Влияние Азота (N) на растения. В каком виде растения могут поглощать азот
Азот для растений | AgroCounsel
Азот для растений
Поскольку азот - ключевой компонент аминокислот, он необходим, поэтому содержится практически в любой части растения. Это «клей», благодаря которому твердые клеточные стенки делают растение прочным и поддерживают его в вертикальном положении. Хлорофилл, пигмент, поглощающий свет в процессе фотосинтеза, состоит из протеинов, связанных вокруг магния. Азот является составляющей химических веществ, контролирующих рост ауксинов и кининов, а также входит в состав нуклеопротеинов, или генетического кода растений. Азот очень подвижен в растении и может перемещаться из отдельных его частей в те, где он наиболее востребован. Недостаток азота нарушает процесс роста, вызывая его прекращение, обусловленное плохим развитием клеток, а также пожелтение из-за недостаточного формирования хлорофилла. Растения «перебрасывают» азот из старых листьев в новые, молодые. А на старых нижних листьях появляются признаки азотного голодания. На злаковых культурах очень просто распознать азотную недостаточность. В частности, на кукурузе она проявляется очень характерно: заметным посветлением всего растения и побурением - сначала на нижних листьях, в виде буквы V, идущей от центральной жилки к краям листа. Впоследствии засыхает весь лист, затем начинают страдать листья в средней части растения. Если не исправить ситуацию, растение может погибнуть. Диагностировать недостаток азота современными методами достаточно просто, но часто на это тратится очень ценное время, а реагировать нужно очень быстро. Ведь пока растение голодает, оно в стрессе. Естественно, в таком состоянии замедляются и даже останавливаются протекающие процессы, которые формируют будущий урожай. Так, если недостаток азота проявился в фазе кущения, прекращается образование продуктивных побегов, если в фазе трубки - растение остановит процесс закладки дополнительных «этажей» в колосе, то есть колосков. Дефицит азота в фазе флагового листа приводит к тому, что не образуются дополнительные цветки, а во время колошения - зерновки. А если азотное голодание наступает во время налива зерна, то зерновки будут щуплыми, невыполенными и плохого качества.На реакцию почв азотные удобрения действуют следующим образом.
1. Очень кислые или сильно кислые:
- сульфат аммония - на 1 кг азота поглощается 3 кг СаО;
2. Относительно кислые:
- мочевина, аммиачно-нитратная селитра. аммиак — на 1 кг азота поглощается 1 кг СаО.
1. Нейтральные или слабокислые:
- аммиачно-кальциевая селитра - на 1 кг азота поглощается 0,4 СаО.
2. Щелочного действия:
-
кальциевая селитра - 1 кг азота прибавляет до 1 кг СаО;
-
азотнокислый кальций - 1,7 кг азота прибавляет до 1 кг СаО.
Если почвы карбонатные, то бояться подкисления не нужно. Но уж если рН стремится к уменьшению, то в этом случае подходить к выбору удобрения нужно тщательно.
ФОРМЫ АЗОТА
Азот почвы представлен обменным аммонием (NН4+), который поглощен почвенными коллоидами. Эта форма азота неподвижна в почве и не поддается вымыванию из почвенного профиля. Поэтому его еще называют «долгий» азот. Он проходит долгий путь превращения в почве в нитратную форму, и соответственно, может «работать» длительно.
Основные источники поступления этой формы азота в почву - внесение аммонийных удобрений и процесс аммонификации (гниения) - процесса разложения органических соединений (белков, аминокислот) в результате их ферментативного гидролиза под действием аммонифицирующих микроорганизмов.Кроме аммонийного, в почве присутствуют нитратные (N03-) и нитритные (N02-) формы азота, которые находятся в виде растворимых солей в почвенном растворе. Это «быстрый» азот. Он активно поступает в растение через корневую систему и так же быстро усваивается. Практически в течение суток может «зайти» в растение и начать создавать урожай. Однако он так же быстро и вымывается из почвы. Нитрат растворяется в воде, таким образом становясь мобильным. С талой водой, обильными осадками нитраты «уплывают» из корнеобитаемого почвенного профиля в более глубокие горизонты и становятся недоступны растениям.
Такая разница между этими двумя формами азота скорее плюс в управлении азотным питанием. Когда нужно немедленно подкормить растение, вносится нитратный азот. Яркий тому пример - ранне-весенняя подкормка озимой пшеницы. Здесь может работать только нитрат, поскольку аммонийный азот неэффективен из-за своего очень долгого превращения. Ведь рано весной температуры низкие, микроорганизмы еще не работают и процесс превращения аммония в нитрат длится около 5-6 недель.
Или же другая ситуация: посев кукурузы. Для этого растения азот очень важен, но он будет особенно необходим ему, когда кукуруза войдет в фазу 3-4 листа, то есть примерно через месяц. В это время у кукурузы начинается формирование репродуктивных органов и резко возрастает потребность в азоте. В этом случае при посеве необходимо вносить «долгий» азот: аммонийный или амидный. Такая форма максимально удовлетворит потребности культуры и не будет вымываться из почвенного профиля до появления 3-го листа. Так, посев кукурузы с карбамидом в норме 100-120 кг/га - это обеспечение растения азотом практически до стадии окончания формирования початка - до 8-9 листа. В наше время производят карбамид с ингибиторами (замедлителями) уреазы, то есть процесс нитрификации идет еще медленнее и азот высвобождается более плавно, постепенно питая культуру.
СПОСОБЫ ПОТЕРИ АЗОТА
Улетучивание азота из мочевины. Мочевина, внесенная в почву или на растительные остатки, реагирует с водой и с помощью энзима уреазы быстро превращается в аммоний, а затем в аммиак. Так как аммиак - это газ, то он улетучивается в атмосферу. Если аммоний захватывается частичками почвы, тогда он удерживается в ней и не улетучивается. Поскольку реакция преобразования мочевины в аммоний - это ферментная реакция, соответственно скорость преобразования возрастает при повышении температуры. Следовательно, внося карбамид в виде гранул в почве, обязательно следует заделывать его, дабы избежать потери азота в виде улетучивания.
Потери азота при вымывании. Выщелачивание - это процесс вымывания растворимого нитрата с водой. Количество вымываемого азота зависит от свойств почвы и способности удерживать воду. Глинистые и суглинистые почвы имеют высокую водоудерживающую способность в отличие от песчаных. Улучшение структуры почвы, обогащение ее органикой, бесспорно, уменьшает количество вымываемых нитратов. Когда макропоры созданы, вода проникает в почву самотеком, перемещаясь через поры вертикально вниз и распространяясь горизонтально.
Для почв с легкой текстурой, которые не способны удерживать воду, азотное удобрение может быть внесено непосредственно перед посевом или в качестве подкормки в период самого активного роста. Внесение азота должно быть проведено вовремя, во избежание вымывания из зоны развития корней.
В районах, где в период вегетации количество дождей невелико, соответственно, вышеуказанная проблема не является актуальной. Однако в районах с большим количеством осадков время проведения подкормки является критичным.
Чтобы уменьшить потенциальные потери азота вследствие денитрификации, необходимо синхронизировать время внесение азота с фазой его максимального потребления.
Иммобилизация - «связывание» азота микроорганизмами для своего роста и размножения. Такой процесс происходит, например, при внесении в почву значительной массы растительных остатков. В результате иммобилизации азота использование его растениями заметно снижается, что приводит к уменьшению урожая.
Через корни и листья. Прежде чем вносить удобрения, необходимо учесть, что растение может усвоить элементы питания в больших объем лишь с помощью корневой системы. Внекорневая подкормка наиболее эффективна, но это лишь вспомогательный способ применения удобрения, а не основной.
В настоящее время азот из удобрений поступает к растениям в трех формах: нитратной, аммонийной и амидной. Нитратные удобрения быстрее проникают в растения из-за своей «доступности», в то время как аммиачные должны пройти процесс нитрификации. Припосевное внесение удобрений под озимую пшеницу заключается в фосфорном и калийном кормлении. Таким элементам необходимо время для перехода в растворимые, доступные формы, притом азот может быть аммонийным или же амидным. В это время не столь важна форма азота: по той причине, что во время посева температура почвы достаточна для работы микроорганизмов, которые преобразуют одну азотную форму в другую.
К тому же осенью азот для пшеницы играет не самую важную роль. Его количество может составлять не более 20% от общей потребности. Задача первичной корневой системы пшеницы - закрепить растение в почве. Первые корешки практически не питают растение, оно кормится за счет эндосперма зерновки. А вот вторичная корневая система - это механизм, который снабжает растение элементами питания. К моменту, когда у пшеницы закладывается вторичная корневая система, проходит 30-40 дней от посева, и за это время амидная и аммонийная формы успешно станут нитратной.
В осенний период азот вносится только на легких и слабогумусированных почвах; после плохого (по выносу питательных веществ из почвы) предшественника: если нет достаточной густоты стеблестоя; а т при заделке в почву большого количества соло и растительных остатков. Во всех других случаях озимые зерновые имеют достаточное количество азота для своего развития осенью.
Максимальное потребление азота растениями происходит в период их бурного роста, например, т озимой пшеницы это фаза кущения-выхода в трубку. Весной, когда содержание доступного азота в почве практически равно нулю, необходимо обеспечить наличие нитратной формы азота в почве. Применяя аммиачную селитру в фазе кущения весной, можно полностью компенсировать потребность культуры Из-за присутствия в этом удобрении двух форм азота, нитратной и аммонийной, растение получает немедленное питание с помощью нитратной - N03, а по прошествии 2-3 недель уже может стать доступной аммонийная (NН4) форма, которая и продолжит питание культуры. Альтернативой в этой фазе выступает жидкое удобрение КАС (карбамидо-аммиачная смесь, N-28 или N-32), в состав которого входит нитратная форма, аммонийная и амидная.
В стрессовых ситуациях (низкие температуры, заморозки, недостаток влаги и т. п.) усвоение элементов корневой системой является недостаточным, а это замедляет темпы роста и развития. В условиях низких температур они не полностью усваиваются даже при оптимальном количестве в почве доступных соединений макроэлементов и влаги. Особенно снижается способность усвоения корневой системой азота. Часто критические периоды потребления мкро и микроэлементов в зерновых наступают в фазе выхода в трубку-колошения. Вследствие интенсивного нарастания вегетативной массы запасы легкодоступных элементов питания из грунта исчерпываются или их усвоение «не успевает» за темпами роста растений. Особенно это заметно в годы с холодными ночами.
В такой ситуации растению можно помочь внекорневыми (листовыми) подкормками.
Степень и скорость усвоения элементов питания из удобрений через лист значительно выше, чем при усвоении из удобрений, внесенных в грунт. Но усвоения элементов через листья ограничены. Быстрее всего листья усваивают азот. Молекула карбамида, попадая на лист растения и проникая внутрь, начинает работу даже при пониженных температурах, так как для этого процесса не нужно присутствие микроорганизмов. Даже небольшое количество карбамида (8-10 кг д.в./га) может заставить растение запустить механизм образования урожая ранней весной, даже если корни не могут еще питаться нитратным азотом из почвы. Такой «обман» принуждает пшеницу к продолжению кущения и закладыванию колоса.
Еще одна ответственная за прибавку урожая фаза - флаговый лист. Длится эта фаза всего 7 дней, но за это время пшеница может увеличить свой потенциал до 25%. Однако необходимо соблюсти одно условие: растения должны быть «накормлены». Здесь действует принцип: чем быстрее, тем лучше. Это должен быть либо нитрат через корни, либо амид через листья. Аммоний в данном случае не сможет быть полезен из-за слишком долгого превращения в доступную форму. А ведь у агрономов в распоряжении всего 7 дней! Проводить опрыскивание раствором карбамида в этот период можно совместно с фунгицидной или инсектицидной обработкой. Как только агроном определит наступление фазы 41 (появление флагового листа), есть 7 дней до ее окончания, чтобы увеличить урожайность. В этой фазе у пшеницы закладываются дополнительные цветы, поэтому вместо трех их в колоске может быть пять, а это дополнительные зерна в колосе. Окончание фазы флагового листа определяем по выходу остей колоса. К этому моменту работа по внесению раствора карбамида должна быть завершена.
Если говорить о листовой подкормке, то карбамид - наилучшее из азотных удобрений для этой цели. Он интересен своей особенностью проникать в растение через листовой аппарат практически в том же состоянии, без распада на ионы. Внесение раствора мочевины, даже в повышенных концентрациях, в отличие от других азотных удобрений не вызывает ожогов у растений и способствует повышению содержания белка и клейковины в зерне.
ОСОБЕННОСТИ ПРИМЕНЕНИЯ АЗОТНЫХ УДОБРЕНИЙ
• Общее количество азота для культуры зависит от плановой урожайности. То есть рассчитывать потребность в удобрениях следует из того, насколько большой урожай запланирован. Зная, что для образования 1 тонны зерна пшеница потребляет 20-25 кг азота в действующем веществе, рассчитывается общее количество азотных удобрений, которые необходимо внести на протяжении всей вегетации пшеницы. К примеру, если запланирована урожайность 5 т/га, для получения такой урожайности необходимо обеспечить посеву около 100 кг азота в действующем веществе. Конечно же, необходимо подкорректировать это количество с учетом наличия азота в почве предшественника и внесенных ранее удобрений и внести разницу. Известно, что во время осеннего кущения до ухода в зиму озимая пшеница потребляет не более 20% азота от общего количества. До стадии выхода в трубку - 50% - до выброса колоса.
Если вносить фосфор, калий в туках одновременно с посевом (например, с аммофосом или нитроаммофоской, в которых содержится небольшое количество аммонийного азота), практически полностью обеспечивается потребность в азоте на осенний период. Кроме того, растения еще смогут пользоваться минерализованным азотом из органического вещества почвы. Оставшиеся 80% азота вносится в весенний период. При этом приоритетно дробное внесение. Для этого есть несколько причин: во-первых быстрое видоизменение азота в почве и, как следствие, его недостаток; во-вторых, дробное внесение гарантирует поступление азота в те фазы, когда растениям он особо необходим. Небольшие дробные дозы азотных удобрений в каждой определенной фазе способствуют своевременному обеспечению растения азотом и повышению урожайности. К тому же метод дробного внесения азота сводит практически к нулю его потери.
• Оптимальной является та доза, при которой можно получить максимальный экономический эффект от выращивания культуры и наивысшее качество урожая без отрицательного влияния на окружающую среду. В зависимости от способа внесения тех или иных удобрений варьируются и дозы этих удобрений. Сельхозпроизводители на практике давно определили, какие дозы азотных удобрений не причиняют вреда растениям, таким образом исключается возможность потерь. Так. работая с жидкими удобрениями, например, КАСом, используется метод полива, то есть весной в фазе кущения производится полив пшеницы крупной каплей специальными форсунками в норме 100-120 л/га (130-160) кг/га. Когда пшеница входит в фазу трубкования или флагового листа, полив заменяют на опрыскивание обычной форсункой и вместо КАСа используется раствор карбамида. На 150 литров рабочего раствора добавляется 20 кг карбамида в физическом весе. Такая подкормка всегда совмещается с той операцией, которая запланирована на пшенице: будь то инсектицидная или фунгицидная обработка.
-
Форма удобрения. Этот фактор имеет колоссальное значение в получении или неполучении высокого урожая. Ошибившись с формой азота, можно не только потратить впустую средства на приобретение и внесение не того удобрения, но и упустить выгоду от применения «правильного» удобрения и возможность получить прибавку урожая от той формы азота, которая сгенерировала бы прирост урожая. Пример: ранневесеннее внесение карбамида методом разбрасывания - это ошибка, которая приведет к недополучению урожая. Весной по кущению пшеницы - только «быстрый» азот, а это нитратная форма, то есть селитра, КАС. И тут в силу вступает еще одно правило.
-
Время внесения. В момент внесения удобрений культура не должна нуждаться в азоте, но должна быть способна быстро его использовать, что сведет потери азота к минимуму. Другими словами, культуре нужно уже проснуться от зимней спячки, но при этом она не должна еще испытывать голода. Бесспорно, и погода, и технические возможности производственника вносят свои коррективы в процесс подкормки культуры. Но речь о том, как угодить культуре, помочь выйти ей на максимальный потенциал урожайности. Изыскав для этого возможности, появится понимание, как уходить от неблагоприятных факторов, снижающих урожай. Анализируя провалы, можно с уверенностью сказать, что это не всегда погода, а на 80% неповоротливость, затягивание с обработкой, неорганизованность процесса или отсутствие ресурсов.
-
Поздно - значит мало. У пшеницы, как у культуры, у которой формирование составляющих урожая идет в каждой конкретной фазе, есть еще одно правило. Зная то, что внести азот нужно обязательно в фазе кущения, внесение в фазе трубки - это потеря максимальной выгоды. Пшеница не погибнет, но она снизит свой потенциал, даже если внесена большая доза азота. Просто этот азот не сможет в фазе трубки сделать то, что он мог бы сделать в фазе кущения. Попросту это означает, что опоздав на несколько дней, сельхозпроизводители не только недокармливают растение, но и теряют средства на непродуктивное внесение уже не столь актуального удобрения.
АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ АЗОТА
Поскольку минеральные азотные удобрения стоят на сегодняшний день весьма дорого, сельхозпроизводители находятся в постоянном поиске дополнительных источников азотного питания, позволяющих сократить эту статью затрат.
Пожалуй, самый известный способ уменьшить расходы на минеральные азотные удобрения - ввести в севооборот бобовые культуры. Такие культуры как горох, соя, люцерна, клевер, эспарцет, люпин и т. д. являются генераторами азота в севообороте. Благодаря симбиозу с клубеньковыми бактериями они на 75% (а некоторые больше) обеспечивают себя азотом. Кроме того, после уборки бобовой культуры весь азот, который зафиксировался в клубеньках, минерализуется и становится доступным следующей культуре. Я называю этот процесс удобрения из воздуха. Ведь известно, что горох, соя, конские бобы оставляют после себя от 40 до 90 кг азота в действующем веществе на 1 га.Обеспечить дополнительное азотное питание поможет и применение в севооборотах культур с разноглубинным залеганием корневых систем. Нитратный азот, который растения не успели усвоить, вымывается в более глубокие слои почвы. Так вот, чередование культур, у которых неглубокое залегание корневых систем (зерновые колосовые), с теми культурами, корни которых уходят глубоко (подсолнечник, свекла), обеспечивают потребление питательных веществ на разных горизонтах, тем самым дают культуре дополнительный источник питания и не истощают верхний слой.
Обогащению почвы питательными веществами способствуют также сидераты. Они высеваются не для получения урожая, а с целью улучшения состояния почв, очищения от сорной растительности, разуплотнения. Сидераты сеют, как правило, после уборки озимой культуры и занимают поле до ухода в зиму.
Еще один, к сожалению, малознакомый помощник сельхозпроизводителей - микориза. Это древовидный гриб, который распространяется в почве при помощи мицелия. Он очень любит селиться на злаковых и бобовых растениях. К сожалению, микориза не выживает при интенсивных механических обработках. Это удивительная природная система, которая не только является проводником питательных веществ, но и служит регулятором водного баланса растений. Если на почвах живет микориза, то растениям не страшна даже засуха!
Поддерживать наличие большого количества органического вещества в почве сельхозпроизводителям также выгодно, поскольку чем выше содержание гумуса, тем больше азота может минерализоваться. В теплый период времени, когда микроорганизмы активны и процесс преобразования органического азота в минеральный протекает быстро, можно считать, что 1% гумуса равен 15 кг нитратного азота на 1 га. Соответственно, в 3% 45 кг д.в. азота. Это хороший стимул увеличивать содержание гумуса в почвах. Если посчитать, сколько стоит в денежном выражении гумус, получится интересная цифра. Так, 1 кг д.в. азота в пересчете на стоимость минеральных удобрений на сегодняшний день стоит около $1,4, соответственно, на гектаре это $63. Если перевести это в удобрения, получается, что органическое вещество почвы ежегодно дает нам в кредит 170 кг аммиачной селитры или 125 кг карбамида на каждом гектаре. Но необходимо помнить: этот ресурс не безграничен. Кредиты нужно возвращать! Потребительское отношение может обойтись очень дорого в будущем.Растительные остатки - еще один источник питания. Разлагаясь, они высвобождают питательные вещества - сначала для микробов и грибов-сапрофитов, а затем для растений.
Не стоит забывать и про органические удобрения. В хозяйствах, которые, кроме растениеводства, имеют еще и развитое животноводство, важным источником улучшения азотного режима почв является использование различных видов органических удобрений. %
www.agrocounsel.ru
Поступление и превращение азота в растениях
Поступление и превращение азота в растениях
Поглощение азота растением
Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.
В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.
Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до Nh3 , после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:
1)восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.
Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина Nh3OH и, наконец, до аммиака Nh4. Восстановление нитратов до Nh4-и Nh3-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.
Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:
Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.
При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.
Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:
Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп Nh3 в растении для синтеза аминокислот.
Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:
Усвоение органических форм азота
Стерильные культуры покрытосеменных растений
Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.
Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.
Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.
К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.
Ознакомимся с некоторыми представителями насекомоядных растений.
Росянка - многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые - комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов - протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.
Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.
В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.
Большой интерес представляет обитающая в болотистых водоемах пузырчатка . Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.
Из других насекомоядных растений можно отметить кувшиноносы ( непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.
Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.
Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.
Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.
Подъельник - растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как "дельфин за кораблем". Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.
mirznanii.com
Влияние Азота (N) на растения | Fermery UA
Азот (N) – один из самых распространенных химических элементов на Земле. И один из самых важных элементов для жизнедеятельности живых организмов и растений. Азот входит в состав биологических молекул и органических соединений, в процентном содержании колеблясь от 15 до 19%. Это важнейший микроэлемент, участвующий в синтезе новых клеток и вегетативном периоде роста растений.
В каком состоянии бывает азот
Огромные запасы азота в виде инертного газа содержатся в атмосфере, составляя основную часть ее массы (свыше 78%, или 4 квадриллиона тонн).
В элементарной форме азот содержится как минеральное вещество, находясь в составе различных растворимых в воде соединений. В сухой массе растительных тканей, несмотря на важнейшую роль, его содержится не более 1-3%. Поэтому растениям для хорошей вегетации постоянно требуется определенное количество минерального азота.
Как растения получают нужное количество азота
Растения не могут усваивать молекулярный азот, находящийся в воздухе. Исключением являются только бобовые культуры, которые получают необходимое количество азота, благодаря клубеньковым бактериям на корнях. Подобный природный симбиоз сегодня очень интересует ученых, потому что считается очень эффективным и самым экологическим для человека способом подкормки растений. Ученые уже научились активизировать эти бактерии на корнях некоторых не бобовых культур (например, томата).
Основная же часть растений получает азот в составе химических соединений в виде аммониевых и нитратных форм. Чтобы образовать подобный почвенный азот сначала необходимо разрушить очень устойчивую молекулярную структуру азота воздуха. Этот процесс всегда требует много энергии. В природе подобную функцию способны выполнять молнии во время грозы. В результате мощных электрических разрядов вместе с каплями дождя в почву попадают оксиды азота.
Следует также кое-что отметить про аммониевую и нитратную формы азота. Аммиачное соединение – это восстановительная форма азота, которая способствует более быстрому синтезу аминокислот и белков. А значит и более быстрому росту растений. Но при высокой концентрации повреждает ткани и убивает растения. Синтез же из нитратов требует большего затрат энергии растений. Но считается более безопасным соединением.
Откройте спойлер для просмотра полезного видео о влиянии азота
Очень много азота содержится в органических веществах растительного и животного происхождения. В одной тонне гумуса его содержится 30-60 грамм. Но, чтобы получить из них нитратный и аммониевый азот, требуется органическое разложение, которое невозможно без участия микроорганизмов.
Какое влияние оказывает азот на растения
Азот оказывает наибольшее влияние на рост и урожайность растительных культур. Он необходим в течение всего жизненного цикла растений, так как является строительным материалом для новых клеток. Но каждое растение требует свое количество почвенного азота. Это зависит от многих факторов:
- Типа почвы. Плотность почвы влияет на развитие корней, тем самым усложняя впитывания азота растениями. В дерново-подзолистых грунтах накопление азота колеблется от 1,5 до 6 т/га; в черноземе 6-15 т/га; песчанике и супесчаных грунтах 0,9-2 т/га; в торфяной почве 16-20 т/га.
- Запасов содержания азота в почве. Запасов может быть много, но в виде гумуса, которому нужно пройти еще процесс разложения.
- Время года и климатических условий местности. Например, в сухих условиях растения попросту не впитывают азот и другие питательные вещества, так как потребляют его исключительно в растворенном виде. С другой стороны, обильные дожди могут вымывать его из почвы.
Поэтому, прежде чем купить удобрения тщательно изучайте инструкции и консультируйтесь со специалистами относительно норм и количества внесения азота в грунты вашей местности.
Что происходит, если не хватает азота
Существенно замедляется рост растений их вегетационный период. Семена созревают раньше срока. Злаковые культуры плохо формируются, ослабляется интенсивность цветения плодово-ягодных культур.
Листья становятся мелкими, бледно-зеленого, желтого или красного окраса. Это вызвано ослаблением хлорофилла и оттоком растворимых соединений азота к более молодым побегам. При сильном выраженном азотном дефиците возможно отмирание и гибель различных участков растений. Но главная проблема – это низкая урожайность и уменьшение размеров плода, колосьев.
Что происходит, если азота слишком много
Обычно сопровождается изменением окраса листьев в ярко выраженный темно-зеленый цвет, так как азот является неотъемлемой частью хлорофилла – зеленого пигмента растений. В клеточном соке начинают накапливаться нитраты, вредные для человеческого организма. Растение становиться более восприимчивым к различным заболеваниям и сухости воздуха.
fermery.com.ua
Как растения поглощают и усваивают азот из почвы? - Удобрение - Лепесток
Азот - это один из важнейших элементов таблицы многоуважаемого Дмитрия Ивановича Менделеева, входящий в строение органических молекул. Азот сам по себе часто составляет простейшую молекулу газообразного вещества, из которого состоит большая часть атмосферы нашей планеты. Содержание газообразного N2 составляет 75,6 % (по массе) и около 79 % (по объёму), а если перевести на вес, то газообразного азота в атмосфере содержится около 3,87х1015 тонн.
Органический азот - так называют атомы, входящие в состав белковых молекул, из которых состоят живые клетки. У растений азот является строительным элементом таких функционально важных веществ как хлорофилл, витамины группы В, а также вещества РНК и ДНК, и является структурным элементом клетки. Но к сожалению, газообразный азот из воздуха могут использовать лишь некоторые микроорганизмы, живущие в почве или в симбиозе с высшими растениями. Об этих микроорганизмах (клостридиумы, азотобактер и клубеньковые бактерии), их роли в жизни растений и способности фиксировать атмосферный азот, переводя его в доступные для усвоения растением формы, мы пытались рассказать в статье Бактериальные удобрения.
Но наиболее доступные для растений формы азота все же содержатся в почве, попадая туда благодаря перегниванию остатков растений и животных. Именно этот азот является наиболее ценным продуктом. Ценность его возрастает не только потому, что такого азота на Земле не много, но и за счет того, что он прошел предварительную обработку и практически готов к употреблению растением. Этот азот находится в почве в виде солей аммиака, азотной и азотистой кислот, органических соединений. Так, ученые подсчитали, что на 1 кг плодородной почвы примерно приходится азота органического 2 г, азота аммиачного 0,02 г и азота нитратного 0,03 г.
Термин Азот аммиачный в отношении растений означает, что растение поглощает катионы - остатки молекул аммиака Nh5. Термин Азот нитратный - означает, что растение потребляет азот в форме анионов - остатков молекул азотной кислоты NO2. Термин Азот органический в отношении растений означает, что они поглощают азот в форме органических азотистых соединений, например, аминокислот и витаминов, растворимых в воде. А нерастворимый в воде органический азот в виде белков и жиров, находящихся в перегное и компосте, растение не может ни усвоить, не переварить. Эти вещества в навозе сперва должны переварить специальные почвенные бактерии (гнилостные и нитрифицирующие), которые переведут органический азот в минеральный. Отсюда становится совершенно понятно и очевидно, что даже те 2 грамма органического азота, содержащиеся в 1 кг почвы не так ценны для растения, как азот аммиачный или азот нитратов. Минеральные азотные соединения усваиваются куда быстрее и лучше. Исключение составляют такие органические азотсодержащие вещества, как аспарагин и мочевина - они усваиваются растениями очень хорошо.
Что же происходит с органическим азотом в почве, как он поглощается и как усваивается растением? Наверняка всем знаком запах аммиака с компостной кучи - это признак работы гнилостных бактерий, которые ведут процесс аммонификации, то-есть разлагают органику с выделением азота в форме летучего газа аммиака со свойственным ему запахом. Но чтобы этот азот не улетучился и достался растениям, к работе мигом приступают другие аэробные бактерии, переводящие аммиак постепенно, в два этапа, сперва в азотистую кислоту, а потом в азотную. Весь процесс улавливания аммиака и переработки на минералы называется нитрификацией. Ведут его на первой стадии бактерии с названием нитрозомонас Nitrosomonas, вторую стадию - нитробактер Nitrobacter. И в процессе они выделяют в атмосферу тепловую энергию, благодаря чему часто навоз и компост используют для отопления теплиц.
В результате переработки оганического азоты бактериями и дальнейших химических реакций в почве накапливаются простейшие неорганические молекулы - соли азотной кислоты, доступные растениям - это KNO3, NaNO3, Ca(NO3)2, Nh5NO3 и другие. А чтобы обогащение почвы азотом шло более интенсивно, садоводы знают, что для аэробных микроорганизмов нужен постоянно приток свежего воздуха, кислорода. Именно поэтому полезно частое рыхление почвы, способствующее жизнедеятельности нитрифицирующих организмов. Этим объясняется аэрация или прокалывание газона в комплексе мер по уходу за газоном – дернину прокалывают, чтобы дать почве подышать. Вот так просто - лишний раз взрыхлил удобренную почву - лишний раз подкормил растения азотом. Если же почва уплотнена и доступ воздуза к ней прекращен (изолирован), то в ней может произойти обратный процесс, называемый денитрификацией, при котором на арену выходят совсем другие почвенные бактерии, высвобождающие из органических остатков свободный газообразный азот в атмосферу, и растениям он уже не достается.
pesok-deshevo.narod.ru
Азот (N) - Выращивание растений на гидропонике.
Функции Азота
Азот необходим для формирования аминокислот, белков и хлорофилла. Азот играет важную роль в развитии растений. Азот имеет гораздо большее влияние на растения, чем большинство других важных элементов. Избыток или недостаток Азота существенно влияет на рост растений и качество урожая.
Симптомы дефицита Азота
Дефицит Азота проявляется осветлением листьев растения. Так как N достаточно подвижный элемент, то первые симптомы дефицита Азота появляются сразу на старых листьях, которые становятся светло-зеленого цвета. Когда дефицит усиливается, листья желтеют и отмирают. Дефицит Азота приводит к сокращению периода вегетации, наблюдается мелколистность, уменьшение кустистости.
Симптомы дефицита Азота быстро развиваются, но могут так же быстро и корректироваться, добавлением нужной формы N, регулировкой концентрации.
Тяжелые последствия может нанести длительная нехватка N в период активного роста.
Дефицит Серы можно спутать с дефицитом Азота. Но при дефиците Серы, симптомы появляются на всем растении, а при дефиците Азота сначала на старых листьях и только потом распространяются на все растение.
Симптомы отравления Азотом
Избыток Азота так же опасен, как и дефицит, особенно для плодовых культур.
Избыток Азота сопровождается усиленным ростом: растения пышные с темно-зеленой листвой. Такие листья больше подвержены болезням и атакам насекомых и очень чувствительны к изменениям окружающей среды.
Излишки N в плодовых культурах не только ухудшают обильность цветения и развитие плодов, но и снижают качество урожая. Нельзя повлиять на качество плодов элементами F и B пока Азот в избытке. Избыток N наносит больше ущерба растению, чем дефицит.
Формы Азота
Существуют две формы азота: NO3- и Nh5+.
Контролируя их соотношение в растворе, можно добиться некоторого стабильного значения pH.
Если Nh5+ единственный источник азота в растворе, то это приводит к подкислению. Растения поглощают больше иона аммония, чем серной кислоты, соответственно в растворе накапливается анион серной кислоты и раствор подкисляется. И, наоборот, если в растворе содержится только NO3- , раствор подщелачивается.
В целом, в кислой среде NO3- легче поглощается, а Nh5+ лучше усваивается при более высоком рН. При рН 6,8 обе формы азота поглощаются одинаково.
Влияние Азота на pH в корневой зоне
В клетках корней должен поддерживаться электрический баланс, поэтому для каждого положительно заряженного иона, который притягивается, должен быть освобожден положительно заряженный ион, то же самое верно и для отрицательно заряженных ионов.
Таким образом, когда растение «притягивает» аммоний (Nh5+), оно освобождает протон (Н +) в раствор. Повышение концентрации протонов вокруг корней, снижает рН в корневой зоне. Соответственно, когда растение «притягивает» нитраты (NO3-), оно выпускает бикарбонат (HCO3-), что увеличивает рН вокруг корней.
Из этого следует, что поглощение нитратов увеличивает рН вокруг корней, в то время как поглощение аммония уменьшает ее.
Это явление особенно важно в гидропонике, где корни могут легко повлиять на рН среды, поскольку их объем относительно велик по сравнению с объемом питательной среды.
Для предотвращения скачков рН раствора и нужно правильное соотношение аммония / нитратов, которое зависит от сорта, температуры и стадии роста.
Следует отметить, что при определенных условиях, рН «реагирует» не так, как ожидалось в связи с нитрификацией. Нитрификация очень быстрый процесс, и добавка аммония может быть быстро преобразована и поглощена в виде нитратов, тем самым увеличивая рН в корневой зоне, а не уменьшая его.
Влияние Азота на поглощение других элементов
Аммонийный Азот легче поглощается при повышенном содержании в растворе магния, кальция и калия. Аммоний - катион (положительно заряженный ион), поэтому он конкурирует с другими катионами (калия, кальция, магния) в поглощении корнями. Слишком высокое содержание аммония может привести к дефициту кальция и магния. Поглощение калия меньше зависит от «конкуренции» с Аммонийным Азотом.
Для питания растения нитратным Азотом важное значение играет достаточное наличие молибдена и фосфора. Дефицит молибдена замедляет восстановление нитратов, снижается ассимиляция нитратного азота.
Так как соотношение аммония / нитратов может изменить рН вокруг корней, то изменение pH может повлиять на растворимость и доступность других питательных веществ.
Если соотношение NO3- и Nh5+ больше, чем 9 к 1, то рН раствора имеет тенденцию к увеличению с течением времени, а при соотношении 8 к 1или менее, рН уменьшается со временем. Из графика видно, что Nh5+, как правило, гораздо больше подкисляет раствор, чем NO3- подщелачивает. Поэтому и рекомендуют % содержания аммонийного азота намного меньше чем нитратного для стабилизации рН раствора.
Соотношение нитратного и аммонийного Азота
Процент аммонийного азота Nh5+ в питательном растворе не должен превышать 50% от общей концентрации N.
Оптимальным же является соотношение: 75% NO3- и 25% Nh5+.
Если основным источником Азота будет Nh5+, то это может быть токсично для растения. Однако, некоторое количество Nh5+ желательно, так как наличие Nh5+ в питательном растворе стимулирует поглощение NO3-.
5% Nh5+ в растворе достаточно для стимуляции поглощения NO3-, а более высокий процент (до 25% от общего) необходим для постоянно аэрируемых растворов, чтобы получить то же стимулирующее действие на NO3-. Метаболизм аммония требует гораздо больше кислорода, чем метаболизм нитратов.
Соотношение Азотов зависит от вида растений, стадии роста растений, температуры питательного раствора, рН в корневой зоне и других факторов.
Если ион Nh5+ является основным источником Азота в питательном растворе, то его влияние на рост томатов, например, может быть существенным в зависимости от интенсивности освещения. При низком освещении эффекта почти нет, а при высокой интенсивности света отмечено снижение роста растений на 30%, проявляются симптомы: скручивание листьев, увядание, хлороз старых листьев.
Соотношение Азотов в зависимости от вида растений и стадии роста
При подборе соотношения нитратного и аммиачного азотов, следует учитывать виды растений. Плодоносящие растения, такие как помидор и перец, особенно чувствительны к Nh5+. Когда Nh5+ присутствует в питательном растворе при образовании цветов и плодов, урожайность снижается. Плоды могут поражаться вершинной гнилью. Поэтому аммонийный азот может быть включен в состав раствора в начале вегетации, но затем должны быть исключен с момента образования цветков и до конца цикла.
Сахара должны транспортироваться вниз от листьев к корням, чтобы «встретиться» с аммонием.
При выращивании плодов и растений, в которых наибольший рост происходит в листьях (например, китайская капуста, салат, шпинат), сахара потребляются быстрее около их места производства и гораздо менее доступны для транспортировки к корням. Таким образом, аммоний не сможет эффективно метаболизироваться и предпочтительно использовать меньше аммония по отношению к нитратам. В зимнее время аммония также нужно давать меньше, так как при недостатке света растение образует мало сахаров.
Соотношение Азотов в зависимости от температуры в прикорневой зоне
Метаболизм аммония требует гораздо больше кислорода, чем метаболизм нитратов. Аммоний метаболизируется в корнях, где он вступает в реакцию с сахарами. Эти сахара должны быть доставлены в корни из листьев.
С другой стороны нитраты транспортируются в листья, где они преобразовываются в аммоний, а затем вступает в реакцию с сахарами.
При более высоких температурах дыхание растения увеличивается, потребляется сахар быстрее, что делает его менее доступным для обмена веществ с аммонием в корнях. В то же время, при высоких температурах, растворимость кислорода в воде уменьшается, что делает его так же менее доступным.
Таким образом, при более высоких температурах целесообразно использование более низкого содержания аммония в растворе. При более низких температурах питание аммонием является более оптимальным, потому что кислород и сахара более доступны на корневом уровне. Кроме того, поскольку транспорт нитратов в листьях снижен при низких температурах, использование нитрата в растворе приведет к задержке роста растений.
Токсичность аммония
Аммоний может быть токсичными для растений, если он является основным источником Азота в растворе. При отравлении аммонием замедляется рост и развитие, повреждаются стебли и листья, листья становятся чашеобразными. Разрушается сосудистая ткань (Nh5+ нарушает работу Ca, который требуется для поддержания целостности клеточной оболочки). Отравление Аммонием может в конечном итоге привести к гибели растения. Если стебель пострадавших растений разрезать чуть выше корневой линии, то хорошо видна разлагающаяся сосудистая ткань.
Но, похожие симптомы могут быть и у некоторых болезней, поэтому требуется тщательный анализ, чтобы определить, что вызывает распад, болезнь или отравление Nh5+ .
Аммиачный азот обычно не накапливается в растении в больших количествах. Это наблюдается только при недостатке углеводов; в таких условиях растение не может его переработать в безвредные органические вещества — аспарагин и глютамин.
Чрезмерная доза аммиачного азота в питательном растворе и недостаточность освещения, которая снижает интенсивность фотосинтеза, могут привести к повреждению листовой паренхимы из-за скопления аммиака.
Влияние концентрации Азота на корни
Концентрация азота в питательном растворе может влиять на характер роста корня. Увеличивается концентрация нитратного Азота – уменьшается количество и длина корневых волосков. Концентрации других основных элементов (P, K, Ca, Mg) не оказывают подобное влияние. Даже изменение концентрации Nh5+ в питательном растворе не влияет на корневые волоски. Однако, корни, подвергающиеся воздействию высоких концентраций Nh5+ в питательных растворах или где основным источником Азота является Nh5+, будет грубы на вид, с небольшим ветвлением или тонкой структурой.
Концентрация Азота в питательном растворе
Большинство формул требуют общей концентрации N в питательном растворе в диапазоне от 100 до 200 мг / л (ppm).
Если аммонийный Азот Nh5+ входит в состав, то соотношение нитратного к аммонийному к должно быть примерно три или четыре к одному.
Инструкции часто требуют начинать подавать раствор с малых доз (<100 мг / л, ppm), затем увеличивать его к моменту созревания плодов. Это общепринятая практика в случае с плодовыми культурами, когда контроль поступления Азота нужен для минимизации чрезмерного вегетативного роста и инициирования развития плодов.
Источники Азота
Источники NO3-: нитрат кальция (Ca(NO3)2•4h3O), нитрат калия (KNO3) и азотная кислота (HNO3), аммиачная селитра (Nh5NO3).Источники Nh5+: аммиачная селитра (Nh5NO3), сульфат аммония (Nh5)2SO4), аммония моно-или кислый фосфат (Nh5)2HPO4 или Nh5h3PO4.
Мочевина, CO(Nh3)2, не рекомендуется в качестве источника Азота для гидропонных растворов, так как ее гидролиз производит Nh5, который может быть нежелательным катионом в питательном растворе. Молекулы мочевины могут непосредственно поглощаться корнями растений, хотя ее присутствие в растениях может быть не желательно.
Источники: Чесноков В. А. «Выращивание растений без почвы», 1960. J. Benton Jones «Hydroponics. A Practical Guide for the Soilless Grower. Second Edition», 2005. Guy Sela «Ammonium-Nitrate Ratio in Plant Nutrition», 2010.
gidroponika.com