она будет носителем третьего, уникального и неповторимого генотипа, поэтому биологи решают математический пример немного по-другому. Именно это обеспечивает чередование поколений у растений и млекопитающих, где с каждым новым перерождением генетического материала он становится все более сложным, изящным и совершенным!

Падзяліся ў сацыяльных сетках:

Падобныя

be.wikienx.ru

Чередование поколений - это... Чередование поколений у растений

Видео: Биология с Дарвином. Подготовка к ЕГЭ. Чередование поколений.

В современном мире стало привычным называть техническими терминами все, что нас окружает. Механизм размножения... Именно так «окрестили» ученые умы чудо зарождения новой жизни. Чудо, в котором любая составляющая настолько гармонична, многообразна и в то же время незаменима, что порой остается только удивляться. Много тысячелетий человечество ломает себе голову над вопросом о первичности яйца и курицы, а у природы уже давно есть ответ на все вопросы. Рационализм и многообразие решений в сохранении стабильности отдельного вида и в то же время приобретении разнообразия признаков в живой природе не знают себе равных.

Генетическая основа жизни

Одним из таких приспособлений является чередование поколений. Многообразие видов животного и растительного мира достигается за счет создания различных комбинаций генного материала. Чередование поколений - это особая форма сохранения вида в изменяющихся условиях внешней среды обитания, встречающаяся в основном у многих растений и низших беспозвоночных животных. Она представляет собой смену полового и бесполого размножения. Что вызывает запуск того или иного способа размножения и какие цели они преследуют? Для ответа на данный вопрос следует более глубоко разобраться, что собой представляют и чем отличаются половое и бесполое размножение, какие преимущества для биологического вида и минусы они несут.

Половое размножение

Процесс полового размножения предполагает участие в сотворении новой жизни двух особей, которые, каждая сама по себе, являются носителями своего индивидуального набора хромосом в спиральной двойной цепочке ДНК. Этот уникальный набор генного материала выражается в наличии у данной особи, причем только у нее, определенных признаков, которые она частично передает своему потомству.

При участии в процессе полового размножения двух особей, каждая из которых дает потенциальному продолжателю вида свой половинный набор хромосом, следующему поколению будут присущи признаки обоих родительских организмов. Именно поэтому чередование поколений наблюдается как у простых, так и у сложных форм жизни, осуществляющих воспроизводство за счет полового размножения.

Видео: Митоз, мейоз и половое размножение

Какой вклад в генофонд вида вносит половое размножение

Даже внутри относительно небольшой популяции набор комбинаций генного материала может быть бесконечно широким. Этот вид размножения преследует политику внесения разнообразия в генетический фон видовой популяции. Разнообразие может быть достигнуто также за счет использования внутри устоявшейся популяции новых экземпляров данного вида, которые разными способами могут проникать извне. Или, как, например, у растений или некоторых кишечнополостных, за счет половых клеток «с доставкой на дом» при помощи ветра, воды или насекомых.

Видео: Размножение

Немаловажным моментом при половом размножении необходимо указать возможность участия в нем преимущественно здоровых и наиболее сильных особей. Таким образом, этот вид размножения дает возможность реализации естественного отбора, что способствует возможности закрепления признаков, работающих на благо данного вида.

Бесполое размножение как формула множителя числа особей

Чередование поколений – это система, задействованная для увеличения и сохранения вида, в которой немаловажную роль играет бесполое размножение. Из его преимуществ можно смело отметить возможность стремительно нарастить численность популяции при наступлении благоприятных для данного биологического вида условий природной среды. Сохранение и преумножение генетического фонда популяции при помощи множественного клонирования уже существующих комбинаций генов, что заметно увеличивает шанс вида на участие этих комбинаций в дальнейшем половом размножении.

Видео: Митоз

Чередование фенотипов у различных царств

Чередование поколений у водорослей зависит от температурного фона, химического состава воды (особенно концентрации соли в ней), длительности суточного светового периода, интенсивности освещения, смены времени года. Все эти факторы регулируют производство тех или иных репродуктивных клеток. Некоторые растения продуцируют споры, основу бесполого размножения, и называются спорофитами. Растения, которые для репродукции производят гаметы для полового размножения (половой клетки с одинарным набором хромосом в ядре), называют гаметофитами. Есть водоросли, производящие оба типа половых клеток (гаметы и споры), их, соответственно, назвали гаметоспорофитами. Водоросли всех этих типов могут отличаться между собой как морфологически, так и биологически. Так красная водоросль Порфира Тенера в форме спорофита выглядит как нити, ветвящиеся в один ряд, внедряющиеся в субстрат, которым могут служить известковые скалы или раковины моллюсков. Спорофиты этого вида живут на большой глубине, предпочитают слабое освещение. Особи, участвующие в производстве клеток для полового размножения (гаметофиты), живут в виде пластинок в зоне приливов и отливов на небольшой глубине при интенсивном освещении. Красные водоросли, являясь более высокоорганизованными, демонстрируют многообразные и наиболее сложные циклы развития, в которых наблюдается смена разных форм существования организмов одного вида во время жизненного цикла - гетероморфное развитие.

Видео: Митоз

Для кого характерно размножение посредством гаметоспорофитов

Гаметоспорофиты типичны для многих видов зеленых, бурых и красных водорослей. Чередование поколений наблюдается у них в выработке репродуктивных клеток обоих типов: спор и гамет, происходящей в разное время и обусловленной изменениями в условиях внешней среды. Согласованность между проявлениями признаков в фенотипе и соответствующими изменениями среды – основной эволюционный фактор, обеспечивающий движущую форму отбора.

Чередование поколений у растений и у животных: в чем похожи два разных царства

Классификация, разделяющая живой мир на 4 царства, значительно упрощает восприятие биологической науки на ранних этапах ее изучения. Однако при более углубленном курсе становится понятно, что в существующей классификации имеется множество промежуточных случаев. Так, чередование поколений у кишечнополостных носит особенный интересный характер. В жизненном цикле поколения полового и бесполого размножения имеют различный внешний вид, ведут радикально отличающийся друг от друга образ жизни, обитают в разных местах и по-разному питаются. В метагенезе происходит чередование жизненных форм: полипов и медуз. Прикрепленные к субстрату полипы ведут оседлый образ жизни. Для полипов характерно бесполое размножение путем отпочковывания от материнского организма новых идентичных по генетическому составу дочерних особей, которые проводят свою жизнь также в форме полипов. Питание осуществляется путем фильтрации масс воды, с током которой приносятся микроскопические частицы органики, служащие питанием для организма.

Полипы могут организовывать огромные сообщества. Подобным образом чередование поколений у кишечнополостных организмов создает в течение длительного времени колониальные формы полипов в виде коралловых рифов. Когда наступают определенные условия, которые для каждого вида индивидуальны (смена температурного режима, времени года, изменение подводных течений, фаза Луны, время миграций и прочее), полипы отпочковывают маленьких медуз. Медузы мобильны, легко перемещаются в толще воды, по образу питания являются хищниками. Дорастая до возраста половой готовности, медузы продолжают цикл развития вида при помощи полового размножения. Из оплодотворенных клеток развиваются подвижные личинки, которые оседают на дно, прикрепляются к субстрату, теряют подвижность и вырастают в полип. Чередование поколений - это жизненный цикл, претерпеваемый видом, который неизменно замыкается, возвращаясь к своей исходной стадии, но уже с другим набором хромосом, а следовательно, и с другими признаками.

Мхи тоже размножаются половым способом

Чередование поколений наблюдается у высших растений, в том числе у мхов. Характерной особенностью жизненного цикла этого отдела растений является тот факт, что доминирующей жизненной формой является гаметофит в виде зеленого многолетнего растения, имеющего листоподобные выросты и ризоиды, которое мы наблюдаем. Чередование поколений у мхов обеспечивает спорофит, являющийся бесполой стадией цикла развития, представленный маленькой коробочкой на ножке со спорами, связанный с гаметофитом стопами, через которые происходит физиологическое обеспечение спор. Спорофит имеет короткий срок жизни, не может укореняться самостоятельно. Усыхает после созревания и высыпания спор.

Почему в биологии 1+1=3

Констатируя вышесказанное, можно сделать вывод, что оба способа размножения имеют свое эволюционное значение. Чередование поколений - это процесс, обеспечивающий закрепление нужных признаков и отторжение ненужных, проявившихся в фенотипе, за счет естественного отбора. Только в случае с бесполым размножением «на суд» естественного отбора будут «выставлены» спонтанные мутации, а в случае с половым, помимо мутаций, в фенотипе проявятся признаки обоих родительских особей.

Почему же в эволюционной биологии, когда говорят о половом размножении, сумма двух единиц не равна двум (1+1&ne-2)? Потому что в результате оплодотворения детская особь получает набор генов, неидентичный какой-либо родительской особи. Особь будет нести не материнский и не отцовский ген, но развиваться исходя из той информации, которая поступила от родителей. Она будет носителем третьего, уникального и неповторимого генотипа, поэтому биологи решают математический пример немного по-другому. Именно это обеспечивает чередование поколений у растений и млекопитающих, где с каждым новым перерождением генетического материала он становится все более сложным, изящным и совершенным!

Споделяне в социалните мрежи:

сроден

bg.wikienx.ru

Чередование поколений это... Чередование поколений у растений

В современном мире стало привычным называть техническими терминами все, что нас окружает. Механизм размножения... Именно так «окрестили» ученые умы чудо зарождения новой жизни. Чудо, в котором любая составляющая настолько гармонична, многообразна и в то же время незаменима, что порой остается только удивляться. Много тысячелетий человечество ломает себе голову над вопросом о первичности яйца и курицы, а у природы уже давно есть ответ на все вопросы. Рационализм и многообразие решений в сохранении стабильности отдельного вида и в то же время приобретении разнообразия признаков в живой природе не знают себе равных.

Генетическая основа жизни

Одним из таких приспособлений является чередование поколений. Многообразие видов животного и растительного мира достигается за счет создания различных комбинаций генного материала. Чередование поколений это особая форма сохранения вида в изменяющихся условиях внешней среды обитания, встречающаяся в основном у многих растений и низших беспозвоночных животных. Она представляет собой смену полового и бесполого размножения. Что вызывает запуск того или иного способа размножения и какие цели они преследуют? Для ответа на данный вопрос следует более глубоко разобраться, что собой представляют и чем отличаются половое и бесполое размножение, какие преимущества для биологического вида и минусы они несут.

Половое размножение

Процесс полового размножения предполагает участие в сотворении новой жизни двух особей, которые, каждая сама по себе, являются носителями своего индивидуального набора хромосом в спиральной двойной цепочке ДНК. Этот уникальный набор генного материала выражается в наличии у данной особи, причем только у нее, определенных признаков, которые она частично передает своему потомству.

При участии в процессе полового размножения двух особей, каждая из которых дает потенциальному продолжателю вида свой половинный набор хромосом, следующему поколению будут присущи признаки обоих родительских организмов. Именно поэтому чередование поколений наблюдается как у простых, так и у сложных форм жизни, осуществляющих воспроизводство за счет полового размножения.

Какой вклад в генофонд вида вносит половое размножение

Даже внутри относительно небольшой популяции набор комбинаций генного материала может быть бесконечно широким. Этот вид размножения преследует политику внесения разнообразия в генетический фон видовой популяции. Разнообразие может быть достигнуто также за счет использования внутри устоявшейся популяции новых экземпляров данного вида, которые разными способами могут проникать извне. Или, как, например, у растений или некоторых кишечнополостных, за счет половых клеток «с доставкой на дом» при помощи ветра, воды или насекомых.

Немаловажным моментом при половом размножении необходимо указать возможность участия в нем преимущественно здоровых и наиболее сильных особей. Таким образом, этот вид размножения дает возможность реализации естественного отбора, что способствует возможности закрепления признаков, работающих на благо данного вида.

Бесполое размножение как формула множителя числа особей

Чередование поколений – это система, задействованная для увеличения и сохранения вида, в которой немаловажную роль играет бесполое размножение. Из его преимуществ можно смело отметить возможность стремительно нарастить численность популяции при наступлении благоприятных для данного биологического вида условий природной среды. Сохранение и преумножение генетического фонда популяции при помощи множественного клонирования уже существующих комбинаций генов, что заметно увеличивает шанс вида на участие этих комбинаций в дальнейшем половом размножении.

Чередование фенотипов у различных царств

Чередование поколений у водорослей зависит от температурного фона, химического состава воды (особенно концентрации соли в ней), длительности суточного светового периода, интенсивности освещения, смены времени года. Все эти факторы регулируют производство тех или иных репродуктивных клеток. Некоторые растения продуцируют споры, основу бесполого размножения, и называются спорофитами. Растения, которые для репродукции производят гаметы для полового размножения (половой клетки с одинарным набором хромосом в ядре), называют гаметофитами. Есть водоросли, производящие оба типа половых клеток (гаметы и споры), их, соответственно, назвали гаметоспорофитами. Водоросли всех этих типов могут отличаться между собой как морфологически, так и биологически. Так красная водоросль Порфира Тенера в форме спорофита выглядит как нити, ветвящиеся в один ряд, внедряющиеся в субстрат, которым могут служить известковые скалы или раковины моллюсков. Спорофиты этого вида живут на большой глубине, предпочитают слабое освещение. Особи, участвующие в производстве клеток для полового размножения (гаметофиты), живут в виде пластинок в зоне приливов и отливов на небольшой глубине при интенсивном освещении. Красные водоросли, являясь более высокоорганизованными, демонстрируют многообразные и наиболее сложные циклы развития, в которых наблюдается смена разных форм существования организмов одного вида во время жизненного цикла гетероморфное развитие.

Для кого характерно размножение посредством гаметоспорофитов

Гаметоспорофиты типичны для многих видов зеленых, бурых и красных водорослей. Чередование поколений наблюдается у них в выработке репродуктивных клеток обоих типов: спор и гамет, происходящей в разное время и обусловленной изменениями в условиях внешней среды. Согласованность между проявлениями признаков в фенотипе и соответствующими изменениями среды – основной эволюционный фактор, обеспечивающий движущую форму отбора.

Чередование поколений у растений и у животных: в чем похожи два разных царства

Классификация, разделяющая живой мир на 4 царства, значительно упрощает восприятие биологической науки на ранних этапах ее изучения. Однако при более углубленном курсе становится понятно, что в существующей классификации имеется множество промежуточных случаев. Так, чередование поколений у кишечнополостных носит особенный интересный характер. В жизненном цикле поколения полового и бесполого размножения имеют различный внешний вид, ведут радикально отличающийся друг от друга образ жизни, обитают в разных местах и по разному питаются. В метагенезе происходит чередование жизненных форм: полипов и медуз. Прикрепленные к субстрату полипы ведут оседлый образ жизни. Для полипов характерно бесполое размножение путем отпочковывания от материнского организма новых идентичных по генетическому составу дочерних особей, которые проводят свою жизнь также в форме полипов. Питание осуществляется путем фильтрации масс воды, с током которой приносятся микроскопические частицы органики, служащие питанием для организма.

Полипы могут организовывать огромные сообщества. Подобным образом чередование поколений у кишечнополостных организмов создает в течение длительного времени колониальные формы полипов в виде коралловых рифов. Когда наступают определенные условия, которые для каждого вида индивидуальны (смена температурного режима, времени года, изменение подводных течений, фаза Луны, время миграций и прочее), полипы отпочковывают маленьких медуз. Медузы мобильны, легко перемещаются в толще воды, по образу питания являются хищниками. Дорастая до возраста половой готовности, медузы продолжают цикл развития вида при помощи полового размножения. Из оплодотворенных клеток развиваются подвижные личинки, которые оседают на дно, прикрепляются к субстрату, теряют подвижность и вырастают в полип. Чередование поколений это жизненный цикл, претерпеваемый видом, который неизменно замыкается, возвращаясь к своей исходной стадии, но уже с другим набором хромосом, а следовательно, и с другими признаками.

Мхи тоже размножаются половым способом

Чередование поколений наблюдается у высших растений, в том числе у мхов. Характерной особенностью жизненного цикла этого отдела растений является тот факт, что доминирующей жизненной формой является гаметофит в виде зеленого многолетнего растения, имеющего листоподобные выросты и ризоиды, которое мы наблюдаем. Чередование поколений у мхов обеспечивает спорофит, являющийся бесполой стадией цикла развития, представленный маленькой коробочкой на ножке со спорами, связанный с гаметофитом стопами, через которые происходит физиологическое обеспечение спор. Спорофит имеет короткий срок жизни, не может укореняться самостоятельно. Усыхает после созревания и высыпания спор.

Почему в биологии 1+1=3

Констатируя вышесказанное, можно сделать вывод, что оба способа размножения имеют свое эволюционное значение. Чередование поколений это процесс, обеспечивающий закрепление нужных признаков и отторжение ненужных, проявившихся в фенотипе, за счет естественного отбора. Только в случае с бесполым размножением «на суд» естественного отбора будут «выставлены» спонтанные мутации, а в случае с половым, помимо мутаций, в фенотипе проявятся признаки обоих родительских особей.

Почему же в эволюционной биологии, когда говорят о половом размножении, сумма двух единиц не равна двум (1+1≠2)? Потому что в результате оплодотворения детская особь получает набор генов, неидентичный какой либо родительской особи. Особь будет нести не материнский и не отцовский ген, но развиваться исходя из той информации, которая поступила от родителей. Она будет носителем третьего, уникального и неповторимого генотипа, поэтому биологи решают математический пример немного по другому. Именно это обеспечивает чередование поколений у растений и млекопитающих, где с каждым новым перерождением генетического материала он становится все более сложным, изящным и совершенным!

autogear.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта