Биологические ритмы растений. Влияние света на биологические ритмы растений на примере кислицы

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Биологические ритмы и их влияние на все живое. Биологические ритмы растений


Биологические часы растений

Биологические часы растений Вы замечали, мой уважаемый читатель, что некоторые растения с восходом солнца распускают свои цветы и закрывают их с приходом темноты, как будто отправляются спать вместе с нами.

Оказывается, все живые организмы – от простейших до высших позвоночных и человека, способны ориентироваться во времени.

В течение многовековой эволюции сформировалась суточная, сезонная и годичная ритмичность физиологических процессов.

Смена ритмов, зависящая от наследственных и внешних факторов, называется биологическими часами.

У растений она проявляется в периодичности таких процессов, как деление клеток, обмен веществ, прорастание семян, цветение, спорообразование, открытие и закрытие цветков, выделение нектара.

Биологические часы растений позволяют им не только распознавать день и ночь, но и подготовиться к смене сезонов и изменению длительности светового дня.

 

Некоторые растения для цветения предпочитают короткие дни ранней весны, другие, наоборот, цветут во время летнего солнцестояния, когда светлый период суток самый длинный.

Что помогает им ориентироваться в длительности освещения и выбирать самый подходящий для цветения момент?

Отвечает за это особый пигмент, фитохром, существующий в двух формах: фитохром красный (Фк) и фитохром дальний красный (Фдк) и реагирующий на изменение в спектральном составе солнечного света.

Обе формы пигмента, в зависимости от периода суток, переходят одна в другую: Фк, поглощая свет «дневных» волн (660нм), превращается в Фдк; Фдк, поглощая сумеречный свет (730нм), трансформируется обратно в Фк.

С этим циклом связана физиология растений: процессы цветения, роста и многие другие. Их клетки с помощью фитохрома считывают информацию о темном и светлом времени суток.

В течение долгого времени считалось, что на суточные ритмы растений влияют только внешние факторы, смена степени освещенности днем и ночью.

Однако в 1729 году Жан-Жак де Меран, французский астроном, сделал основополагающее для биоритмологии открытие: растения складывают и опускают свои листья точно так же в темной, изолированной от солнца комнате.

Опыты де Мерана были продолжены ботаником Дюамелем. Он отнес свой гелиотроп в винный погреб, абсолютно темный, даже без люка для проветривания. Наблюдая за растением в течение продолжительного времени, Дюамель убедился, что гелиотроп не изменяет своим суточным привычкам: днем он выпрямляет листья, а ночью – сворачивает.

Спустя сто лет швейцарский ботаник Декандоль провел опыты с мимозой: он освещал ее и днем и ночью шестью яркими лампами, но она неукоснительно соблюдала суточный распорядок, засыпая ночью и оживая утром.

Тогда Декандоль стал освещать мимозу только ночью, а днем лишал света. Растение перестроилось на новый ритм – спала днем и бодрствовала ночью. По окончанию опыта, мимоза вернулась к прежним привычкам.

Из этих исследований можно сделать вывод,

что растения обладают и наследственной памятью и индивидуальной. Причем наследственная память, выражающаяся в приверженности к суточному ритму, сильнее.

Попытки научить растения жить по-новому расписанию предпринимались неоднократно.

Голландский ботаник Антоний Клеонхоонте вырастил мечевидную канавалию из семян, сутки ее составляли 16 часов: 8 часов света и 8 часов темноты. Но стоило начать освещать ее непрерывно в течение 24 часов, как она услышала генетический голос и перестроилась на обычный ритм.

Многочисленные опыты показали, что растения, усвоившие новый ритм, со временем от него отказываются и возвращаются к привычным 24-часовым суткам. Они бодрствуют, когда бодрствует человек, и спят, когда он спит.

Откуда же они узнают время, когда положено спать, кто запускает биологические часы растений?

Работа биологических часов определяется вращением Земли, которое вносит определенный ритм в смену времен года, ночи и дня, степени освещенности и температуры, атмосферного давления, влажности воздуха, космической и солнечной радиации.

Растения, в отличие от нас, людей, соблюдают заложенные биологические ритмы очень точно, что обеспечивает им правильное развитие и экономию энергии: 

К примеру, светящиеся морские обитатели, грибы и водоросли, производят выделение люминесцентного вещества, дающего холодное свечение, только ночью. Это весьма рациональный подход: в дневное время слабое свечение не имело бы эффекта.

Заслуживает особого внимания синхронность биологических ритмов растений и насекомых:

Цветки раскрываются, чтобы отдать нектар и пыльцу в строго определенное время, когда прилетают опыляющие их насекомые. Такая слаженность позволяет пчелам, осам и другим насекомым использовать свою энергию рационально, не совершая лишних вылетов, в поисках корма, а растениям – вырабатывать своевременно нектар и пыльцу.

Это взаимное «сотрудничество» не нарушается даже в том случае, если на непродолжительное время искусственно изменяются условия среды обитания: периодичность освещения, температура и влажность воздуха. Цветы раскрываются в положенное время, а опылители прилетают за кормом в условленный час.

«Сон цветов»

Выдающийся шведский ученый XVIII века Карл Линней изучил поведение цветущих растений и дал ему название «сон цветов». Открыв закономерности этого явления, он нашел ему практическое применение, создав первые в мире цветочные часы:

на необычной клумбе в Упсале были высажены цветы, распускающиеся в строгой последовательности. Циферблат составили секторы растения разных видов, часы не имели стрелок и цифр, но безошибочно показывали точное время и работали без сбоев. Каждый цветок раскрывался в свой определенный час.

Цветочные часы стали гордостью ученого и впоследствии, с его легкой руки, их копии появились в других городах Европы.

Но механическое копирование не сохраняло точность Линнеевских часов, ведь их создатели не учитывали пространственные, временные и климатические условия цветения растений.

В каждой географической местности растение цветет по своим законам: один и тот же цветок раскроет лепестки в разное время во Франции, на Украине или на Кавказе.

А какому ритму подчиняется обмен веществ у картофеля?

Опыты проводились в темном герметичном контейнере и сводились к вялому окислению: из клубней вырезаны цилиндрики с глазками, из глазков развиваются ростки. Наблюдения показали, что обмен подчинен строго суточному ритму, а также зависит от перепадов атмосферного давления: при повышении давления скорость обмена веществ (поглощения кислорода) понижается.

Но самое интересное в том, что перемены происходят за 2 дня до изменений в атмосфере, это при том, что картофель полностью изолирован от внешней среды.

Значит, не только человек реагирует на изменения погодных условий ломотой в костях, но и все организмы, и их живые части (цилиндрики клубней картофеля).

Практическое применение биологических ритмов

Зная факторы, влияющие на биологические ритмы растений, можно создавать условия для искусственного смещения цветения в нужном направлении: цветы, распускающиеся в марте, можно заставить цвести в декабре, под Рождество; южным растениям обеспечить существование и цветение в северных широтах и наоборот.

Для успешной борьбы с сорняками, необходимо знать время, когда сорняки максимально восприимчивы к гербицидам, а также время, когда культурные растения наименее чувствительны к ним.

Источники: А. Борбели «Тайна сна», Р. Сэттер, А. Гэлстон, П. Дэвис «Жизнь зеленого растения» (перевод с английского под редакцией Н.П. Воскресенской), Большая советская энциклопедия.

Предлагаю посмотреть завораживающе красивое видео:

Елена Вальве для проекта Сонная кантата

Статья защищена законом об авторских и смежных правах. Любое использование материала возможно только с активной ссылкой на сайтSna-kantata.ru!

Еще по теме:

sna-kantata.ru

Влияние света на биологические ритмы растений на примере кислицы

 

Исследовательскую работу «Влияние света на биологические ритмы растений на примере кислицы» посвятили изучению биологических часов среди растений на примере кислицы. Мы предположили, что, если листья кислицы реагируют на различные факторы среды, то можно утверждать, что свет и продолжительность светового дня влияют на суточные биоритмы растений.

 

За годы изучения жизнедеятельности организмов простейших, растений и животных было выявлено множество циклически и периодически повторяемых процессов. В жизнедеятельности всех организмов помимо сна немало других проявлений суточного и годичного ритмов. Биологические часы зависят от положения Солнца и Луны. Множество опытов и экспериментов было проведено для доказательства существования биологических часов, однако эта тема все ещё остается открытой [1].

У растений свет и темноту воспринимает каждая клетка. Особый пигмент – фитохром заряжается положительно под действием изменений спектрального состава света при восходе солнца и теряет положительный заряд под действием изменений светового спектра при закате солнца. Передача возбуждения от пигмента к плазме клеток происходит при участии того же вещества (ацетилхолина), которое служит переносчиком возбуждения в нервной системе животных. С помощью фитохрома клетки растений могут как бы отсчитывать «светлое» и «тёмное» время.

Установлено, что у растений есть 13 физиолого-биохимических процессов, протекающих в их организме с определенным ритмом, т. е. с размеренным чередованием усиления и ослабления. Например, открывание и закрывание цветков, замыкание и размыкание устьиц, усиление и ослабление фотосинтеза, транспирации, дыхания и т. п. Чередование (смена) периодов усиления и ослабления того или иного физиологического процесса невозможно без способности измерять время. Эта способность живых организмов, зависящая от наследственных особенностей и от внешних условий (нормальное питание, дыхание, смена дня и ночи, времен года), и называется биологическими часами. Если растение поместить в постоянную темноту, то в течение нескольких суток его листья сохраняют свойственную им периодичность движений. Однако вскоре она утрачивается, так как без света нарушается питание клеток, тканей и органов растения. Учение о периодических изменениях в ходе физиологических процессов у растений называется биоритмологией.

Главным фактором регуляции сезонных циклов у большинства растений является изменение продолжительности световой части суток – дня, связанной с вращением Земли вокруг своей оси. А с нею связаны суточные биоритмы. Например, в образовательных тканях деление клеток активнее происходит в светлое время суток и медленнее – в ночное, одни растения цветут днём, а другие – ночью. Реакция организмов на продолжительность дня получила название фотопериодизма. Внутренним суточным ритмом характеризуются многие процессы: фотосинтез, дыхание, испарение, открывание и закрывание цветков, выделение нектара, поднятие и опускание листьев, передвижение веществ по проводящим сосудам и др. [2].

Анализ изученных материалов из Интернет-ресурсов, проведенного эксперимента позволили сделать следующие выводы:

  1. На примере кислицы доказали, что биологические часы существуют, но индивидуальны для каждого подвида растения и для определённой местности.
  2. У кислицы, помещённой в постоянную темноту, в течение 9-10 суток листья сохраняют периодичность движений. Но через несколько дней она утрачивается, так как без света нарушается питание клеток, тканей и органов растения.
  3. При недостатке света у кислицы произошло удлинение и обесцвечивание стеблей.
  4. При недостатке света с ноября по февраль у кислицы наступает фаза покоя: растение сбрасывает часть листьев, прекращается цветение.
  5. В итоге мы доказали, что на биологические ритмы растений влияют различные факторы: смена дня и ночи, свет, его продолжительность.

Ключевые слова: биологические ритмы растений, биоритмология, биологические часы, суточная периодичность, факторы среды, продолжительность светового дня.

Введение: Цель работы: изучить влияние света на биологические ритмы растений на примере кислицы. Для достижения цели решали следующие задачи: изучить материалы Интернет-ресурсов о биоритмологии, биологических часах среди растений; провести исследование, эксперимент с кислицей; провести сбор, анализ и обобщение полученных данных в результате эксперимента.

У каждого растения своя красота, каждый цветок живёт по своему особому режиму, называемому биоритмом. До сих пор не вполне ясна сама сущность биоритмики растений, природа её происхождения. Отработанные природой биоритмы растений обеспечивают их оптимальное противодействие неблагоприятным факторам внешней среды.

Суточные биоритмы наиболее заметно проявляются у растений с яркими и крупными цветками. В течение суток цветки таких растений периодически раскрываются и закрываются. Эту закономерность люди заметили очень давно. Ещё в древней Греции и Риме на цветниках высаживали растения, цветки которых раскрывали и закрывали свои венчики в разное время суток. По таким «биологическим часам» определяли время, но, конечно, приблизительно, так как точность их работы зависела от многих условий. Знаменитый шведский ученый-натуралист XVIII в. Карл Линней подметил неодновременность цветения растений и у себя на родине в г.Упсала устроил так называемые цветочные часы. Подобные клумбы-часы впоследствии стали создавать и в других местах. Были такие оригинальные цветочные часы и на усадьбе имения Пушкиных в с. Михайловском. Однако даже хорошо составленные цветочные часы могли показывать относительно точное время только в ясный, солнечный день, в дождливую или пасмурную погоду они не оправдывали своего назначения, так как цветки в этих условиях обычно не раскрываются или открываются в другое время [3, 4].

Основные факторы роста и развития растений – тепло, свет, воздух, вода, питание. Все эти факторы одинаково необходимы и выполняют определенные функции в жизни растений. Условия внешней среды сильно влияют на рост и развитие растений [5].

Учитывая факторы роста и развития растений, условия внешней среды, можно ускорить развитие растений и увеличить урожай. Искусственно изменяя сезонные и суточные циклы освещения, можно добиться массового цветения и плодоношения растений, как в теплицах, так и в условиях открытого грунта.

Изучение биологических ритмов имеет большое теоретическое и практическое значение. Зная биологические ритмы жизни растений, можно адаптировать в районах Крайнего Севера, арктической зоны многие виды красивоцветущих однолетних и многолетних растений, произрастающих в районах с тёплым климатом. Можно заставить южные растения цвести на Крайнем Севере, давая им укороченный день и удлиненную ночь, то есть условия, к которым они приспособились у себя на родине. Напротив, растения севера можно заставить цвести на юге, давая им дополнительное освещение и укорачивая период темноты [6, 7].

Проблема озеленения городов  и поселений ЯНАО стоит остро. От растений зависит влажность почв и воздуха. Высадка деревьев может очень сильно влиять на климат. Зимой деревья предохраняют почву от промерзания, защищают от ветра. Эта задача не на одно десятилетие, но если получится хорошо озеленить регион и высадить большое количество видов новых растений, то климат станет более тёплым и комфортным.

Материалы и методы. Методы исследования: анализ Интернет-ресурсов, эксперимент, наблюдение, фотографирование, сбор, вербальный, графический анализ и обобщение полученных данных в результате эксперимента.

Материалы и оборудование: три образца комнатного растения кислицы – двух подвидов: два образца (№ 1, 3) с бордовыми листьями, один образец (№2) – с зелёными листьями. Кислица или oxalis triangularis (оксалис) – невысокое (15-25 см) комнатное растение с ползучим корневищем, расположение листьев очередное лапчатое, а иногда и перистое, в зависимости от подвида. Цвет листьев также зависит от подвида и может быть как зелёным, так и фиолетовым или даже бордовым. Листья кислицы реагируют на механические раздражители, смену дня и ночи, а также на очень яркий свет – в таких ситуациях листья сворачиваются и опускаются. Растение сворачивает свои листья при наступлении ночи, а зимой впадает в спячку и может полностью сбросить лиственный покров [8].

На I этапе с 20 по 29 октября 2016 года в домашних условиях нами проведено наблюдение за ростом и развитием образцов, чтобы доказать экспериментальным путём, что у растений существуют биологические часы. Образцы №1 (кислица с бордовыми листьями) и № 2 (кислица с зелёными листьями) поместили в комнату, куда проникало солнечное освещение, по мере наступления темноты – растения находились под искусственным освещением. Образец № 3 (кислица с бордовыми листьями) был помещён в тёмное помещение, где нет освещения. Полив растений проводился умеренный.

G:\Исслед.работа Биоритмы у растений Мачнев Артём\Фото рабочие\IMG_5662.JPG   IMG_5930    G:\Исслед.работа Биоритмы у растений Мачнев Артём\Фото рабочие\IMG_5675.JPG

      Рис.1. Образец №1                     Рис.2. Образец №2                   Рис.3. Образец №3

С 21 по 26 ноября 2016 года провели II этап эксперимента. Образцы № 1, 2 оставили в комнате, куда проникал солнечный свет, есть искусственное освещение. Образец № 3 поместили в тёмное помещение. Наблюдали за поведением растений на предмет зависимости от продолжительности светового дня.

Результаты и обсуждение. I этап. Как указывают данные, взятые из Интернет-сайтов о биологических часах, некоторые растения раскрываются и закрываются в определённые часы. Кислица сворачивает свои листья при наступлении темноты.

По данным наших наблюдений, анализа таблицы 1 наблюдаем, что образцы № 1, № 2 в утренние часы раскрывают листья в пределах с 8.50 до 9.30 часов.

Образец № 3 раскрывает свои листья в утренние часы неодновременно. С 9.05 раскрываются 1-2 листа, остальные листья раскрываются в пределах с 9.20 до 10.25 часов, так как образец помещён в тёмное помещение.

Время закрытия листьев у образцов №1, №2 колеблется в пределах от 16.10 до 19.50 часов. У образца № 3 – время закрытия листьев: с 14.55 до 16.50 часов.

С 24 по 29 октября у образца № 3 начали увядать старые ростки, появились новые. На начало эксперимента 20 октября образцы № 1, № 3 имели стебли ярко-бордовой окраски, №2 – светло-зеленоватой окраски. К концу эксперимента 29 октября образец № 3 вытянулся в росте, стебли приобрели светло-розовый цвет, листья сохранили ярко-бордовую окраску. На 5-й день эксперимента у образца №3 начали появляться новые ростки. Длина ростков образца №3 до начала эксперимента составляла 18 см, к 29 октября – 49см. Данные I этапа занесли в таблицу 1.

Таблица 1

Наблюдение за суточными биоритмами кислицы на I этапе исследования

Число, месяц

Образец №1

Образец №2

Образец №3

Время

раскрытия кислицы,

ч.

Время

закрытия кислицы,

ч.

Время раскрытия кислицы,

ч.

Время

закрытия кислицы,

ч.

Время раскрытия кислицы,

ч.

Время

закрытия кислицы,

ч.

20.10

9.00

18.50

9.05

16.54

9.05

16.45

21.10

9.10

17.40

9.05

17.50

9.20

16.50

22.10

9.10

18.30

9.05

17.50

9.35

15.00

23.10

9.20

17.50

9.30

17.00

9.50

15.10

24.10

9.05

19.05

9.15

18.35

9.50

14.55

25.10

8.50

19.20

9.00

18.40

9.50

15.40

26.10

9.15

19.50

9.10

19.45

9.40

15.40

27.10

9.05

16.10

9.10

16.10

9.40

16.20

28.10

9.10

18.05

9.10

17.50

10.15

16.00

29.10

9.05

18.10

9.10

17.45

10.25

15.40

 

По данным анализа таблицы 1 составлена гистограмма динамики суточных биоритмов кислицы.

Рис. 4. Динамика суточных биоритмов кислицы

II этап. На данном этапе наблюдали, зависит ли рост и развитие растений от продолжительности светового дня. Провели сравнительный анализ данных продолжительности светового дня на двух этапах исследования [9]. Данные занесли в таблицу 2.

Таблица 2

Продолжительность светового дня в городе Надыме в период проведения исследования

Этапы исследования

Число, месяц

Продолжительность светового дня

I этап исследования

20.10

09.06

21.10

08.58

22.10

08.51

23.10

08.44

24.10

08.37

25.10

08.30

26.10

08.23

27.10

08.16

28.10

08.09

29.10

08.02

II этап исследования

21.11

05.23

22.11

05.15

23.11

05.08

24.11

05.03

25.11

04.56

26.11

04.50

27.11

04.43

28.11

04.37

29.11

04.31

Из таблицы следует, что продолжительность светового дня с 20 октября по 29 ноября 2016 года сократилась с 09.06 до 04.31 час.

На II этапе образец № 1 вытянулся в росте, стебли приобрели светло-розовую окраску, несмотря на то, что растение находилось в светлой комнате, куда проникал солнечный свет. Образец № 2 сохранил прямостоячие стебли, которые имеют светло-зеленоватую окраску. У образца № 3 наблюдали появление новых ростков, их резкий рост, стебли имеют светло-розовую окраску.

IMG_6055   IMG_6024   IMG_6062

Рис. 5. Образец №1                   Рис. 6. Образец №2                Рис. 7. Образец №3

Выводы:

  1. На примере кислицы доказали, что биологические часы существуют, но индивидуальны для каждого подвида растения и для определённой местности.
  2. У кислицы, помещённой в постоянную темноту, в течение 9-10 суток листья сохраняют периодичность движений. Но через несколько дней она утрачивается, так как без света нарушается питание клеток, тканей и органов растения.
  3. При недостатке света у кислицы произошло удлинение и обесцвечивание стеблей.
  4. При недостатке света с ноября по февраль у кислицы наступает фаза покоя: растение сбрасывает часть листьев, прекращается цветение.
  5. В итоге мы доказали, что на биологические ритмы растений влияют различные факторы: смена дня и ночи, свет, его продолжительность.

 

Литература:

 

  1. KM.RU РЕФЕРАТЫ. Бугрова Анастасия. Биологические ритмы и их влияние на все живое [Электронный ресурс] – 2012. // URL: http://www.km.ru/referats/335051-biologicheskie-ritmy-i-ikh-vliyanie-na-vse-zhivoe, свободный. – (Дата обращения: 11.10.2016).
  2. Биология. Зависимость роста и развития растений от условий окружающей среды. [Электронный ресурс] // URL: http://blgy.ru/biology6/environment2, свободный. – (Дата обращения: 11.10.2016).
  3. Удивительный мир растений. Цветочные часы. [Электронный ресурс] // URL: http://www.valleyflora.ru/15.html, свободный. – (Дата обращения: 14.10.2016).
  4. СОНМИР. Биоритмы растений. Цветочные часы. [Электронный ресурс] // URL: http://sonmir.ru/bioritmy-rastenij-cvetochnye-chasy.html, свободный. – (Дата обращения: 14.10.2016).
  5. Good-Tips.PRO – Полезный интернет-журнал. Равилов Владимир. Факторы роста и развития растений. [Электронный ресурс] – 2014. // URL: http://good-tips.pro/index.php/house-and-garden/orchard-and-garden/vegetables/growth-factors-of-plants, свободный. – (Дата обращения: 10.10.2016).

6.                  Восход и заход солнца и луны - продолжительность светового дня [Электронный ресурс] // URL: http://travel.org.ua/sunrise.php, свободный. – (Дата обращения: 18.10.2016).

  1. Zoodrug. Биологические часы. [Электронный ресурс] // URL: http://www.zoodrug.ru/topic1804.html, свободный. – (Дата обращения: 16.10.2016).
  2. Экология растений: 6 класс – учебное пособие для учащихся общеобразовательных учреждений (А.М. Былова, Н. И. Шорина) под редакцией Н. М. Черновой. М.: «Вентана – Граф», 2013.
  3. Кислица комнатная – цветок кислица треугольная. [Электронный ресурс] // URL: http://www.woman56.ru/komnatnie-rasteniya/kislitsa-komnatnaya-tsvetok-kislitsa-treugolnaya, свободный. – (Дата обращения: 10.10.2016).

yun.moluch.ru

Биологические ритмы

Презентация на тему: Биологические ритмы

Скачать эту презентацию

Скачать эту презентацию

№ слайда 1 Биологические ритмы Описание слайда:

Биологические ритмы

№ слайда 2 Содержание Биологические ритмы – что это такое?Эндогенные ритмыЭкологические рит Описание слайда:

Содержание Биологические ритмы – что это такое?Эндогенные ритмыЭкологические ритмыФизиологические ритмыЦиркадианные ритмыПриливные ритмы Лунные ритмыНизкочастотные ритмы Значение биологических часовПрактическое применение биологических ритмов Список литературы

№ слайда 3 Биологические ритмы — периодически повторяющиеся изменения в ходе биологических Описание слайда:

Биологические ритмы — периодически повторяющиеся изменения в ходе биологических процессов в организме или явлений природы. Является фундаментальным процессом в живой природе. Наукой, изучающей биоритмы, является хронобиология. По связи с естественными ритмами окружающей среды биоритмы подразделяются на физиологические и экологические.

№ слайда 4 Эндогенные ритмы Биологические ритмы интересны тем, что во многих случаях сохран Описание слайда:

Эндогенные ритмы Биологические ритмы интересны тем, что во многих случаях сохраняются даже при постоянстве условий среды. Такие ритмы называют эндогенными, т.е. «идущими изнутри»: хотя обычно они и коррелируют с ритмичными изменениями внешних условий, например чередованием дня и ночи, их нельзя считать прямой реакцией на эти изменения. Эндогенные биологические ритмы обнаружены у всех организмов, кроме бактерий. Внутренний механизм, поддерживающий эндогенный ритм, т.е. позволяющий организму не только чувствовать течение времени, но и измерять его промежутки, называется биологическими часами.

№ слайда 5 Работа биологических часов сейчас хорошо изучена, однако внутренние процессы, ле Описание слайда:

Работа биологических часов сейчас хорошо изучена, однако внутренние процессы, лежащие в ее основе, остаются загадкой. В 1950-х годах советский химик Б.Белоусов доказал, что даже в однородной смеси некоторые химические реакции могут периодически ускоряться и замедляться. Аналогичным образом, спиртовое брожение в дрожжевых клетках то активируется, то подавляется с периодичностью ок. 30 секунд. Каким-то образом эти клетки взаимодействуют друг с другом, так что их ритмы синхронизируются и вся дрожжевая суспензия дважды в минуту «пульсирует».

№ слайда 6 Борис Павлович Белоусов Описание слайда:

Борис Павлович Белоусов

№ слайда 7 Считается, что такова природа всех биологических часов: химические реакции в каж Описание слайда:

Считается, что такова природа всех биологических часов: химические реакции в каждой клетке организма протекают ритмично, клетки «подстраиваются» друг под друга, т.е. синхронизируют свою работу, и в результате пульсируют одновременно. Эти синхронизированные действия можно сравнить с периодическими колебаниями часового маятника.

№ слайда 8 Экологические ритмы Экологические ритмы по длительности совпадают с каким-либо е Описание слайда:

Экологические ритмы Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. (суточные, сезонные, приливные и лунные ритмы). Благодаря экологическим ритмам, организм ориентируется во времени и заранее готовится к ожидаемым условиям существования. Экологические ритмы служат организму как биологические часы.

№ слайда 9 Физиологические ритмы Физиологические ритмы не совпадают с каким-либо естественн Описание слайда:

Физиологические ритмы Физиологические ритмы не совпадают с каким-либо естественным ритмом (ритмы давления, биения сердца и артериального давления). Имеются данные о влиянии, например, магнитного поля Земли на период и амплитуду энцефалограммы человека. По причине возникновения биоритмы делятся на эндогенные (внутренние причины) и экзогенные (внешние). По длительности биоритмы делятся на циркадианные (около суток), инфрадианные (более суток) и ультрадианные (менее суток).

№ слайда 10 Циркадианные ритмы. Большой интерес представляют биологические ритмы с периодом Описание слайда:

Циркадианные ритмы. Большой интерес представляют биологические ритмы с периодом около суток. Они так и называются – околосуточными, циркадианными или циркадными – от лат. circa – около и dies – день. График циркадных ритмов организма

№ слайда 11 Биологические процессы с циркадианной периодичностью весьма разнообразны. Наприм Описание слайда:

Биологические процессы с циркадианной периодичностью весьма разнообразны. Например, три вида светящихся грибов усиливают и ослабляют свое свечение каждые 24 часа, даже если искусственно держать их при постоянном свете или в полной темноте. Ежесуточно изменяется свечение одноклеточной морской водоросли Gonyaulax. У высших растений в циркадианном ритме протекают различные метаболические процессы, в частности фотосинтез и дыхание. У черенков лимона с 24-часовой периодичностью колеблется интенсивность транспирации. Особенно наглядные примеры – ежесуточные движения листьев и раскрывания-закрывания цветков. ИПОЛЕЯ ПУРПУРНАЯ из семейства вьюнковых демонстрирует суточные ритмы раскрывания и закрывания цветков

№ слайда 12 Разнообразные циркадианные ритмы известны и у животных. Примером может служить б Описание слайда:

Разнообразные циркадианные ритмы известны и у животных. Примером может служить близкое к актиниям кишечнополостное – морское перо (Cavernularia obesa), представляющее собой колонию из множества крошечных полипов. Морское перо живет на песчаном мелководье, втягиваясь в песок днем и разворачиваясь по ночам, чтобы питаться фитопланктоном. Этот ритм сохраняется в лаборатории при неизменных условиях освещенияМорское перо

№ слайда 13 Грибы, производящие свет в течение всего дня, относятся к роду Mycena. Вдохновле Описание слайда:

Грибы, производящие свет в течение всего дня, относятся к роду Mycena. Вдохновленные произведениями Моцарта, ученые дали двум новым видам названия Mycena luxaeterna и Mycena luxperpetua, что в переводе с латыни означает неизменный свет.Биолюминесценция – способность биологических систем испускать свет – достаточно редкое явление в животном мире. Как полагают ученые, возможность распространять свечение позволяет организмам общаться, освещать местность вокруг себя, привлекать партнеров или иных живых существ, которые помогают им размножаться.

№ слайда 14 Четко работают биологические часы у насекомых. Например, пчелы знают, когда раск Описание слайда:

Четко работают биологические часы у насекомых. Например, пчелы знают, когда раскрываются определенные цветки, и навещают их ежедневно в одно и то же время. Пчелы также быстро усваивают, в какое время им выставляют на пасеке сахарный сироп.

№ слайда 15 У человека не только сон, но и многие другие функции подчинены суточному ритму. Описание слайда:

У человека не только сон, но и многие другие функции подчинены суточному ритму. Примеры тому – повышение и понижение кровяного давления и выделения калия и натрия почками, колебания времени рефлекса, потливости ладоней и т.д. Особенно заметны изменения температуры тела: ночью она примерно на 1° С ниже, чем днем. Биологические ритмы у человека формируются постепенно в ходе индивидуального развития. У новорожденного они довольно неустойчивы – периоды сна, питания и т.д. чередуются бессистемно. Регулярная смена периодов сна и бодрствования на основе 24–25 часового цикла начинает происходить только с 15-недельного возраста.

№ слайда 16 Приливные ритмы У прибрежных морских животных часто наблюдаются приливные ритмы, Описание слайда:

Приливные ритмы У прибрежных морских животных часто наблюдаются приливные ритмы, т.е. периодические изменения активности, синхронизированные с подъемом и спадом воды. Приливы обусловлены лунным притяжением, и в большинстве регионов планеты происходит два прилива и два отлива в течение лунных суток (периода времени между двумя последовательными восходами Луны.)Приливы и отливы

№ слайда 17 Поскольку Луна движется вокруг Земли в том же направлении, что и наша планета во Описание слайда:

Поскольку Луна движется вокруг Земли в том же направлении, что и наша планета вокруг собственной оси, лунные сутки примерно на 50 минут длиннее солнечных, т.е. приливы наступают каждые 12,4 часа. Такой же период у приливных ритмов. Например, рак-отшельник прячется от света в отлив и выходит из тени в прилив; с наступлением прилива устрицы приоткрывают свои раковины, разворачивают щупальцы актинии и т.п. Многие животные, в том числе некоторые рыбы, в прилив потребляют больше кислорода. С подъемом и спадом воды синхронизированы изменения окраски манящих крабов.

№ слайда 18 Рак-отшельник Описание слайда:

Рак-отшельник

№ слайда 19 Манящий краб Описание слайда:

Манящий краб

№ слайда 20 Лунные ритмы У некоторых морских животных размножение коррелирует с фазами Луны Описание слайда:

Лунные ритмы У некоторых морских животных размножение коррелирует с фазами Луны и происходит обычно один раз (реже – дважды) на протяжении лунного месяца. Польза такой периодичности для вида очевидна: если яйца и сперма выбрасываются в воду всеми особями одновременно, шансы на оплодотворение достаточно высоки. Этот ритм эндогенный и, как считается, задается «пересечением» 24-часового циркадианного ритма с приливным, период которого 12,4 или 24,8 часа. Такое «пересечение» (совпадение) происходят с интервалами 14–15 и 29–30 суток, что соответствует лунному циклу.

№ слайда 21 Лучше всего известен и, вероятно, наиболее заметен среди приливных и лунных ритм Описание слайда:

Лучше всего известен и, вероятно, наиболее заметен среди приливных и лунных ритмов тот, что связан с размножением груниона – морской рыбы, мечущей икру на пляжах Калифорнии. В течение каждого лунного месяца наблюдаются два особенно высоких – сизигийных – прилива, когда Луна находится на одной оси с Землей и Солнцем (между ними или с противоположной от светила стороны). Во время такого прилива грунион нерестится, закапывая икринки в песок у самого края воды. В течение двух недель они развиваются практически на суше, куда не могут добраться морские хищники. В следующий сизигийный прилив, когда вода покрывает буквально нашпигованный ими песок, из всех икринок за несколько секунд вылупляются мальки, тут же уплывающие в море. Очевидно, что такая стратегия размножения возможна, только если взрослые грунионы чувствуют время наступления сизигийных приливов.

№ слайда 22 Низкочастотные ритмы Биологические ритмы с периодами, намного превышающими один Описание слайда:

Низкочастотные ритмы Биологические ритмы с периодами, намного превышающими один месяц, трудно объяснить на основе биохимических флуктуаций, которыми, вероятно, обусловлены ритмы циркадианные, и механизм их пока неизвестен. Среди таких ритмов наиболее очевидны годичные. Если деревья умеренного пояса пересадить в тропики, они некоторое время будут сохранять цикличность цветения, сбрасывания листьев и периода покоя. Рано или поздно эта ритмичность нарушится, продолжительность фаз цикла будет все более неопределенной и в конечном итоге исчезнет синхронизация биологических циклов не только разных экземпляров одного и того же вида, но даже разных ветвей одного дерева.

№ слайда 23 В тропических областях, где условия среды практически постоянны в течение всего Описание слайда:

В тропических областях, где условия среды практически постоянны в течение всего года, местным растениям и животным часто свойственны долговременные биологические ритмы с периодом, отличным от 12 месяцев. Например, цветение может наступать каждые 8 или 18 месяцев. По-видимому, годичный ритм – это адаптация к условиям умеренной зоны.

№ слайда 24 Значение биологических часов Биологические часы полезны организму прежде всего п Описание слайда:

Значение биологических часов Биологические часы полезны организму прежде всего потому, что позволяют ему приспосабливать свою активность к периодическим изменениям в окружающей среде. Например, краб, избегающий света во время отлива, автоматически будет искать убежище, которое защитит его от чаек и других хищников, добывающих пищу на обнажившемся из-под воды субстрате. Чувство времени, присущее пчелам, координирует их вылет за пыльцой и нектаром с периодом раскрывания цветков. Аналогичным образом, циркадианный ритм подсказывает глубоководным морским животным, когда наступает ночь и можно подняться ближе к поверхности, где больше пищи.

№ слайда 25 Кроме того, биологические часы позволяют многим животным находить направление, п Описание слайда:

Кроме того, биологические часы позволяют многим животным находить направление, пользуясь астрономическими ориентирами. Это возможно, только если известно одновременно положение небесного тела и время суток. Например, в Северном полушарии солнце в полдень находится точно на юге. В другие часы, чтобы определить южное направление, надо, зная положение солнца, сделать угловую поправку, зависящую от местного времени. Используя свои биологические часы, некоторые птицы, рыбы и многие насекомые регулярно выполняют такие «расчеты».

№ слайда 26 Не приходится сомневаться, что перелетным птицам, чтобы находить дорогу к мелким Описание слайда:

Не приходится сомневаться, что перелетным птицам, чтобы находить дорогу к мелким островам в океане, требуются навигационные способности. Вероятно, они используют свои биологические часы для определения не только направления, но и географических координат.

№ слайда 27 Проблемы, связанные с навигацией, встают не только перед птицами. Регулярные дли Описание слайда:

Проблемы, связанные с навигацией, встают не только перед птицами. Регулярные длительные миграции совершают тюлени, киты, рыбы и даже бабочки

№ слайда 28 Описание слайда: № слайда 29 Описание слайда: № слайда 30 Практическое применение биологических ритмов Рост и цветение растений зависят от Описание слайда:

Практическое применение биологических ритмов Рост и цветение растений зависят от взаимодействия между их биологическими ритмами и изменениями средовых факторов. Например, цветение стимулируется главным образом продолжительностью светлого и темного периодов суток на определенных стадиях развития растения. Это позволяет отбирать культуры, пригодные для тех или иных широт и климатических условий, а также выводить новые сорта. В то же время известны успешные попытки изменения биологических ритмов растений в нужном направлении. Например, птицемлечник аравийский (Ornithogallum arabicum), цветущий обычно в марте, можно заставить распускаться под Рождество – в декабре.

№ слайда 31 С распространением дальних воздушных путешествий многие столкнулись с феноменом Описание слайда:

С распространением дальних воздушных путешествий многие столкнулись с феноменом десинхронизации. Пассажир реактивного самолета, быстро пересекающий несколько часовых поясов, обычно испытывает чувство усталости и дискомфорта, связанное с «переводом» своих биологических часов на местное время. Сходная десинхронизация наблюдается у людей, переходящих из одной рабочей смены в другую.

№ слайда 32 Большинство отрицательных эффектов обусловлено при этом присутствием в организме Описание слайда:

Большинство отрицательных эффектов обусловлено при этом присутствием в организме человека не одних, а многих биологических часов. Обычно это незаметно, поскольку все они «захватываются» одним и тем же суточным ритмом смены дня и ночи. Однако при сдвиге его по фазе скорость перенастройки различных эндогенных часов неодинакова. В результате сон наступает, когда температура тела, скорость выделения почками калия и другие процессы в организме еще соответствуют уровню бодрствования. Такое рассогласование функций в период адаптации к новому режиму ведет к повышенной утомляемости.почка человека

№ слайда 33 Накапливается все больше данных, свидетельствующих о том, что длительные периоды Описание слайда:

Накапливается все больше данных, свидетельствующих о том, что длительные периоды десинхронизации, например при частых перелетах из одного часового пояса в другой, вредны для здоровья, однако насколько велик этот вред, пока не ясно. Когда сдвига по фазе избежать нельзя, десинхронизацию можно свести к минимуму, правильно подобрав скорость наступления сдвига.

№ слайда 34 Биологические ритмы имеют очевидное значение для медицины. Хорошо известно, напр Описание слайда:

Биологические ритмы имеют очевидное значение для медицины. Хорошо известно, например, что восприимчивость организма к различным вредным воздействиям колеблется в зависимости от времени суток. В опытах по введению мышам бактериального токсина показано, что в полночь его смертельная доза выше, чем в полдень.

№ слайда 35 Аналогичным образом изменяется чувствительность этих животных к алкоголю и рентг Описание слайда:

Аналогичным образом изменяется чувствительность этих животных к алкоголю и рентгеновскому облучению. Восприимчивость человека тоже колеблется, однако в противофазе: его организм беззащитнее всего в полночь. Ночью смертность прооперированных больных втрое выше, чем днем. Это коррелирует с колебаниями температуры тела, которая у человека максимальна днем, а у мышей – ночью.

№ слайда 36 Такие наблюдения наводят на мысль, что лечебные процедуры следует согласовывать Описание слайда:

Такие наблюдения наводят на мысль, что лечебные процедуры следует согласовывать с ходом биологических часов, и определенные успехи здесь уже достигнуты. Трудность в том, что биологические ритмы человека, особенно больного, пока недостаточно исследованы. Известно, что при многих заболеваниях – от рака до эпилепсии – они нарушаются; яркий тому пример – непредсказуемые колебания температуры тела у больных. Пока биологические ритмы и их изменения как следует не изучены, использовать их на практике, очевидно, нельзя. К этому стоит добавить, что в некоторых случаях десинхронизация биологических ритмов может быть не только симптомом болезни, но и одной из ее причин.Колебания температуры у недоношенного ребенка

№ слайда 37 Список литературы . Малая медицинская энциклопедия. — М.: Медицинская энциклопед Описание слайда:

Список литературы . Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.Большая Советская Энциклопедия Биологические ритмы /Под ред. Ю. Ашоффа: В 2 т.- М.: Мир, 1984.Малахов Г. П. Биоритмология и уринотерапия.- СПб.: АО «Комплект», 1994. Биологические ритмы здоровья /Гриневич В.//Наука и жизнь, 2005, № 1.

№ слайда 38 СПАСИБО ЗА ВНИМАНИЕ Презентацию сделала ученица 11 класса «А» школы №141 Углова Описание слайда:

СПАСИБО ЗА ВНИМАНИЕ Презентацию сделала ученица 11 класса «А» школы №141 Углова Марина

ppt4web.ru

Биологические ритмы

Биологические ритмы - периодически повто­ряющиеся изменения интенсивности биологических про­цессов и явлений. Они присущи всем живым организмам и отмечаются на всех уровнях организации жизни. Ритмы у растений могут быть суточные (движения листьев) и сезонные (опадение и распускание листвы и т.д.). Ритмы животного — суточные (бодрствование, сон), сезонные (линька, миграции, брачный период и т.д.). Ритмический характер могут носить колебания численности популяций.

Биологические ритмы наследственно закреплены и являются важнейшими факторами естественного отбора и адаптации организмов.

Ритмы, задаваемые внутренними «часами», называют­ся эндогенными — в отличие от экзогенных, которые регулируются внешними факторами. Но большинство био­логических ритмов смешанные. Главным внешним факто­ром, регулирующим ритмическую активность, является длина светового дня. Конкретная природа «часов» неиз­вестна, но нет сомнений, что здесь действует какой-то физиологический механизм, который может включать как нервные, так и эндокринные компоненты.

Влияние фотопериода широко исследовалось в связи с поведением млекопитающих, птиц и насекомых. Хотя он, несомненно, играет важную роль в контроле таких видов активности, как подготовка к зимней спячке у млекопита­ющих, перелеты у птиц и диапауза у насекомых.

У некоторых животных существуют лунные и прилив­ные ритмы.

Поведение многих насекомых, ведущих полностью наземный образ жизни контролируется, по-видимому, эн­догенными ритмами, связанными с чередованием света и темноты.

Биологические ритмы с периодом около 24 часов на­зывают циркадианными или околосуточными ритмами. Суточные ритмы контролируются каким-то эндогенным механизмом — «биологическими часами», ход которых настраивается внешними факторами.

Суточные ритмы имеют разнообразное адаптивное значение, специфическое для каждого вида и, в частности, связанное с ориентацией. Такие существа, как рыбы, птицы, насекомые, мигрирующие на большие расстояния, используют в качестве компаса солнце и звезды Другие животные, пчелы, муравьи ориентируются по солнцу при поисках пищи и возвращении домой

Примером ситуации, когда присущий человеку физио­логический суточный ритм отклоняется от естественного чередования дня и ночи, может служить «сдвиг фаз», с которым все чаще приходится сталкиваться пассажирам дальних авиалиний.

www.bioaa.info

Шпаргалка - Виды биологических ритмов

ПЛАН

Введение

Внешние ритмы

Внутренние, физиологические ритмы

Суточные ритмы

Лунные ритмы

Приливно-отливные ритмы

Биологические часы

Фотопериодизм

Вывод

Список литературы

Одно из фундаментальных свойств живой природы – это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь.

Живые организмы обладают различными механизмами, точно определяющими положение Солнце, реагирующими на ритм приливов, фазы Луны и движение нашей планеты. Они растут и размножаются в ритме. Которой приурочен к продолжительности дня и смены года, обусловленном в свою очередь движением Земли вокруг Солнце. Совпадение фаз жизненного цикла с временем года, к условиям которого они приспособлены, имеет решающее значение для существование вида. В процессе исторического развития циклические явления, происходящие в природе, были восприняты и усвоены живой материей, и у организмов выработалось свойство периодически изменять свое физическое состояние.

Равномерное чередование во времени каких-либо состояний организма называется биологическим ритмом.

Различают внешние (экзогенные), имеющие географическую природу и следующие за циклическими изменениями во внешней среде, и внутренние (эндогенные), или физиологические, ритмы организма.

Внешние ритмы

Внешние ритмы имеют географическую природу, связаны с вращением Земли относительно Солнца и Луны относительно Земли.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление влажность воздуха, атмосферное электромагнитное поле, морские приливы и отливы и др. под влиянием этого вращения закономерно изменяется. На живые организмы воздействуют и такие космические ритмы, как периодические изменения солнечной активности. Для Солнца характерен 11-летней и целый ряд других циклов. Существенное влияние оказывают на климат нашей планеты изменения солнечной радиации. Помимо циклического воздействия абиотических факторов внешними ритмами для любого организма является и закономерные изменения активности, а также поведение других живых существ.

Внутренние, физиологические ритмы

Внутренние, физиологические ритмы возникли исторически. Ни один физиологический процесс в организме не осуществляется непрерывно. Обнаружена ритмичность в процессах синтеза ДНК и РНК в клетках, в синтезе белков, в работе ферментов, деятельности митохондрий. Деление клеток, сокращение мышц, работа желез внутренней секреции, биение сердца, дыхание, возбудимость нервной системы, т. е. работа всех клеток, органов и тканей организма подчиняется определенному ритму. Каждая система имеет свой собственный период. Действиями факторов внешней среды изменить этот период можно лишь в узких пределах, а для некоторых процессов практически невозможно. Данную ритмику называют эндогенной.

Внутренние ритмы организма соподчинены, интегрированы в целостную систему и выступают в конечном итоге в виде общей периодичности поведения организма. Организм как бы отсчитывает время, ритмически осуществляя свои физиологические функции. Как для внешних, так и для внутренних ритмов наступление очередной фазы прежде всего зависит от времени. Отсюда время выступает как один из важнейших экологических факторов, на который должны реагировать живые организмы, приспосабливаясь к внешним циклическим изменениям природы.

Изменения в жизнедеятельности организмов нередко совпадают по периоду с внешними, географическими циклами. Среди них такие, как адаптивные биологические ритмы — суточные, приливно-отливные, равные лунному месяцу, годовые. Самые важные биологические функции организма (питание, рост, размножение и т. д.) благодаря им совпадают с наиболее благоприятным для этого временем суток и года.

Суточные ритмы, изменения интенсивности и характера биол. процессов и явлений, повторяющиеся с суточной периодичностью. Суточные ритмы свойственны большинству биохимия, и физиол. процессов (частота деления клеток, колебания температуры тела, интенсивность обмена веществ и т. д.). с ними связана суточная ритмичность активности животных, положение листьев и лепестков у растений и т. д. У человека отмечено около 100 физиологических функций, имеющих суточные ритмы. Они обнаружены и у отдельных клеток многоклеточных организмов. Ядро, по-видимому, играет доминирующую роль в ритмичной активности клетки. У животных обнаружены центры в мозге, синхронизирующие суточные ритмы органов и клеток друг с другом и с изменениями внешней среды.

Суточные ритмы в природе складываются из эндогенного ритма и реакции на суточные изменения среды. При нарушении естественного ритма среды суточные ритмы разных физиологических функций теряют синхронность. Такая десинхронизация может иметь место при разведении животных и растений в искусственных условиях, при перелёте из одного часового пояса в другой, а также при изоляции человека от естественно меняющейся среды (например, в космическом полёте) и может явиться причиной возникновения патологических изменений в организме.

Лунные ритмы, повторяющиеся изменения интенсивности и характера биол. процессов, соответствующие циклу фаз Луны (29,4 сут.) — лунно-месячный ритм. К лунным ритмам относят также лунно-суточные ритмы. Л Лунные ритмы проявляются, например, в ритмичности выхода из куколок насекомых, выплаживающихся в морской прибрежной зоне, в цикле размножения червя палоло, некоторых водорослей и мн. др. мор. животных и растений. Л. р. отражаются также на физиологии и поведении ряда наземных организмов. Чёткие лунно-суточные ритмы наблюдаются у тропических млекопитающих, например, у ночной обезьяныи у некоторых видов летучих мышей, и проявляются в определённой активности поведения. Модуляция активности лунным светом возможна и у др. ночных животных, например, у крысиного кенгуру, у сумеречных и ночных насекомых. Лунные ритмы сохраняются в постоянных лабораторных условиях, что говорит об их эндогенно природе.

Влияние Луны прежде всего I сказывается на жизни водных организмов морей и океанов на-1 шей планеты, связано с приливами, которые обязаны своим существованием совместному притяжению Луны и Солнца. Движение Луны вокруг Земли приводит к тому, что существует не только суточная ритмика приливов, но и месячная. Максимальной высоты приливы достигают примерно раз в 14 дней, когда Солнце и Луна находятся на одной прямой с Землей и оказывают максимальное воздействие на воды океанов. Сильнее всего ритмика приливов сказывается на организмах, обитающих в прибрежных водах. Чередование приливов и отливов для живых организмов здесь важнее, чем смена дня и ночи, обусловленная вращением Земли и наклонным положением земной оси. Этой сложной ритмике приливов и отливов подчинена жизнь организмов, обитающих в первую очередь в прибрежной зоне. Так, физиология рыбки-грунина, обитающей у побережья Калифорнии, такова, что в самые высокие ночные приливы они выбрасываются на берег. Самки, зарыв хвост в песок, откладывают икру, затем самцы оплодотворяют ее, после чего рыбы возвращаются в море. С отступлением воды оплодотворенная икра проходит все стадии развития. Выход мальков происходит через полмесяца и приурочен к следующему высокому приливу.

Сезонная периодичность относится к числу наиболее общих явлений в живой природе. Непрекращающаяся смена времени года, обусловленная вращением Земли вокруг Солнца, всегда восхищает и поражает человека. Весной все живое пробуждается от глубокого сна по мере того, как тают снега и ярче светит солнце. Лопаются почки, и распускается молодая листва, молодые, зверята выползают из нор, в воздухе снуют насекомые и вернувшиеся с юга птицы. Смена времен года наиболее заметно протекает в зонах умеренного климата и северных широтах, где контрастность метеорологических условий разных сезонов года весьма значительна. Периодичность в жизни животных и растений является результатом приспособления их к годичному изменению метеорологических условий. Она проявляется в выработке определенного ежегодного ритма в их жизнедеятельности, согласованного с метеорологическим ритмом. Потребность в пониженных температурах в осенний период и в тепле в период вегетации означает, что для растений умеренных широт имеет значение не только общий уровень тепла, но и определенное распределение его во времени. Так, если растениям дать одинаковое количество тепла, но по-разному распределенного: одному теплое лето и холодную зиму, а другому соответствующую постоянную среднюю температуру, то нормальное раз-питие будет только в первом случае, хотя общая сумма тепла в обоих вариантах одинакова. Потребность растений умеренных широт в чередовании в течение года холодных и теплых периодов получила название сеитного термопериодизма.

Нередко решающим фактором сезонной периодичности является увеличение продолжительности дня. Продолжительность дня меняется на протяжении всего года: дольше всего солнце светит в день летнего солнцестояния в июне, меньше всего в день зимнего солнцестояния в декабре.

У многих живых организмов имеются специальные физиологические механизмы, реагирующие на продолжительность дня и в соответствии с этим изменяющие их образ действий. Например, пока продолжительность дня составляет 8 часов, куколка бабочки-сатурний спокойно спит, так как на дворе еще зима, но как только день становится длиннее, особые нервные клетки в мозге куколки начинают выделять специальный гормон, вызывающий ее пробуждение.

Сезонные изменения мехового покрова некоторых млекопитающих также определяются относительной продолжительностью дня и ночи, мало или не зависят от температуры. Так, постепенно искусственно сокращая светлое время суток в вольере, ученые как бы имитировали осень и добивались того, что содержащиеся в неволе ласки и горностаи раньше времени меняли свой коричневый летний наряд на белый зимний.

Общепринято считать, что существует четыре времени года (весна, лето, осень, зима). Экологи же, изучающие сообщества умеренного пояса, обычно выделяют шесть времен года, различающиеся по набору видов в сообществах: зима, ранняя весна, поздняя весна, раннее лето, позднее лето и осень. Общепринятого деления года на четыре сезона не придерживаются птицы: состав сообщества птиц, куда входят как постоянные обитатели данной местности, так и птицы, проводящие здесь зиму или лето, все время меняется, при этом максимальной численности птицы достигают весной и осенью во время пролетов. В Арктике, по сути дела, существует два времени года: девятимесячная зима и три летних месяца, когда солнце не заходит за горизонт, почва оттаивает и в тундре просыпается жизнь. По мере продвижения от полюса к экватору смена времени года все меньше определяется температурой, а все больше и больше влажностью. В пустынях умеренного пояса лето — это период, когда жизнь замирает, и расцветает ранней весной и поздней осенью.

Смена времени года связана не только с периодами обилия или недостатка пищи, но и с ритмом размножения. У домашних животных (коров, лошадей, овец) и животных в естественной природной среде умеренного пояса потомство обычно появляется весной и подрастает в наиболее благоприятный период, когда больше всего растительной пищи. Поэтому может возникнуть мысль, что весной размножаются вообще все животные.

Однако размножение многих мелких млекопитающих (мышей, полевок, леммингов) часто не имеет строго сезонной приуроченности. В зависимости от количества и обилия кормов размножение может идти как весной, так и летом, и зимой.

В природе наблюдается кроме суточных и сезонных ритмов многолетняя периодичность биологических явлений. Она определяется изменениями погоды, закономерной ее сменой под влиянием солнечной активности и выражается чередованием урожайных и неурожайных лет, лет обилия или малочисленности популяций.

Д. И. Маликов за 50 лет наблюдений отметил 5 крупных волн изменений поголовья скота или столько было солнечных циклов.Такая же связь проявляется в цикличности изменений удоев молока, годовом приросте мяса, шерсти у овец, а также в других показателях сельскохозяйственного производства.

Согласно прогнозу, после относительно спокойного по гриппу периода начала 80-х годов XX столетия к 2000 году ожидается резкое усиление интенсивности его распространения.

Различают 5-6- и 11 -летние, а также 80-—90-летние, или вековые циклы солнечной активности. Это позволяет в какой-то мере объяснить совпадения периодов массового размножения животных и роста растений с периодами солнечной активности.

Биологические часы

Циркадные и суточные ритмы лежат в основе способности организма чувствовать время. Механизм, ответственный за такую периодическую активность — будь то питание или размножение, — получил название «биологических часов». Поразительная точность работы биологических часов, управляющих жизнедеятельностью многих растений и животных, является объектом исследований ученых разных стран мира .

Как видно из приведенных кривых, листья бобовых на ночь сникают, а днем снова расправляются. График активности крыс состоит из последовательно чередующихся прямоугольных ям (день — крыса спит) и плато (ночь — крыса бодрствует). Комнатные мухи большей частью вылупляются из куколок утром. Эта адаптация имеет столь глубокие корни, что даже в условиях постоянных освещенности, температуры и влажности мухи сохраняют свойственную им периодичность поведения.

Множество животных — различные виды птиц, черепах, пчел и другие — ориентируются в своих путешествиях по небесным светилам. Думается, что для этого нужно обладать не только хорошей памятью, позволяющей запоминать положение Солнца или других светил, но и чем-то вроде хронометра, показывающего, сколько времени потребовалось Солнцу и звездам, чтобы занять новое место на небосводе. Организмы, обладающие такими внутренними биологическими часами, получают еще одно преимущество — они способны «предвидеть» наступление регулярно повторяющихся событий и соответствующим образом подготовиться к предстоящим переменам. Так, пчелам их внутренние часы помогают прилететь на цветок, на котором побывали вчера, точно к тому времени, когда он распускается. Цветок, который посещает пчела, также обладает некими внутренними часами, сигнализирующими о времени распускания. О существовании собственных биологических часов известно каждому. Проснувшись несколько дней подряд от звонка будильника, быстро привыкаешь просыпаться прежде, чем он зазвонит. Сегодня имеются различные точки зрения на природу биологических часов, их принцип действия, но одно несомненно они реально существуют и широко распространены в живой природе. Определенные внутренние ритмы присущи и человеку. Химические реакции в его организме происходят, как это было показано выше, с определенной периодичностью. Даже во время сна электрическая активность мозга человека меняется каждые 90 минут.

Биологические часы, по мнению целого ряда ученых, представляют собой еще один экологический фактор, ограничивающий активность живых существ. Свободному расселению животных и растений препятствуют не только экологические барьеры, они привязаны к своему местообитанию не только конкуренцией и симбиотическими отношениями, границы их ареалов определяются не только адаптациями, но их поведение управляется еще и опосредованно, через внутренние биологические часы, движением далеких небесных тел.

Один из важных путей воздействия света на живые организмы связан с восприятием изменений длины светового дня, или фотопериода. Чем дальше от экватора, где длина светового дня всегда составляет примерно 12 ч, тем больше ее сезонные колебания. В умеренных широтах долгота дня в течение года варьирует от 9 до 15 ч, поэтому совершенно очевидно, что она служит одним из важных сигналов к сезонной перестройке жизнедеятельности. Хорошо известно, что у растений такие этапы их жизненного цикла (они называются еще фенологическими фазами или просто фенофазами), как цветение, плодоношение, прорастание, появление и опадение листьев и т. п. четко согласуются с закономерными изменениями на протяжении года долготы дня и температуры, причем нарушение по каким-либо причинам такой адаптивной корреляции приводит к гибели растений.

Наиболее глубокие изменения у растений происходят во время цветения, когда меристемы побега вместо листьев и боковых почек начинают формировать цветки. Значение фотопериода для зацветания растения было открыто еще в 1910 г., но впервые четко описано Гарнером и Аллардом в 1920 г. Эти исследователи показали, что растения табака зацветают только после выдерживания их в течение некоторого времени в условиях короткого светового дня. В природе такие условия возникают осенью, но их можно создать и летом в теплице, поддерживая там освещение в течение 7 ч в сутки. В соответствии с этим табак назвали короткодневным растением (КДР), или растением короткого дня. При изучении других видов было обнаружено, что некоторым для цветения требуется длинный день; это — длиннодневные растения (ДДР), или растения длинного дня. Существуют растения, которые цветут независимо от долготы дня; их называют нейтральными. Такая зависимость физиологического (фенологического) состояния от продолжительности светлого времени суток называется фотопериодизмом.

Последующие исследования усложнили картину. Например, некоторые растения при одной температуре ведут себя как нейтральные, а при другой — нет; есть такие, которым необходима смена одного фотопериода другим, иногда определенный фотопериод лишь ускоряет зацветание, не являясь обязательным его условием, и т. п.

Важный шаг вперед в понимании всего этого был сделан тогда, когда стало ясно, что важна длина не светлого, а темного периода суток. Таким образом, короткодневные растения на самом деле оказываются «длинноночными». Если выращивать эти растения в условиях короткого дня, прерывая длинную ночь небольшим светлым периодом, то цветения не дождаться. Напротив, длиннодневный вид в таких условиях зацветет. Вместе с тем эффект длинного дня не снимается прерыванием короткой ночной темноты.

Во многих случаях главным внешним фактором, регулирующим ритмичную активность, служит фотопериод, т. е. долгота дня (и ночи). Это единственный надежный показатель смены времен года, по которому можно «сверять» биологические часы. Точная природа часов неизвестна, хотя несомненно, что здесь действует какой-то физиологический механизм, который может включать как нервные, так и эндокринные компоненты. Влияние фотопериода широко изучалось на млекопитающих, птицах и насекомых. Хотя очевидно, что он играет важную роль в контроле таких видов активности, как подготовка к спячке у млекопитающих, миграции у птиц и диапауза у насекомых, это не единственный внешний фактор, регулирующий биологические ритмы.

Вывод

И так многие формы поведения проявляются с регулярной последовательностью и служат одним из проявлений биологических ритмов. Хорошо известны такие примеры, как периоды ухаживания и гнездования у птиц весной или перелеты определенных видов в теплые края осенью. Интервалы между периодами активности могут варьироваться в пределах от несколько минут до нескольких лет в зависимости от вида животного. Во многих случаях главным внешним фактором, регулирующим ритмичную активность, служит фотопериод. На активность рядов видов влияют и лунные ритмы. И многие другие биологические ритмы влияют на поведение организмов.

1. Биология: Энциклопедия/Под ред. М.С. Гилярова. – М.: Большая Российская энциклопедия, 2003. – 864 с.: ил., 30 л. цв. ил.

2. Общая экология: Учебник для вузов / Автор-составитель А.С. Степановских. – М.: ЮНИТИ-ДАНА, 2000. – 510 с.

3. Тейлор Д., Грин Н., Стаут У. Биология: В 3-х т. Т.2: Пер. с англ./Под ред. Р. Сопера – 3-е изд. – М.: Мир, 2002. – 436 с., ил.

www.ronl.ru

Биологические ритмы (биоритмы) | Биология

БИОЛОГИЧЕСКИЕ РИТМЫ (биоритмы), периодически повторяющиеся изменения характера и интенсивности биологических процессов, свойственных живым организмам. Иначе говоря, это «повторение подобного в подобных промежутках времени». Биологические ритмы свойственны растениям, животным, человеку. Проявляются на всех уровнях организации жизни: молекулярно-генетическом, клеточном, тканевом, организменном, популяционно-видовом, биоценотическом и биосферном. Подразделяются на экзогенные, возникающие в организмах в ответ на космические, геофизические и иные колебания, происходящие в окружающей среде (напр., колебания численности популяции, связанные с ритмами активности Солнца), и эндогенные, генерируемые самим организмом (сердечные, дыхательные и др.). Физиологические биоритмы меняют свои параметры (частоту, силу) в зависимости от состояния организма (возраста, болезней и пр.). Экологические биоритмы зависят от циклических изменений среды и относительно стабильны. Более того, они могут сохраняться, если животное оказывается в иных условиях, напр. беспозвоночные литорали сохраняют ритм прилива-отлива, находясь в аквариуме с постоянным уровнем воды и стабильными показателями её солёности и температуры. Среди экологических ритмов различают: годичные с периодом от 10 до 13 мес., лунные с периодами 29,53 сут и 24,8—12,4 ч (приливные), суточные солнечные (24 ч).

Биоритмы животных и человека генерируются группой особых клеток-пейсмекеров, или ритмоводителей (часто их называют  биологическими часами ). Располагаются они в различных органах, напр. у медуз – в ропалиях (органах чувств), у ракообразных – в основании стебельчатых глаз. У млекопитающих, в т. ч. человека, существуют несколько центров ритма, напр. в области сердца, промежуточного и продолговатого мозга.

У человека биоритмы в зависимости от периода колебаний подразделяются на высокочастотные (от секунды до получаса), средней частоты (от получаса до 28 ч), низкой частоты (недели, месяцы, годы). Примером биоритмических колебаний высокой частоты служат ритмы дыхания, сердечных сокращений и др. Биоритмы средней частоты (с интервалом от 1,5 ч до 3 ч) отмечаются как у новорождённых, у которых каждые 90 мин активность сменяется состоянием покоя, так и у взрослых – с такой периодичностью происходит чередование стадий сна, а во время бодрствования работоспособность сменяется расслаблением. Ритмам с периодом в 20–28 ч соответствуют колебания температуры, пульса, артериального давления, освобождения кишечника. В основе выделения биоритмов низкой частоты лежат чётко регистрируемые колебания к.-л. функционального показателя. Напр., недельному ритму соответствует уровень накопления в крови некоторых гормонов, месячному –  менструальный цикл у женщин, сезонному – продолжительность сна.

Изучение и поддержание установившихся ритмов жизнедеятельности человека важно для рациональной организации труда и отдыха, что особенно актуально для лиц, работающих в разные смены, проживающих в условиях Крайнего Севера, при перелёте нескольких часовых поясов. Большое внимание учёные уделяют т. н. расчётным низкочастотным ритмам – физическому с периодом в 23 дня, эмоциональному – в 28 дней и интеллектуальному – в 33 дня. Эти ритмы «запускаются» в момент рождения и сохраняются затем с удивительным постоянством в течение всей жизни. Первая половина периода каждого ритма характеризуется нарастанием, вторая – спадом физической, эмоциональной и интеллектуальной активности.

ebiology.ru

Биологические ритмы и их влияние на все живое

 

МБОУ Лицей №1 г. Чаплыгин, 10 класс

Бугрова Анастасия Александрова

Чаплыгин - 2012

Введение

Многие поколения ученых стремились понять и постичь человека. За годы изучения жизнедеятельности организмов простейших, растений и животных ими было выявлены множество циклически и периодически повторяемых процессов. В жизнедеятельности всех организмов помимо сна немало других проявлений суточного и годичного ритмов. Однако сон и бодрствование - один из наиболее изученных нам циклов. Еще, будучи ребенком человек, понимает, что ночь предназначена для отдыха, а день для работы. Но как мы понимаем, когда надо спать, а когда работать? Примерно в шестидесятых годах ученые сделали огромнейший рывок на пути к изучению природы биологических часов. Сейчас за годы изысканий нам стало очень многое известно. Так, например что биологические часы не поддаются влиянию температуры и давления. В многоклеточных организмах все часы всех клеток должны идти согласовано, образуя иерархическую систему: часы отдельных клеток управляются часами органа, часы всех органов настраиваются по часам центральной нервной системы (если она есть), а в ней - в мозге - есть главные часы организма. Знаем, что биологические часы активны, в отличие от солнечных часов, и эндогенны, т.е. внутри каждой клетки есть периодический процесс, отмеривающий единицы времени. При этом ход внутриклеточных часов можно подстраивать по фазе - «подводить стрелки» соответственно с периодическими процессами окружающей среды, прежде всего суточным вращением Земли. Следовательно, биологические часы зависят от положения Солнца и Луны. Множество опытов и экспериментов было проведено для доказательства существования биологических часов, однако эта тема все еще остается открытой.

Возможность проведения опытов по доказательству существования биоритмов привлекла меня, и я решила выбрать именно эту тему.

Цель работы: доказать в лабораторных условиях существование биологических часов.

Задачи:

1.Провести анализ литературных источников по проблеме исследования.

2.Выяснить, как проявляются биологические часы у бактерий, растений и животных.

.Доказать с помощью экспериментов над растениями существование биоритмов во всех живых организмах.

.Подвести итог опытам и сделать вывод о наличии механизма поддерживающего периодичность процессов.

Объект исследования: кислица и ветка сирени.

Предмет исследования: влияние биоритмов на процессы в организме и востребованность в одно и многоклеточных организмах.

Актуальность работы заключается в привлечении внимания населения к изучениям биоритмов, результатам исследований.

1.Литературный обзор

.1 Общая характеристика биологических ритмов

Сейчас дети и взрослые часто не успевают выспаться, поесть, отдохнуть, но ведь все это приводит к нарушению в организме, а как следствие болезням. При сбое режима в числе первых страдают биоритмы, заложенные природой. Поэтому еще с древних времен ученые приступили к изучению механизма поддержания периодически повторяющихся процессов в организме. Названный позднее биологическими часами. Актуальность исследований невозможно переоценить. Люди смогли бы правильно составлять расписание рабочего дня и выходного, дети изучали бы новое в самые плодотворные часы, а остальное время расходовалось для закрепления пройденного материала.

Для начала необходимо сказать пару слов о том, что такое биоритмы. Это периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Только при исправности этого механизма возможны полноценная жизнь, сохранение здоровья и продление жизни. Этими проблемами занимается наука хронобиология (от греческого chronos - время). Возникновение биоритмов теснейшим образом связано с ритмическими процессами в природе. Это - движение небесных тел, смена времен года, дня и ночи, морские приливы и отливы, солнечная активность, физиологические процессы и т.д. Основные ритмы в природе, наложившие свой отпечаток на все живое на Земле, возникли под влиянием вращения Земли по отношению к Солнцу, Луне и звездам. Солнечные сутки (свет - темнота) - 24 часа. Лунные сутки (приливы и отливы) - 24,8 часа. Звездные сутки - 29,5 суток (строго согласованы с фазами Луны). Классификация биоритмов весьма разнообразна. Во-первых, по времени зацикливания ритма. Бывают суточные, недельные, месячные, сезонные и годовые биологические часы. Во-вторых, по средней частоте. Такие как микроритмы (от долей секунд до 30 минут), среднечастотные (от 30 мин. до 28 ч.), мезоритмы (от 28 часов до 6-7 дней), макроритмы (от 20 дней до 1 года), мегаритмы (десятки и сотни лет). А также ритмы бывают экзогенные и эндогенные, то есть внешние и внутренние.

Также надо упоминать о своде правил действия биоритмов у всего живого.

.Биоритмика - это свойство присущее всем живым организмам от одноклеточных до всей биосферы.

2.Биоритмы - это важнейшие регуляторы функций организма, обеспечивающие гомеостаз, динамическое равновесие и процессы адаптации в биологических системах.

.Биоритмы закладываются при рождении, но с течением времени могут модифицироваться в зависимости от влияния внешней среды.

.Биоритмы чувствительны к химическим препаратам и физической природой. В соответствии с этим необходимо принимать препараты строго по инструкции в определенное время.

.2 Роль биоритмов в существовании растений

Началось изучение биологических часов с растений. Прародителями стали античные философы, в трудах которых можно найти множество упоминаний о цикличности тех или иных процессов. С приходом средних веков интерес к этой теме не исчез. Ф. Бэкон, Т. Браге, И. Кеплер и многие другие пытались найти ответы на все интересующие вопросы. Первым ученым, заметившим и описавшим движение листьев, стал секретарь Парижской королевской академии наук Жан-Жак де Мэран, астроном и математик. Он заметил, что ночью фасоль опускает листья, а перед рассветом поднимает. Эти движения были названы «никтинастическими». И де Мэран сделал важнейший опыт: поместил фасоль в темную комнату - в темноту и днем и ночью - и наблюдал, что движения листьев продолжаются и без изменения освещенности: поднимаются, когда наступает день, несмотря на то, что в комнате все равно темно, и опускаются ночью.

Немногим позднее него биологические часы у растений начал изучать К. Линней. Он создал известные «цветочные часы». Механизм их был прост. Цветы каждый солнечный день открывались каждый в свое время:

в 3-5 часов - Козлобородник луговой

в 4-5 часов - Цикорий дикий / Кульбаба Горчак

в 5 утра - Осот огородный / Осот луговой / Красноднев

в 5-6 часов - Одуванчик обыкновенный / Скерда кровельная

в 6 часов - Ястребинка зонтичная

в 6-7 часов - Бурачек / Осот полевой / Ясгребинка волосистая

в 7 часов - Кукушкины слезки / Венечник луговой / Латук огородный / Кувшинка белая

в 7-8 часов - Очный цвет полевой / Туника проросшая

в 9 - 10 часов - Ноготки полевые / Торичник

в 20 часов - Красноднев рыжий

И закрывались:

в 10 часов утра - Цикорий дикий / Латук огородный Осот полевой

в 10-11 часов утра - Очный цвет полевой

в 11 - 12 часов - Осот огородный

в 12 часов дня - Ноготки полевые / Осот луговой

в 13 часов - Туника проросшая / Ястребинка зонтичная

в 14 часов - Ястребинка степная

в 15 часов - Торичник

в 15-16 дня часов - Венечник разветвленный / Ястребинка волосистая

в 17 часов - Кувшинка белая / Ястребинка сизая

в 19-20 часов - Красноднев рыжий

в 21 час - Дрема луговая / Табак душистый

в 20-22 часов - Одуванчик обыкновенный.

Но его «часы» подходят лишь к г. Упсала в котором ученый их изобрел. Ведь в каждом районе «стрелки» ходят по-разному.

За открытием шведского учения за ним потянулись многие другие. Множество исследований проведено по теме биологических часов в растениях. Например, работа одного из первых современных ученых, который занялся ритмами у растений, Эрвина Бюннинга, профессора ботаники в университете в Тюбингене, Германия. Обобщая результаты проведенных исследований необходимо сказать, что у растений свет и темноту воспринимает каждая клетка. Особый пигмент - фитохром заряжается положительно под действием изменений спектрального состава света при восходе солнца и теряет положительный заряд под действием изменений светового спектра при закате солнца. Передача возбуждения от пигмента к плазме клеток происходит при участии того же вещества (ацетилхолина), которое служит переносчиком возбуждения в нервной системе животных. С помощью фитохрома клетки растений могут, как бы отсчитывать «светлое» и «темное» время.

Установлено, что у растений есть 13 физиолого-биохимических процессов, протекающих в их организме с определенным ритмом, т. е. с размеренным чередованием усиления и ослабления. Например, открывание и закрывание цветков, замыкание и размыкание устьиц, усиление и ослабление фотосинтеза, транспирации, дыхания и т. п. В Индии есть растение десмодиум, которое постоянно через каждые 1,5-2,5 мин то поднимает, то опускает свои прилистники. Эти движения - следствие постоянной пульсации плазмы в клетках растения.

.3 Влияние биоритмов на жизнь животных

Следующим этапом на пути к познанию стало изучение биоритмов на насекомых. Минис и Питтендрих заметили, что у бабочки Pectinophora вылупление яиц находиться под контролем циркадианного осциллятора. Описав явление, они провели ряд экспериментов, в ходе которых, используя импульсное и ступенчатое воздействие света и изменяя температуру, синхронизировали ритмы вылупления.

Наконец, после долгих исканий повторяющихся процессов у растений и насекомых, ученые перешли к исследованиям биоритмов у животных. У особей со слабо развитой психикой не способных контролировать процессы своей жизнедеятельности, эту функцию выполняют биоритмы. Удобным объектом для изучения механизмов циркадиальных ритмов оказался морской брюхоногий моллюск Aplysia; его впервые использовал с этой целью Ф. Струмвассер из Калифорнийского технологического института в 1965г. У аплизий, как и у большинства других животных, наблюдаются суточные изменения подвижности: эти малюски активны днем и неактивны ночью. Многие другие животные тоже активны днем, однако некоторые (например, теплокровные ночные хищники) активны в темное время суток. Вспомним экологию дикого кабана: в безопасных условиях он ведет дневной образ жизни, но при угрозе появления охотников изменяется время его активности. А у птиц важнейшим фактором интеграции ритмов поведения выступает свет. Светом изменяются такие суточные ритмы активности птиц, как интенсивность пения, гнездостроение, поиски пищи.

У птиц имеется два пика активности: утренний и вечерний. В середине дня взрослые птицы находятся у гнезда с выводком (отдыхают). В это же время наименее активны и хищники, поскольку гнезда охраняются. Здесь наблюдается синхронизация суточных ритмов во взаимоотношении хищник-жертва. Такая синхронизация играет значительную роль в природных условиях, способствуя поддержанию экологического равновесия, стабилизации численности популяции.

Говоря о птицах необходимо сказать, о том насколько точно они ориентируются по Солнцу. Если пингвина, обитающего на берегах Антарктиды, завезти в глубь материка и там выпустить, он всегда начинает двигаться на север. Правда, он редко берет курс на свою колонию, но непременно следует в сторону побережья: близость к воде имеет в жизни пингвинов первостепенное значение, так как питаются они только рыбой, которую ловят в море. Добравшись до берега, где ему обеспечен прожиточный минимум - ежедневная порция рыбы, пингвин уже с помощью другого механизма принимаются искать колонию, из которой был насильственно увезен. Направление на север пингвины определяют, ориентируясь по Солнцу, а поскольку оно перемещается по антарктическому небосклону, пингвины с помощью внутренних часов вносят поправку на видимое движение светила. Если небо полностью затянуто облаками, пингвин семенит то в одну, то в другую сторону, не в состоянии правильно выбрать направление. Густав Крамер своим классическим экспериментом развеял все сомнения. Он за некоторое время посадил кочующих птиц в клетку. Когда время подошло, они начали беспокойно двигаться по клетке, но не хаотично, а по движению Солнца и своих миграционных путей. Мелкие птицы обычно летят по ночам, а днем кормятся. Более крупные особи наоборот.

У птиц кроме суточных часов также ярко выражены сезонные ритмы. Большая часть птиц совершают перелеты с наступлением холодов. Сигналом для начала путешествия у них служит изменение продолжительности светового дня.

Интересно как птицы ориентируются и безошибочно находят путь. Самой интересной птицей в данном контексте является обученный почтовый голубь. Он может не только определить направление своего полета, а также определить местонахождение пункта прибытия и выбрать к нему наиболее краткий путь. Если почтового голубя увести за 1000 км и выпустить, он полетит к родной голубятне наиболее кратчайшим путем.

1.4 Биологические ритмы человека

И, конечно, заключительным шагом на пути к раскрытию тайны стало изучение человека, которое в настоящее время все еще ведется. Жизнь человека подчиняется биологическому механизму, который состоит из многих взаимосвязанных циклов, каждый из которых имеет свои законы и своё расписание. В изучение биологических ритмов значительный вклад внесли русские и советские учёные. Над проблемой восприятия времени животными и человеком работали И.М. Сеченов, И.П. Павлов, В.М. Бехтерев. Н.Е. Введенский и А.А. Ухтомский дали научное объяснение закономерностям ритмических воздействий на клетку и явлению «усвоения» клеткой внешнего ритма. Основатель гелиобиологии А.Л. Чижевский изучал влияние солнечных ритмов на биологические объекты. Роль биологических ритмов в регуляции функций организма и их изменениях в условиях космического полёта освещены в работах В.В. Ларина.

Все исследователи сошлись во мнении, что человек со временем почти перестал пользоваться своими суточными часами. В современной жизни они почти утратили свою надобность, поскольку мы постоянно при себе имеем наручные часы. Однако при необходимости мы можем встать вовремя, и даже не смотря на часы определить время, когда необходимо поесть. Не это ли доказательство существования механизма под названием «биологические часы»?!

Было проведено огромное множество экспериментов, которые можно считать классическими. Некоторые из них я опишу.

Мишель Сифр, отважный молодой французский исследователь пещер, перешедший от геологических к биологическим работам. Он со своими коллегами спустились в холодные серые пещеры и, устроившись там, стали изучать каково будет поведение организма. Безусловно, такие опыты нельзя назвать безопасными.

После этого в более безопасных условиях провели исследования физик Рютгер Вивер и Юрген Ашофф. Реконструированный пустой бункер под Мюнхеном, они превратили в экспериментальную исследовательскую лабораторию, где два испытуемых проводили в полной изоляции несколько недель. У каждого из них была жилая комната, кухня и ванная. Помещения были устроены так, что все внешние факторы были исключены. Естественно, участники не могли знать, сколько времени провели уже в бункере. Измерялся целый ряд параметров. Двигательная активность устанавливалась с помощью датчиков, установленных под полом, а температура - ректальным термометром. Во время эксперимента испытуемым предлагались различные психологические тесты, производился сбор и химический анализ мочи. Вивер обобщил результаты наблюдений более двухсот участников этих опытов в монографии "Циркадная система человека".

Возникает вопрос: «Что чувствует человек лишенный привычного способа измерения времени? Каково его моральное состояние? Чем отличается жизнь на поверхности от жизни вне времени?». Огромное количество людей проявило желание поучаствовать в эксперименте. При опросе желающих Вивер и Ашофф выяснили, что люди хотят пожить без обязанности. Большинство испытуемых проводили время за чтением, письмом и слушанием музыки; студенты иногда пользовались возможностью готовиться к экзаменам в мирной и спокойной обстановке. Каждый раз случалось так, что участники удивлялись, когда им сообщали, что обусловленное время истекло. Эксперимент в пещере, проводимый Сифром и его коллегами, также продемонстрировал типичную недооценку прошедшего времени: когда завершился пятимесячный экспериментальный период, испытуемый был убежден, что он провел в изоляции лишь три месяца. Изменения диаграмм сна - бодрствования, происходящие в изоляции, показывают, откуда возникает такая недооценка. Испытуемый, который в течение первых трех дней эксперимента имел информацию о реальном времени, спал с 11 часов вечера до 7 утра, как обычно. Начиная с четвертого дня, вся эта информация устранялась. В первый же вечер после этого испытуемый лег спать на сорок минут позже и проснулся на следующее утро уже в 8 часов. Однако он не заметил сдвига в режиме дня. Каждые последующие сутки он ложился и вставал на час позже, чем накануне. Таким образом, субъективные сутки участника исследования состояли не из 24, а из 25 часов. На 13-е сутки существования "вне времени" (или на 16-е сутки опыта) он лег спать в 10 ч. 40 мин. утра вместо 11 часов вечера, а проснулся в 8 вечера. Теперь фаза его цикла сон - бодрствование была сдвинута ровно на 12 часов. Если продолжить эксперимент, то можно обнаружить, что через 25 суток испытуемый заявит, что прошло только 24 субъективных дня и ночи. Живя в обстановке, не содержащей указателей реального времени, человек, руководствуясь только своим собственным отсчетом, обнаружит, что прошло всего 24 дня, а на самом деле 25. Если продлить опыт на несколько недель, то внезапно субъективный период бодрствования может подскочить от 17 часов до 34, а время сна от 8 часов до 18! Другими словами: испытуемый перейдет от 25-часовых субъективных суток на 50-часовые, но он вновь не ощутит даже этого столь резкого изменения. В конце опыта количество суток, проведенных им в одиночестве, по его субъективным подсчетам, будет много ниже реального значения.

Независимо от того, содержат ли субъективные сутки испытуемого 25 или 50 часов, соотношение сна и бодрствования мало меняется. В нашем случае испытуемый проводил около одной трети всего времени во сне в условиях временной изоляции, т. е. столько же, сколько и в нормальных условиях. У короткоспящего отношение времени сна ко времени бодрствования оставалось небольшим и в условиях изоляции от времени, хотя абсолютное время сна возрастало.

В этих условиях распределение стадий сна претерпевает некоторые типичные изменения: хотя в обычных условиях эпизоды парадоксального сна удлиняются от цикла к циклу, в бункере этого не происходит. Здесь первый эпизод парадоксального сна возникает вскоре после засыпания испытуемого, т. е. латентность парадоксального сна невелика, и длительность этого эпизода такая же, как и у всех последующих. Процент парадоксального сна остается неизменным. В отличие от парадоксального сна распределение глубокого медленного сна в условиях изоляции от времени мало изменяется.

-часовый ритм сна - бодрствования соответствует среднему периоду ритма температуры тела, который, как показал Вивер, близок к 25 часам. Он может варьировать между индивидуумами: у одного ритм может быть 24,7 часа, у другого - 25,2, но важно то, что у каждого человека точная длительность его собственного индивидуального ритма поддерживается с поразительной точностью на протяжении длительного времени. Биологические ритмы, которые наблюдаются в этой ситуации, столь явно отличаются от 24-часовой периодичности вращения Земли, что представляется маловероятным, что они вызваны некими скрытыми влияниями окружающей среды. Должно быть, они запускаются какими-то, некими "внутренними часами" в организме.

В конце 50-х годов английская ученая по имени Мери Лоббан и ее коллеги провели необычный эксперимент. Они вместе с несколькими испытуемыми провели лето на далеком Севере, на Шпицбергене, являющемся территорией Норвегии, где полярный день не дает указаний для отсчета реального времени суток. 12 участников были разделены на две группы и им раздали ручные часы, с которыми были проделаны определенные манипуляции втайне от испытуемых. У одной группы часы "убегали", так что часовая стрелка совершала полный оборот не за 12 часов, как обычно, а лишь за 10 с половиной. У другой группы часы, наоборот, отставали, так что часовая стрелка обегала циферблат за 13 с половиной часов.

Ритм сон - бодрствование у участников немедленно адаптировался к этим условиям: они переходили на 21-часовые или на 27-часовые "сутки", не замечая этого. Однако отнюдь не все биологические ритмы организма можно было обмануть такой манипуляцией с часами. Например, концентрация калия в моче продолжала колебаться в ритме, соответствовавшем почти в точности 24 часам. С испытуемыми произошло то, что называется внутренней десинхронизацией (десинхронозом), явлением, которое возникает, когда некоторые из биологических ритмов организма становятся не в фазе с другими, так что вся тщательно настроенная ритмическая система дезорганизуется.

Десинхронизация ритма сон - бодрствование по отношению к другим циркадным ритмам часто наблюдалась в опытах с изоляцией. Температура тела обычно демонстрирует стабильный ритм с периодом 25 часов, даже если периодичность ритма сон - бодрствование значительно варьирует. Различная длина этих периодов приводит к постоянному изменению фазовых соотношений между различными ритмами. Когда опыты проводятся в условиях "изоляции от времени", то вначале все ритмы у испытуемого находятся в состоянии синхронизации, когда начало сна, как и положено, совпадает с нижней точкой температурного цикла. По мере развития внутренней десинхронизации испытуемый день ото дня ложится спать в различные фазы температурного цикла.

Из всех этих опытов можно сделать вывод о том, что, во-первых, каждый орган четко соблюдает «свой час», во- вторых, правильная организация времени поможет сохранить здоровье. Так, например печень наиболее активна- с 1 до 3 часов ночи; легкие - с 3 до 5 часов утра; толстая кишка - с 5 до 7 часов утра; желудок - с 7 до 9 часов утра; селезенка и поджелудочная железа - с 9 до 11 часов утра; сердце - с 11 до 13 часов дня; тонкая кишка - с 13 до 15 часов дня; мочевой пузырь - с 15 до 17 часов дня; почки - с 17 до 19 часов вечера; органы кровообращения, половые органы - с 19 до 21 часов вечера; органы теплообразования - с 21 до 23 часов ночи, а желчный пузырь - с 23 до 1 часу ночи. Кроме этого необходимо помнить, что при составлении расписания и распределении домашних заданий необходимо учитывать изменение работоспособности в течение суток и в течение недели. Начало дня у взрослых и 1-ый урок у детей - время, когда мы только приступаем к умственной деятельности. Через час-два наша работоспособность резко возрастает. Через два-три часа упорной работы происходит снижение умственной деятельности. Это относится к первым и вторым сменам в равной степени. Понедельник - фаза врабатывания после выходного дня, вторник и среда - увеличение работоспособности, в четверг и пятницу - снижение, а в субботу - 50 на 50%, то есть некоторый подъем обусловлен эмоциями ожидания воскресенья, связанного с другими видами деятельности.

Но, безусловно, нельзя сказать это обо всех. Ведь человек индивидуален. Но все, же каждый из нас относиться по типу активности к «жаворонкам», «голубям» или «совам».

«Жаворонки» - люди, у которых среднечастотные ритмы сдвигаются вперед, то есть имеющие синдром опережающей фазы сна. Они спят столько же времени, сколько остальные, но их ритм отхода ко сну сдвинут на более ранний вечер. Они рано хотят спать, быстро засыпают и очень рано встают в одни и те же утренние часы. Люди-жаворонки, лучше, чем совы, переносят сбои биоритмов при перелёте с запада на восток.

«Голуби» - люди дневного типа. Их циркадный ритм наиболее приспособлен к обычной смене дня и ночи. Период их наилучшей умственной и физической активности отмечается с 10 до 18 часов. Они лучше адаптированы к смене света и темноты.

«Совы» - люди, у которых наблюдается отставание фазы сна. Они легче приспосабливаются к работе в ночную смену и трехсменному труду. Совы лучше контролируют ритм сон-бодрствование по сравнению с другими людьми. Они предпочитают ложиться спать позже 23-24 часов, но зато им тяжелее вставать в ранние утренние часы. Многим совам импонирует их ночная жизнь.

Однако надо сказать, что люди частенько выбирают профессию не подходящую к их типу. К примеру, рабочие в ночную смену должны быть совами. Творческие профессии - это сфера деятельности по большей части сов. Работа на природе придется по душе жаворонкам. Офисные рабочие и люди в сфере обслуживания преимущественно голуби.

Но в любом случае необходимо соблюдать распорядок дня. Если же человек в системе пренебрегает своими биологическими, часами это может привести к заболеваниям различного рода. От ожирения и до преждевременного старения.

Надо упомянуть и о «модной» в конце XIX века теории трех ритмов. С первого дня человека запускаются физический, эмоциональный и интеллектуальный ритмы.

Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

Эмоциональный цикл равен 28 дням и обусловливает состояние нервной системы и настроение.

Интеллектуальный цикл (33 дня) определяет творческую способность личности.

Любой из циклов состоит из двух полупериодов, положительного и отрицательного. Однако позже она была экспериментально опровергнута.

Но нельзя забывать, что кроме суточных и околосуточных ритмов у человека также ярко выражены сезонные ритмы. Зимой нас преследует сонливость, снижение работоспособности, плаксивость и депрессии под влиянием холодного климата и недостатка солнечного света, а также витаминов в повседневном рационе. Также для этого сезона характерно снижение функции щитовидной железы, что в большей степени и вызывает все эти нарушения здоровья и настроения. Весной больше всего людей беспокоит состояние кожи. Очень часто именно весной появляются мешки под глазами, кожа становится менее упругой, появляются пигментные пятна или раздражения... Летом происходит резкий всплеск заболеваний ангиной - борясь с жарой, люди употребляют холодные напитки и едят мороженое. Предупредить заболевание помогут процедуры закаливания горла, когда ежедневно, утром и вечером, полоскать рот и горло водой с температурой чуть ниже комнатной. Если добавить в воду немного пищевой содой - процесс закаливания горла пройдёт быстрее, кроме того, таким образом можно избавиться от неприятного запаха изо рта. Постепенно температуру воды можно понижать. Трудно избежать некоего «трагизма» в настроении в то время, когда наблюдается засыпание природы, солнечные деньки сменяются дождливыми унылыми днями. Укорачивается день, организм, приспосабливаясь к ритму природы, чувствует сонливость и некоторую депрессию. Нужно хорошо понимать, что осень - это всё-таки не умирание, а засыпание, отдых природы, необходимый ей. Ведь не испытывают же люди депрессии от того, что засыпает ребёнок в своей кроватке, чтобы завтра начать активный день? К природе нужно относиться так же - как к засыпающему ребёнку, постараться запомнить чудесные мгновения листопада и появления первых льдинок, улыбаться природе и, не нарушая её сна, заняться своими хобби - спортом, изготовлением поделок, рукоделием.

И в конце хотелось бы сказать несколько слов о часах, про которые человечество знает еще очень мало. Это психологические и вторые биологические. О первых известно, что они позволяют различать прошлое, настоящее и будущее. Про вторые заговорили не так давно. Они являются запасным вариантам первых биологических часов. Включение зависит от пищи. «Этот новый хронометр позволяет животным переключать свой режим сна и бодрствования так, чтобы увеличить вероятность найти пищу», - отмечает Клиффорд Сейпер из медицинской школы гарвардского университета.

Теперь, когда теоретическая платформа заложена, можно перейти к эксперименту.

2.Материал и методика

биологический ритм

Заинтересовавшись этой темой, я решила провести два опыта, доказывающие реальность существования биологических часов, суточных и сезонных. Эксперименты проводились в 2012 году под руководством Агафоновой Н.А, учителя. Их целью является доказательство существования, процесса, с помощью которого происходит урегулирование периодических механизмов.

Первый эксперимент - наблюдение за деятельностью кислицы в темноте и на свету. Опыт является прототипом, проведенным Жан-Жаком де Мэраном, только меняется объект исследований. На данном растении лучше всего наблюдать существование биологических часов, так как отличительной чертой его является способность «узнавать время» по Солнцу, они складывают свои листочки, когда наступает ночь и разворачивают при появлении первых лучей. Эксперимент является классическим. Суть его заключается в следующем, растение помещается в темное помещение и за ним ведется постоянное наблюдение. Так как в комнату не проникает свет, то и цветок не может узнать время, однако он «просыпается», как и всегда и ночь для него наступает почти в то же время, что и раньше.

Опыт проводился в течение 2 дней. В 11 часов вечера я поместила кислицу, с уже сложенными листьями в отдельную неосвященную комнату и оставила там. В 6 часов я вошла в комнату, не пропуская свет, и обнаружила развернутые листья. В следующий раз я пришла в 10 часов вечера и увидела, что они снова сложились. Но за один день нельзя сделать точный вывод о существовании суточных часов, которые подсказывают растению, когда «засыпать», а когда «просыпаться». Поэтому я проделала те же операции на следующий день. И опять убедилась, в том, что листья развернулись, а потом опять сложились.

Вторым экспериментом является доказательство существования сезонных часов и их зависимость от увеличения светового дня. Я отрезала веточку сирени и поставила в воду. Эксперимент проводился в феврале, и, поэтому я освещала веточку на 3 часа больше, чем длился световой день в течение 15 дней. На 12 день веточка начала выпускать маленькие почки, после чего на 15 день я отнесла её в лицей и она уже к концу дня была полностью покрыта почками.

3.Результаты и их обсуждение

Литература, прочтенная мною, стала хорошим подспорьем для написания главы 1, а уже на основе её я стала обдумывать опыты, которые возможно провести в домашних условиях. И пришла к выводу о том, что можно повторить эксперимент проведенный де Мэраном. А после нашла описание интересного, на мой взгляд, опыта, доказавшего существование сезонных ритмов.

Теперь после проведенной работы можно подвести итог. Что мы имеем? Во-первых, интересная информация. Во-вторых, то, что биоритмы проявляются как у простейших, так и у сложноустроенных организмов. Опыты были проведены на растениях, занимающих промежуточное положение на лестнице эволюции. Первая работа дала возможность сказать однозначно, что суточные часы растений не зависят от света и поэтому их можно назвать автономным. Чего нельзя сказать о сезонных ритмах, так как они как раз зависят от увеличения и наоборот уменьшения освещенности, это объясняет миграцию птиц, набухание почек и многие другие сезонные процессы.

Заключение

Хотелось бы сказать, что тема, которой посвящена работа, безусловно, весьма интересна. И, конечно, охватить ее полностью невозможно, даже потому что эта область еще не изучена. Много вопросов все еще остаются не решенными. Однако я попыталась сделать работу интересной.

Теперь можно обобщить все вышенаписанное. Во-первых, биоритмы бывают различных видов. Сейчас ученые изучают не так давно открытые вторые биологические часы, помимо уже известных основных биологических и психологических часов. Изучаются биоритмы, как на простейших, так и на растениях животных и человеке. Сейчас множество работ написано про биологические часы. И поэтому создать свое мнение по этой теме легко. Я, например, для себя решила, что нужно по мере возможности соблюдать режим. Чтобы оставаться в форме.

И в заключении хотелось бы сказать, что биологические часы - это отлаженный механизм, который регулирует все циркадиальные процессы, существующие в организме живого существа. Биоритмы существуют, для того чтобы уравновесить происходящие изменения. Вследствие чего любой сбой ведет к изменениям во всех процессах и надо сказать в большинстве случаев негативным. Поэтому необходимо соблюдать правильный режим дня. Ведь изменение в функционировании биологических часов ведет к болезням, иногда трудноизлечимым, таким как ожирение и даже рак. Следовательно, элементарное соблюдение режима будет способствовать вашему здоровью и хорошему настроению.

Список литературы

1.Биологические ритмы / Под ред. Ю.Ашоффа. - М.: Мир, 1984.

2.Биологические часы / Пер. с англ. под ред. С.Э. Шноля. - М.: Мир, 1964.

.Бюннинг Э. Ритмы физиологических процессов (Физиологические часы) / Пер. с нем. под ред. И.И. Гунара. - М.: ИЛ, 1961.

.Глыбин Л.Я. Когда ложиться спать. - Владивосток: Дальневост. кн. изд-во, 1987.

5.Губин Г. Д., Герловин Е. Ш. «Суточные ритмы биологических процессов и их адаптивное значение в онто- и филогенезе позвоночных» - Новосибирск: Наука, 1980.

.Гудвин Б. Временная организация клетки.-М.: Мир, 1966

7.Гэлстон А., Дэвис П., Сэттер Р. Жизнь зеленого растения. / Пер.с англ. под ред. Н.П. Воскресенской. - М.: Мир, 1983.

8.Детари Л., Карцаги В. Биоритмы: Пер. с венг./ Предисл. В.Б. Чернышева; Послесл. Ю.А. Романова.-М.: Мир, 1984.-160с.,ил.- (В мире науки и техники)

.Дильман В.М. Большие биологические часы. Введение в интегральную медицину.- М..: Знание, 1986.-Изд. 2-е, перераб. и доп.-256 с.

10.Симаков Ю.Г. Живые приборы.-М.: Знание, 1986.-176 с.

.Сифр М. В безднах Земли.-М.:Прогресс, 1982

.Уорд Р. Живые часы.-М.: Мир,1974.

Для подготовки данной работы были использованы материалы с сайта http://www.bibliofond.ru

Дата добавления: 26.01.2014

www.km.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта