Формула целлюлозы. Свойства целлюлозы. Применение целлюлозы. Целлюлоза у растений
это... Строение, свойства, применение, получение целлюлозы
Целлюлоза — это производные двух природных веществ: дерева и хлопка. В растениях она осуществляет важную функцию, придает им гибкость и прочность.
Где встречается вещество?
Целлюлоза — это вещество натуральное. Растения способны вырабатывать её самостоятельно. В составе присутствуют: водород, кислород, углерод.
Растения вырабатывают сахар под действием солнечных лучей, он перерабатывается клетками и даёт возможность волокнам выдерживать высокие нагрузки от ветра. Целлюлоза — это вещество-участник процесса фотосинтеза. Если сахарную воду брызнуть на срез свежего дерева, то жидкость быстро впитается.
Начинается выработка целлюлозы. Этот естественный способ её получения взят за основу для производства хлопчатобумажной ткани в промышленных масштабах. Существует несколько методов, благодаря которым получают целлюлозу различного качества.
Метод изготовления №1
Получение целлюлозы происходит естественным методом — из семян хлопчатника. Волоски собираются автоматизированными механизмами, но требуется длительный период выращивания растения. Ткань, произведённая таким образом, считается наиболее чистой.
Более быстро целлюлозу можно получить из волокон дерева. Однако при этом методе качество намного хуже. Этот материал пригоден только для изготовления неволокнистого пластика, целлофана. Также из такого материала могут производить искусственные волокна.
Естественное получение
Производить целлюлозу из семян хлопка начинают с отделения длинных волокон. Этот материал идёт на изготовление хлопчатобумажной ткани. Мелкие части, менее 1,5 см, называют хлопковым пухом.
Они пригодны для получения целлюлозы. Собранные части подвергают нагреву под высоким давлением. Длительность процесса может достигать 6 часов. Перед тем как начать греть материал, к нему добавляют гидроксид натрия.
Полученное вещество требуется промыть. Для этого применяется хлор, который к тому же и отбеливает. Состав целлюлозы при таком методе наиболее чистый (99%).
Метод изготовления №2 из древесины
Для получения 80-97% целлюлозы используют щепу хвойных деревьев, химические вещества. Всю массу смешивают и подвергают обработке температурой. В результате варки выделяется требуемое вещество.
Смешивается бисульфит кальция, диоксид серы и древесная масса. Целлюлозы в полученной смеси не более 50%. В результате реакции в жидкости растворяются углеводороды, лигнины. Твёрдый материал проходит стадию очистки.
Получают массу, напоминающую некачественную бумагу. Этот материал служит основой изготовления веществ:
- Эфиров.
- Целлофана.
- Вискозного волокна.
Что производят из ценного материала?
Строение целлюлозы волокнистое, что позволяет из неё изготавливать одежду. Хлопковый материл — это на 99,8% натуральный продукт, полученный естественным методом, приведенным выше. Из него же можно изготовить взрывчатку в результате химической реакции. Целлюлоза активна при нанесении на неё кислот.
Свойства целлюлозы применимы для производства тканей. Так, из неё изготавливают искусственные волокна, напоминающие внешне и на ощупь натуральные ткани:
Преимущественно из древесной целлюлозы изготавливают:
- лаки;
- фотопленку;
- бумажные изделия;
- пластмассы;
- губки для мытья посуды;
- бездымный порох.
В результате химической реакции из целлюлозы получают:
- тринитроцеллюлозу;
- динитроклетчатку;
- глюкозу;
- жидкое топливо.
В пищу целлюлоза также может применяться. В составе некоторых растений (сельдерея, салата, отрубей) присутствуют её волокна. Также она служит материалом для производства крахмала. Уже научились делать из неё тонкие нити — искусственная паутина очень прочная и не растягивается.
Химическая формула целлюлозы — C6h20O5. Является полисахаридом. Из неё изготавливают:
- медицинскую вату;
- бинты;
- тампоны;
- картон, ДСП;
- пищевую добавку Е460.
Достоинства вещества
Целлюлоза способна выдерживать высокие температуры до 200 градусов. Молекулы не разрушаются, это позволяет изготавливать из неё пластиковую посуду многоразового использования. При этом сохраняется важное качество — эластичность.
Целлюлоза выдерживает длительное воздействие кислот. Абсолютно не растворяется в воде. Не переваривается человеческим организмом, используется в качестве сорбента.
Микрокристаллическая целлюлоза используется в нетрадиционной медицине в качестве препарата для очистки пищеварительной системы. Порошкообразное вещество выступает в роли пищевой добавки для снижения калорийности употребляемых блюд. Это способствует выводу токсинов, снижению сахара и холестерина в крови.
Метод изготовления №3 — промышленный
На производственных площадках целлюлозу готовят путём варки в различных средах. От вида реагента зависит используемый материал — тип дерева:
- Смолистые породы.
- Лиственные деревья.
- Растения.
Различают несколько видов реагентов для варки:
- Кислая среда. Иначе метод именуется как сульфитный. В качестве раствора применяют соль сернистой кислоты либо её жидкую смесь. При этом варианте производства целлюлозу выделяют из пород хвойных. Хорошо перерабатывают пихты, ели.
- Щелочная среда или натронный метод основан на использовании гидроксида натрия. Раствор хорошо отделяет целлюлозу из волокон растений (кукурузных стеблей) и деревьев (преимущественно лиственных).
- Одновременное использование гидроксида и сульфида натрия применяется в сульфатном методе. Он широко внедрен в производства по выработке сульфида белого щелока. Технология является достаточно негативной для окружающей природы из-за образующихся сторонних химических реакций.
Последний метод наиболее распространен из-за его универсальности: практически из любого дерева можно получить целлюлозу. Однако чистота материала не совсем высокая после одной варки. От примесей избавляются дополнительными реакциями:
- гемицеллюлозы удаляют щелочными растворами;
- макромолекулы лигнина и продукты их разрушения убираются хлором с последующей обработкой щелочью.
Пищевая ценность
Крахмал и целлюлоза имеют схожую структуру. В результате экспериментов удалось получить из несъедобных волокон жизненно важный продукт. Он требуется человеку постоянно. Употребляемая пища состоит более чем из 20% крахмала.
Учёным удалось получить из целлюлозы вещество амилозу, положительно влияющую на состояние организма человека. Одновременно с этим в процессе реакции выделяется глюкоза. Получается безотходное производство — последнее вещество направляется для изготовления этанола. Амилоза же служит как средство профилактики ожирения.
В результате реакции целлюлоза остаётся в твердом состоянии, оседая на дно сосуда. Остальные составляющие удаляются при помощи магнитных наночастиц либо растворяются и отводятся с жидкостью.
Типы вещества в продаже
Поставщики предлагают целлюлозу разного качества по приемлемым ценам. Перечислим основные типы материала:
- Целлюлоза сульфатная белого цвета, произведенная из двух видов дерева: хвойных и лиственных пород. Имеется небеленый материал, используемый в упаковочном материале, бумаге низкого качества для изоляционных материалов и других целей.
- Имеется в продаже сульфитная также белого цвета, изготовленная из хвойных деревьев.
- Порошковый материал белого цвета подходит для производства веществ медицинского назначения.
- Целлюлоза премиум-сортов изготавливается методом отбеливания без участия хлора. В качестве сырья берутся хвойные породы. Древесная масса состоит из сочетания щепы ели и сосны в соотношении 20/80%. Чистота получаемого материала наивысшая. Он подходит для изготовления стерильных материалов, применяемых в медицине.
Для выбора подходящей целлюлозы используют стандартные критерии: чистота материала, прочность на разрыв, длина волокон, индекс сопротивления раздиранию. Также количественно указывается химическое состояние или агрессивность среды водной вытяжки и влажность. Для целлюлозы, поставляемой в виде беленой массы, применимы другие показатели: удельный объем, яркость, величина помола, прочность на растяжение, степень чистоты.
Немаловажным для массы целлюлозы является показатель — индекс сопротивления раздиранию. От него зависит назначение производимых материалов. Учитывают вид древесины, используемой в качестве сырья, и влажность. Также важен уровень смол и жиров. Однородность порошка важна для определенных технологических процессов. Для аналогичных целей оценивают вязкость и сопротивление продавливанию материала в виде листов.
fb.ru
Целлюлоза — википедия орг
Целлюлоза — белое твёрдое, стойкое вещество, не разрушается при нагревании (до 200 °C). Является горючим веществом, температура воспламенения — 275 °С, температура самовоспламенения — 420 °С (хлопковая целлюлоза). В 2016 году экспериментально показано плавление целлюлозы при 467 °C.[2]
Нерастворима в воде, слабых кислотах и большинстве органических растворителей. Однако, благодаря большому числу гидроксильных групп является гидрофильной (краевой угол смачивания составляет 20 — 30 градусов).[3]
Целлюлоза не имеет вкуса и запаха. Зарегистрирована в качестве пищевой добавки E460.
Целлюлоза подвергается биодеградации при участии многих микроорганизмов.
Промышленным методом целлюлозу получают методом варки щепы на целлюлозных заводах, входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:
- Кислые:
- Щелочные:
- Натронный. Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений. Преимущество данного метода — отсутствие неприятного запаха соединений серы, недостатки — высокая стоимость получаемой целлюлозы.
- Сульфатный. Наиболее распространённый метод на сегодняшний день. В качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щёлоком. Своё название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щёлока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделения большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.
Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию — обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.
Для удаления остаточного лигнина и придания целлюлозе белизны проводится её отбелка. Традиционная для XX века хлорная отбелка включала в себя две ступени:
- обработка хлором — для разрушения макромолекул лигнина;
- обработка щелочью — для экстракции образовавшихся продуктов разрушения лигнина.
С 1970-х годов в практику вошла также отбелка озоном. В начале 1980-х годов появились сведения об образовании в процессе хлорной отбелки чрезвычайно опасных веществ — диоксинов. Это привело к необходимости замены хлора на другие реагенты. В настоящее время технологии отбелки подразделяются на:
Целлюлоза является одним из основных компонентов клеточных стенок растений, хотя её содержание в различных клетках или даже частях стенки одной клетки сильно варьирует. Так, например, клеточные стенки клеток эндосперма злаков содержат всего около 2 % целлюлозы, в то же время хлопковые волокна, окружающие семена хлопчатника, состоят из целлюлозы более чем на 90 %. Клеточные стенки в области кончика удлинённых клеток, характеризующихся полярным ростом (пыльцевая трубка, корневой волосок), практически не содержат целлюлозы и состоят в основном из пектинов, в то время как базальные части этих клеток содержат значительные количества целлюлозы. Кроме того, содержание целлюлозы в клеточной стенке изменяется в ходе онтогенеза, обычно вторичные клеточные стенки содержат больше целлюлозы, чем первичные.
Организация и функция в клеточных стенках
Отдельные макромолекулы целлюлозы включают от 2 до 25 тысяч остатков D-глюкозы. Целлюлоза в клеточных стенках организована в микрофибриллы, представляющие собой паракристаллические ансамбли из нескольких отдельных макромолекул (у сосудистых растений около 36)[6], связанных между собой водородными связями и силами Ван-дер-Ваальса.
Макромолекулы, находящиеся в одной плоскости и связанные между собой водородными связями, формируют лист в пределах микрофибриллы. Между собой листы макромолекул также связаны большим числом водородных связей. Хотя водородные связи довольно слабые, благодаря их большому количеству микрофибриллы целлюлозы обладают высокой механической прочностью и устойчивостью к действию ферментов.
Индивидуальные макромолекулы в микрофибрилле начинаются и заканчиваются в разных местах, поэтому длина микрофибриллы превышает длину отдельных макромолекул целлюлозы. Следует отметить, что макромолекулы в микрофибрилле ориентированы одинаково, то есть редуцирующие концы (концы со свободной, аномерной OH-группой при атоме C1) расположены с одной стороны.
Современные модели организации микрофибрилл целлюлозы предполагают, что в центральной области она имеет высокоорганизованную структуру, а к периферии расположение макромолекул становится более хаотичным. Так, в центре микрофибриллы высших растений располагается ядро из 24 молекул. Ещё 12 молекул расположены по периферии фибриллы. Теоретически диаметр такой микрофибриллы составляет 3.8 нм, однако, данные рентгеноструктурного анализа показывают, что это значение несколько меньше — 3.3 нм, что соответствуют 24 молекулам.[6] По-другим оценкам размеры фибрилл значительно больше: 5 — 9 нм в поперечном сечении (более 50 отдельных макромолекул).[7]
Между собой микрофибриллы связаны сшивочными гликанами (гемицеллюлозы) и, в меньшей степени, пектинами. Целлюлозные микрофибриллы, связанные сшивочными гликанами, формируют трёхмерную сеть, погружённую в гелеобразный матрикс из пектинов и обеспечивающую высокую прочность клеточных стенок.
Во вторичных клеточных стенках микрофибриллы могут быть ассоциированы в пучки, которые называют макрофибриллами. Подобная организация дополнительно увеличивает прочность клеточной стенки.
Биосинтез
Образование макромолекул целлюлозы клеточных стенок высших растений катализирует мультисубъединичный мембранный целлюлозосинтазный комплекс, расположенный на конце удлиняющихся микрофибрилл. Полный комплекс целлюлозосинтазы состоит из каталитической, поровой и кристаллизационной субъединиц. Каталитическая субъединица целлюлозосинтазы кодируется мультигенным семейством CesA (cellulose synthase A), которое входит в суперсемейство Csl (cellulose synthase-like), включающее также гены CslA, CslF, CslH и CslC, ответственные за синтез других полисахаридов.
При изучении поверхности плазмалеммы растительных клеток методом замораживания-скалывания в основании целлюлозных микрофибрилл можно наблюдать так называемые розетки или терминальные комплексы размером около 30 нм и состоящие из 6 субъединиц. Каждая такая субъединица розетки является в свою очередь суперкомплексом, образованным из 6 целлюлозосинтаз. Таким образом, в результате работы подобной розетки формируется микрофибрилла, содержащая на поперечном срезе около 36 макромолекул целлюлозы. У некоторых водорослей суперкомплексы синтеза целлюлозы организованы линейно.
Интересно, что роль затравки для начала синтеза целлюлозы играет гликозилированный ситостерин. Непосредственным субстратом для синтеза целлюлозы является UDP-глюкоза. За образование UDP-глюкозы отвечает сахарозосинтаза, ассоциированная с целлюлозосинтазой и осуществляющая реакцию:
Сахароза + UDP ⇌{\displaystyle \rightleftharpoons } UDP-глюкоза + D-фруктозаКроме того, UDP-глюкоза, может образовываться из пула гексозофосфатов в результате работы УДФ-глюкозопирофосфорилазы:
Глюкозо-1-фосфат + UTP ⇌{\displaystyle \rightleftharpoons } UDP-глюкоза + PPiНаправление синтеза микрофибрилл целлюлозы обеспечивается за счёт движения целлюлозосинтазных комплексов по микротрубочкам, прилежащим со внутренней стороны к плазмалемме. У модельного растения резуховидка Таля обнаружен белок CSI1, отвечающий за закрепление и движение целлюлозосинтазных комплексов по кортикальным микротрубочкам.
У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерии-симбионты, которые расщепляют и помогают хозяевам усваивать этот полисахарид. Расщепление целлюлозы связано с действием в расщепляющих организмах фермента целлюлазы. Бактерии, расщепляющие целлюлозу, называемые целлюлозоразрушающими (англ. cellulolytic bacteria), это часто актинобактерии рода Cellulomonas, являющиеся факультативными анаэробами[8][9], аэробные бактерии рода Cellvibrio[10]. Однако, например, для бумажных книг они представляют опасность только при их намокании, когда кожа и клей начинают разрушаться гнилостными бактериями, а бумага и ткани — целлюлозоразрушающими[11]. Очень опасны для бумажных книг плесневые грибы, разрушающие целлюлозу. За три месяца они могут разрушить 10—60 % волокон бумаги, благоприятные условия для их развития — влага и воздух повышенной влажности, наиболее благоприятная температура — от 22 до 27 градусов Цельсия, они могут распространяться от поражённых ими книг на другие[11]. Активно расщепляющие целлюлозу плесневые грибы — это, например, Chaetomium globosum, Stachybotrys echinata[12].
www-wikipediya.ru
Формула целлюлозы. Свойства целлюлозы. Применение целлюлозы :: SYL.ru
Всю жизнь нас окружает огромное количество предметов - картонные коробки, офсетная бумага, целлофановые пакеты, одежда из вискозы, бамбуковые полотенца и многое другое. Но мало кто знает, что при их изготовлении активно применяется целлюлоза. Что же это за поистине волшебное вещество, без которого не обходится практически ни одно современное промышленное предприятие? В этой статье мы расскажем про свойства целлюлозы, её применение в различных сферах, а также из чего её добывают, и какова ее химическая формула. Начнём, пожалуй, с истоков.
Обнаружение вещества
Формула целлюлозы была открыта французским химиком Ансельмом Пайеном в ходе экспериментов по разделению древесины на составляющие. Обработав ее азотной кислотой, учёный обнаружил, что в ходе химической реакции формируется волокнистое вещество, схожее с хлопком. После тщательного анализа полученного материала Пайеном была получена химическая формула целлюлозы - C6h20O5. Описание процесса было опубликовано в 1838 году, а своё научное название вещество получило в 1839-м.
Дары природы
Сейчас доподлинно известно, что практически все мягкие части растений и животных содержат в себе некоторое количество целлюлозы. Например, растениям это вещество необходимо для нормального роста и развития, а точнее - для творения оболочек новообразующихся клеток. По составу относится к полисахаридам.
В промышленности, как правило, натуральную целлюлозу добывают из хвойных и лиственных деревьев - в сухой древесине содержится до 60% этого вещества, а также путём переработки отходов хлопководства, в которых содержится около 90% целлюлозы.
Известно, что если нагреть древесину в вакууме, то есть без доступа воздуха, произойдёт термическое разложение целлюлозы, благодаря чему образуется ацетон, метиловый спирт, вода, уксусная кислота и древесный уголь.
Несмотря на богатую флору планеты, лесов уже не хватает на то, чтобы производить необходимое для промышленности количество химических волокон - применение целлюлозы слишком обширно. Поэтому её всё чаще добывают из соломы, тростника, стеблей кукурузы, бамбука и камыша.
Синтетическую целлюлозу при помощи различных технологических процессов получают из угля, нефти, природного газа и сланца.
Из леса - в цеха
Давайте рассмотрим добычу технической целлюлозы из древесины - это сложный, интересный и длительный процесс. Первым делом на производство привозят древесину, распиливают её на крупные фрагменты и удаляют кору.
Затем очищенные бруски перерабатывают в щепки и сортируют, после чего вываривают в щелоке. Полученную таким образом целлюлозу отделяют от щелочи, затем высушивают, разрезают и упаковывают для отправки.
Химия и физика
Какие же химические и физические секреты таят в себе свойства целлюлозы кроме того, что это - полисахарид? В первую очередь, это вещество белого цвета. Легко воспламеняется и хорошо горит. Растворяется в комплексных соединениях воды с гидроксидами некоторых металлов (меди, никеля), с аминами, а также в серной и ортофосфорной кислотах, концентрированном растворе хлорида цинка.
В доступных бытовых растворителях и обычной воде целлюлоза не растворяется. Это происходит потому, что длинные нитевидные молекулы этого вещества связаны в своеобразные пучки и расположены параллельно друг к другу. Вдобавок, вся эта "конструкция" усилена водородными связями, из-за чего молекулы слабого растворителя или воды просто не могут проникнуть внутрь и разрушить это прочное сплетение.
Тончайшие нити, длина которых колеблется от 3 до 35 миллиметров, соединенные в пучки, - так можно схематически представить строение целлюлозы. Длинные волокна используются в текстильной промышленности, короткие - в производстве, например, бумаги и картона.
Целлюлоза не плавится и не превращается в пар, однако начинает разрушаться при нагреве выше 150 градусов Цельсия, выделяя при этом низкомолекулярные соединения - водород, метан и монооксид углерода (угарный газ). При температуре 350 оC и выше целлюлоза обугливается.
Перемены к лучшему
Вот так в химических символах описывается целлюлоза, структурная формула которой наглядно показывает длинноцепную полимерную молекулу, состоящую из повторяющихся глюкозидных остатков. Обратите внимание на "n", указывающее их большое количество.
К слову, формула целлюлозы, выведенная Ансельмом Пайеном, претерпела некоторые изменения. В 1934 году английский химик-органик, лауреат Нобелевской премии Уолтер Норман Хоуорс изучал свойства крахмала, лактозы и других сахаров, включая целлюлозу. Обнаружив способность этого вещества к гидролизу, он внёс свои коррективы в изыскания Пайена, и формула целлюлозы была дополнена значением "n", обозначив присутствие гликозидных остатков. На данный момент она выглядит так: (C5h20O5)n.
Эфиры целлюлозы
Важно, что молекула целлюлозы содержат в себе гидроксильные группы, которые могут алкилироваться и ацилироваться, образуя при этом различные эфиры. Это ещё одно из важнейших свойств, которыми обладает целлюлоза. Структурная формула различных соединений может выглядеть так:
Эфиры целлюлозы бывают простыми и сложными. Простые - это метил-, оксипропил-, карбоксиметил-, этил-, метилгидроксипропил- и цианэтилцеллюлоза. Сложные - это нитраты, сульфаты и ацетаты целлюлозы, а также ацетопропионаты, ацетилфталилцеллюлоза и ацетобутираты. Все эти эфиры производятся практически во всех странах мира сотнями тысяч тонн в год.
От фотоплёнки до зубной пасты
Для чего же они нужны? Как правило, эфиры целлюлозы широко применяются для производства искуственных волокон, различных пластмасс, всевозможных плёнок (включая фотографические), лаков, красок, а также используются в военной промышленности для изготовления твёрдого ракетного топлива, бездымного пороха и взрывчатки.
Помимо этого, эфиры целлюлозы входят в состав штукатурных и гипсо-цементных смесей, красителей для тканей, зубных паст, различных клеев, синтетических моющих средств, парфюмерии и косметики. Одним словом, если бы в далёком 1838 году не была открыта формула целлюлозы, современные люди не обладали бы многими благами цивилизации.
Почти близнецы
Мало кто из обычных людей знает, что у целлюлозы есть своего рода двойник. Формула целлюлозы и крахмала идентична, однако это два совершенно разных вещества. В чём же разница? Несмотря на то что оба этих вещества - природные полимеры, степень полимеризации у крахмала намного меньше, нежели у целлюлозы. А если углубиться дальше и сравнить структуры этих веществ, можно обнаружить, что макромолекулы целлюлозы располагаются линейно и только в одном направлении, образуя таким образом волокна, в то время как микрочастицы крахмала выглядят несколько иначе.
Сферы применения
Одним из лучших наглядных образцов практически чистой целлюлозы является обычная медицинская вата. Как известно, её получают из тщательно очищенного хлопка.
Второй, не менее используемый продукт из целлюлозы - бумага. На самом деле она - тончайший слой целлюлозных волокон, тщательно спрессованных и склеенных между собой.
Кроме того, из целлюлозы производят вискозное полотно, которое под умелыми руками мастеров волшебным образом превращается в красивые одежды, обивку для мягкой мебели и различные декоративные драпировки. Также вискоза применяется для изготовления технических ремней, фильтров и шинных кордов.
Не забудем и о целлофане, который получают из вискозы. Без него трудно представить супермаркеты, магазины, тароупаковочные отделы почтовых отделений. Целлофан - повсюду: им обёрнуты конфеты, в него упакованы крупы и хлебобулочные изделия, а также таблетки, колготки и любая аппаратура, начиная от мобильного телефона и заканчивая пультом дистанционного управления для телевизора.
Помимо этого чистая микрокристаллическая целлюлоза входит в состав таблеток для снижения веса. Попадая в желудок, они разбухают и создают чувство насыщения. Количество еды, употребляемой за день, существенно сокращается, соответственно, падает вес.
Как видите, открытие целлюлозы произвело настоящую революцию не только в химической промышленности, но и в медицине.
www.syl.ru
Целлюлоза — WiKi
Целлюлоза — белое твёрдое, стойкое вещество, не разрушается при нагревании (до 200 °C). Является горючим веществом, температура воспламенения — 275 °С, температура самовоспламенения — 420 °С (хлопковая целлюлоза). В 2016 году экспериментально показано плавление целлюлозы при 467 °C.[2]
Нерастворима в воде, слабых кислотах и большинстве органических растворителей. Однако, благодаря большому числу гидроксильных групп является гидрофильной (краевой угол смачивания составляет 20 — 30 градусов).[3]
Целлюлоза не имеет вкуса и запаха. Зарегистрирована в качестве пищевой добавки E460.
Целлюлоза подвергается биодеградации при участии многих микроорганизмов.
Промышленным методом целлюлозу получают методом варки щепы на целлюлозных заводах, входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:
- Кислые:
- Щелочные:
- Натронный. Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений. Преимущество данного метода — отсутствие неприятного запаха соединений серы, недостатки — высокая стоимость получаемой целлюлозы.
- Сульфатный. Наиболее распространённый метод на сегодняшний день. В качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щёлоком. Своё название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щёлока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделения большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.
Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию — обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.
Для удаления остаточного лигнина и придания целлюлозе белизны проводится её отбелка. Традиционная для XX века хлорная отбелка включала в себя две ступени:
- обработка хлором — для разрушения макромолекул лигнина;
- обработка щелочью — для экстракции образовавшихся продуктов разрушения лигнина.
С 1970-х годов в практику вошла также отбелка озоном. В начале 1980-х годов появились сведения об образовании в процессе хлорной отбелки чрезвычайно опасных веществ — диоксинов. Это привело к необходимости замены хлора на другие реагенты. В настоящее время технологии отбелки подразделяются на:
Целлюлоза является одним из основных компонентов клеточных стенок растений, хотя её содержание в различных клетках или даже частях стенки одной клетки сильно варьирует. Так, например, клеточные стенки клеток эндосперма злаков содержат всего около 2 % целлюлозы, в то же время хлопковые волокна, окружающие семена хлопчатника, состоят из целлюлозы более чем на 90 %. Клеточные стенки в области кончика удлинённых клеток, характеризующихся полярным ростом (пыльцевая трубка, корневой волосок), практически не содержат целлюлозы и состоят в основном из пектинов, в то время как базальные части этих клеток содержат значительные количества целлюлозы. Кроме того, содержание целлюлозы в клеточной стенке изменяется в ходе онтогенеза, обычно вторичные клеточные стенки содержат больше целлюлозы, чем первичные.
Организация и функция в клеточных стенках
Отдельные макромолекулы целлюлозы включают от 2 до 25 тысяч остатков D-глюкозы. Целлюлоза в клеточных стенках организована в микрофибриллы, представляющие собой паракристаллические ансамбли из нескольких отдельных макромолекул (у сосудистых растений около 36)[6], связанных между собой водородными связями и силами Ван-дер-Ваальса.
Макромолекулы, находящиеся в одной плоскости и связанные между собой водородными связями, формируют лист в пределах микрофибриллы. Между собой листы макромолекул также связаны большим числом водородных связей. Хотя водородные связи довольно слабые, благодаря их большому количеству микрофибриллы целлюлозы обладают высокой механической прочностью и устойчивостью к действию ферментов.
Индивидуальные макромолекулы в микрофибрилле начинаются и заканчиваются в разных местах, поэтому длина микрофибриллы превышает длину отдельных макромолекул целлюлозы. Следует отметить, что макромолекулы в микрофибрилле ориентированы одинаково, то есть редуцирующие концы (концы со свободной, аномерной OH-группой при атоме C1) расположены с одной стороны.
Современные модели организации микрофибрилл целлюлозы предполагают, что в центральной области она имеет высокоорганизованную структуру, а к периферии расположение макромолекул становится более хаотичным. Так, в центре микрофибриллы высших растений располагается ядро из 24 молекул. Ещё 12 молекул расположены по периферии фибриллы. Теоретически диаметр такой микрофибриллы составляет 3.8 нм, однако, данные рентгеноструктурного анализа показывают, что это значение несколько меньше — 3.3 нм, что соответствуют 24 молекулам.[6] По-другим оценкам размеры фибрилл значительно больше: 5 — 9 нм в поперечном сечении (более 50 отдельных макромолекул).[7]
Между собой микрофибриллы связаны сшивочными гликанами (гемицеллюлозы) и, в меньшей степени, пектинами. Целлюлозные микрофибриллы, связанные сшивочными гликанами, формируют трёхмерную сеть, погружённую в гелеобразный матрикс из пектинов и обеспечивающую высокую прочность клеточных стенок.
Во вторичных клеточных стенках микрофибриллы могут быть ассоциированы в пучки, которые называют макрофибриллами. Подобная организация дополнительно увеличивает прочность клеточной стенки.
Биосинтез
Образование макромолекул целлюлозы клеточных стенок высших растений катализирует мультисубъединичный мембранный целлюлозосинтазный комплекс, расположенный на конце удлиняющихся микрофибрилл. Полный комплекс целлюлозосинтазы состоит из каталитической, поровой и кристаллизационной субъединиц. Каталитическая субъединица целлюлозосинтазы кодируется мультигенным семейством CesA (cellulose synthase A), которое входит в суперсемейство Csl (cellulose synthase-like), включающее также гены CslA, CslF, CslH и CslC, ответственные за синтез других полисахаридов.
При изучении поверхности плазмалеммы растительных клеток методом замораживания-скалывания в основании целлюлозных микрофибрилл можно наблюдать так называемые розетки или терминальные комплексы размером около 30 нм и состоящие из 6 субъединиц. Каждая такая субъединица розетки является в свою очередь суперкомплексом, образованным из 6 целлюлозосинтаз. Таким образом, в результате работы подобной розетки формируется микрофибрилла, содержащая на поперечном срезе около 36 макромолекул целлюлозы. У некоторых водорослей суперкомплексы синтеза целлюлозы организованы линейно.
Интересно, что роль затравки для начала синтеза целлюлозы играет гликозилированный ситостерин. Непосредственным субстратом для синтеза целлюлозы является UDP-глюкоза. За образование UDP-глюкозы отвечает сахарозосинтаза, ассоциированная с целлюлозосинтазой и осуществляющая реакцию:
Сахароза + UDP ⇌{\displaystyle \rightleftharpoons } UDP-глюкоза + D-фруктозаКроме того, UDP-глюкоза, может образовываться из пула гексозофосфатов в результате работы УДФ-глюкозопирофосфорилазы:
Глюкозо-1-фосфат + UTP ⇌{\displaystyle \rightleftharpoons } UDP-глюкоза + PPiНаправление синтеза микрофибрилл целлюлозы обеспечивается за счёт движения целлюлозосинтазных комплексов по микротрубочкам, прилежащим со внутренней стороны к плазмалемме. У модельного растения резуховидка Таля обнаружен белок CSI1, отвечающий за закрепление и движение целлюлозосинтазных комплексов по кортикальным микротрубочкам.
У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерии-симбионты, которые расщепляют и помогают хозяевам усваивать этот полисахарид. Расщепление целлюлозы связано с действием в расщепляющих организмах фермента целлюлазы. Бактерии, расщепляющие целлюлозу, называемые целлюлозоразрушающими (англ. cellulolytic bacteria), это часто актинобактерии рода Cellulomonas, являющиеся факультативными анаэробами[8][9], аэробные бактерии рода Cellvibrio[10]. Однако, например, для бумажных книг они представляют опасность только при их намокании, когда кожа и клей начинают разрушаться гнилостными бактериями, а бумага и ткани — целлюлозоразрушающими[11]. Очень опасны для бумажных книг плесневые грибы, разрушающие целлюлозу. За три месяца они могут разрушить 10—60 % волокон бумаги, благоприятные условия для их развития — влага и воздух повышенной влажности, наиболее благоприятная температура — от 22 до 27 градусов Цельсия, они могут распространяться от поражённых ими книг на другие[11]. Активно расщепляющие целлюлозу плесневые грибы — это, например, Chaetomium globosum, Stachybotrys echinata[12].
ru-wiki.org
Биологическая роль целлюлозы | Kratkoe.com
Какова роль целлюлозы в организме человека, Вы узнаете из этой статьи.
Что такое целлюлоза?
Целлюлоза представляет собой природный полимер глюкозы, имеющий растительное происхождение и линейное строение молекул. Другими словами ее называют еще клетчатой. На нашей планете среди всех органических соединений она занимает первое место.
Целлюлоза медико-биологическое значение:
- Целлюлоза являет собой основной компонент, который составляет структуру стенок клеток растительного происхождения.
- У растений она выполняет защитную функцию.
- Компонент является основой молекулярных сложных структур.
- Обеспечивают живые организмы необходимой энергией для существования.
- Питают клетки организмов питательными веществами, так как они концентрируются в тканях и в нужный момент подпитывают клетку.
- Целлюлоза принимает активное участие в процессе регулирования осмотического давления.
- Она входит в состав воспринимающих частей рецепторов всех клеток.
Биологическое значение целлюлозы:
- Клетчатка является главной структурной частью клеточной оболочки у растений. Целлюлоза растений – это главное питание травоядных животных, так как в их организме есть специальный фермент – целлюлаза, отвечающий за расщепление этого компонента. А вот человек в чистом виде не употребляет целлюлозу.
- Она связывает жидкость в перистальтике кишечника. Также в толстом кишечнике благодаря ей метаболизируются бактерии. Энергия целлюлозы поддерживает его микрофлору и пищевые волокна в нем.
- Клетчатка является профилактикой геморроя и запора.
- Когда человек, болеющий на сахарный диабет первого типа, употребляет целлюлозу в достаточном количестве, то его организм становится намного устойчивее к глюкозе.
- Данный элемент выполняет роль «щетки», убирая грязные налипания со стенок кишечника – он удаляет токсичные вещества и холестерин.
Надеемся, что из этой статьи Вы узнали, какова биологическая функция целлюлозы в клетке организмов.
Похожие записи:
kratkoe.com
ЦЕЛЛЮЛОЗА - это... Что такое ЦЕЛЛЮЛОЗА?
Реакция с оксидом этилена или пропилена дает гидроксилированные простые эфиры:
Наличием этих гидроксильных групп и геометрией макромолекулы обусловлено сильное полярное взаимное притяжение соседних звеньев. Силы притяжения столь велики, что обычные растворители не в состоянии разорвать цепь и растворить целлюлозу. Эти свободные гидроксильные группы ответственны также за большую гигроскопичность целлюлозы (рис. 3). Этерификация и эфиризация понижают гигроскопичность и повышают растворимость в обычных растворителях.Рис. 3. ВЛАГОПОГЛОЩЕНИЕ целлюлозы (очищенного хлопка) в равновесных условиях при 25° C. График зависимости количества поглощенной влаги (в процентах сухой массы) от относительной влажности воздуха. Под действием водного раствора кислоты разрываются кислородные мостики в положении 1,4-. Полный разрыв цепи дает глюкозу - моносахарид. Первоначальная длина цепи зависит от происхождения целлюлозы. Она максимальна в природном состоянии и уменьшается в процессе выделения, очистки и преобразования в производные соединения (см. таблицу).СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ ЦЕЛЛЮЛОЗЫМатериал Число глюкозидных остатковНеобработанный хлопок 2500-3000Очищенный хлопковый линт 900-1000Очищенная древесная масса 800-1000Регенерированная целлюлоза 200-400Промышленный ацетат целлюлозы 150-270
Даже механический сдвиг, например при абразивном размельчении, приводит к уменьшению длины цепей. При уменьшении длины полимерной цепи ниже определенного минимального значения изменяются макроскопические физические свойства целлюлозы. Окислительные агенты оказывают на целлюлозу воздействие, не вызывая расщепления глюкопиранозного кольца (рис. 4). Последующее действие (в присутствии влаги, например, при климатических испытаниях), как правило, приводит к разрыву цепи и увеличению числа альдегидоподобных концевых групп. Поскольку альдегидные группы легко окисляются до карбоксильных, содержание карбоксила, практически отсутствующего в природной целлюлозе, резко возрастает в условиях атмосферных воздействий и окисления.Рис. 4. Различные пути окисления целлюлозы под действием окисляющих агентов. Как и все полимеры, целлюлоза разрушается под воздействием атмосферных факторов в результате совместного действия кислорода, влаги, кислотных компонентов воздуха и солнечного света. Важное значение имеет ультрафиолетовая составляющая солнечного света, и многие хорошо защищающие от УФ-излучения агенты увеличивают срок службы изделий из производных целлюлозы. Кислотные компоненты воздуха, такие, как оксиды азота и серы (а они всегда присутствуют в атмосферном воздухе промышленных районов), ускоряют разложение, зачастую оказывая более сильное воздействие, чем солнечный свет. Так, в Англии было отмечено, что образцы хлопка, испытывавшиеся на воздействие атмосферных условий, зимой, когда практически не было яркого солнечного света, деградировали быстрее, чем летом. Дело в том, что сжигание зимой больших количеств угля и газа приводило к повышению в воздухе концентрации оксидов азота и серы. Кислотные поглотители, антиоксиданты и агенты, поглощающие УФ-излучение, снижают чувствительность целлюлозы к атмосферным воздействиям. Замещение свободных гидроксильных групп приводит к изменению такой чувствительности: нитрат целлюлозы деградирует быстрее, а ацетат и пропионат - медленнее.Физические свойства. Полимерные цепи целлюлозы упакованы в длинные пучки, или волокна, в которых наряду с упорядоченными, кристаллическими имеются и менее упорядоченные, аморфные участки (рис. 5). Измеренный процент кристалличности зависит от типа целлюлозы, а также от способа измерения. По рентгеновским данным, он составляет от 70% (хлопок) до 38-40% (вискозное волокно). Рентгенографический структурный анализ дает информацию не только о количественном соотношении между кристаллическим и аморфным материалом в полимере, но и о степени ориентации волокна, вызываемой растяжением или нормальными процессами роста. Резкость дифракционных колец характеризует степень кристалличности, а дифракционные пятна и их резкость - наличие и степень предпочтительной ориентации кристаллитов. В образце вторичного ацетата целлюлозы, полученного процессом "сухого" формования, и степень кристалличности, и ориентация весьма незначительны. В образце триацетата степень кристалличности больше, но предпочтительная ориентация отсутствует. Термообработка триацетата при температуре 180-240° C заметно повышает степень его кристалличности, а ориентирование (вытягиванием) в сочетании с термообработкой дает самый упорядоченный материал. Лен обнаруживает высокую степень и кристалличности, и ориентации.См. такжеХИМИЯ ОРГАНИЧЕСКАЯ;БУМАГА И ПРОЧИЕ ПИСЧИЕ МАТЕРИАЛЫ;ПЛАСТМАССЫ.Рис. 5. МОЛЕКУЛЯРНАЯ СТРУКТУРА целлюлозы. Молекулярные цепи проходят через несколько мицелл (кристаллических областей) протяженностью L. Здесь A, A' и B' - концы цепей, лежащие в кристаллизованной области; B - конец цепи вне кристаллизованной области. ЛИТЕРАТУРА Бушмелев В.А., Вольман Н.С. Процессы и аппараты целлюлозно-бумажного производства. М., 1974 Целлюлоза и ее производные. М., 1974 Аким Э.Л. и др. Технология обработки и переработки целлюлозы, бумаги и картона. Л., 1977Энциклопедия Кольера. — Открытое общество. 2000.
dic.academic.ru
Физические, химические свойства целлюлозы
Целлюлоза (C 6 H 10 O 5 ) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.
Физические свойства
Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.
1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.
2. Отсюда происходит и ее название (от лат. «целлула» – клетка).
3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.
4. Волокна хлопка содержат до 98 % целлюлозы.
5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.
6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.
7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.
8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.
Химические свойства
1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:
(C6h20O5)n + nН2О → nС6Н12О6
2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров
(С6Н7О2(ОН)3)n + 3nCh4COOH → 3nh3O + (С6Н7О2(ОCOCh4)3)n
триацетат целлюлозы
Ацетаты целлюлозы – искусственные полимеры, применяются в производстве ацетатного шёлка, плёнки (киноплёнки), лаков.
Применение
Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.
Нахождение целлюлозы в природе.
1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.
2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.
3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.
4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.
Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:
1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;
2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.
АнилинАминокислотыХимические свойства белковХарактеристика высокомолекулярных соединенийНоменклатура, свойства сложных эфировСвойства жировВиды восковЦепочки по органической химииКачественные реакции на органические веществаКлассификация органических веществНазвания органических углеводородов, спиртов, веществ, номенклатура
biofile.ru