41) Микроорганизмы зоны корня, поверхности растений. Зона корня растений где развиваются микроорганизмы
Микроорганизмы зоны корня и их влияние на растение
На поверхность корней и надземных частей растений выделяются органические соединения, синтезированные растительным организмом. Это явление называется экзосмосом.
В зависимости от многих причин интенсивность экзосмоса может быть большей или меньшей. Количество выделяемых за период жизни растений соединений составляет до 10% их массы и более.
При корневом экзосмосе образуются различные органические кислоты — яблочная, янтарная, винная, лимонная, щавелевая и др. Обнаружены и сахара, представленные альдозами и кетозами, а также некоторые аминокислоты (аланин, лизин и др.). Состав продуктов экзосмоса отдельных растений в той или иной степени отличается.
В выделениях корней имеются органические соединения большой физиологической активности — витамины, ростовые вещества, иногда алкалоиды и т. д. Многие из указанных соединений в некоторых количествах выделяются и надземными органами растений. В связи с этим на корнях и надземных органах растений размножается обильная сапрофитная микрофлора:
Рассмотрим состав микрофлоры зоны корня. Обычно выделяют «корневые» микроорганизмы, поселяющиеся на самой поверхности корня, — микрофлора ризопланы. Вычленяют также группу микробов, обитающих в слое почвы, прилегающем к корню,— микрофлора ризосферы. Количество микроорганизмов на поверхности корня и в ризосфере в сотни раз больше, чем в остальной массе почвы. В зоне молодого корня в основном размножаются неспорообразующие бактерии (Pseudomonas, Mycobacterium и т. д.). Здесь же встречаются микроскопические грибы, дрожжи, водоросли и другие микроорганизмы.
Состав микрофлоры ризосферы меняется с возрастом растений. Например, бациллы, актиномицеты и целлюлозоразлагающие микроорганизмы, практически отсутствующие в ризосфере молодых растений, появляются при более позднем развитии последних. Очевидно, отмеченная группа микроорганизмов живет не за счет экзосмоса растений, а принимает активное участие в разложении отмирающих корней.
Микрофлора поверхности корня несколько отличается по составу от микробного ценоза ризосферы. Так, в ризоплане богаче представлен род Pseudomonas, здесь слабо размножаются Azotobacter, целлюлозоразлагающие и некоторые другие микроорганизмы, которых много в ризосфере.
Имеются попытки доказать, что зоне корня каждого вида растений свойственны строго специфические группы микроорганизмов, практически не размножающиеся в ризосфере других растительных организмов. Убедительных данных для подобного утверждения, однако, пока нет. Тем не менее, можно отметить некоторую перегруппировку отдельных микроорганизмов в зоне корня различных растений. Это определяется составом корневых выделений и органических остатков, которые у отдельных видов растений имеют некоторые особенности. Например, известно, что клубеньковые бактерии обильнее размножаются в ризосфере бобовых растений. Azotobacter лучше развивается в зоне корня одних растений, чем других. В зоне корня отдельных растений размножаются некоторые специфические грибы и т. д.
Какое же значение имеют сапрофитные микроорганизмы зоны корня в жизни растений? Прежде всего, нельзя отрицать их роль как разрушителей органических и минеральных соединений, подготавливающих минеральную пищу для растений. Определенное влияние на растения могут оказать микроорганизмы зоны корня вследствие их способности синтезировать витамины. Установлено, например, что бактерии ризосферы вырабатывают тиамин и ряд других витаминов. Ими синтезируются также ростовые вещества — гиббереллин и гетероауксин. Микрофлора зоны корня представляет собой определенный биологический барьер, влияющий на взаимоотношения высших растений и паразитов. Многие сапрофитные микроорганизмы вырабатывают антибиотические вещества, подавляющие развитие фитопаразитов.
Велика роль микрофлоры, окружающей корень растения, в потерях азота путем денитрификации.
agroinf.com
41) Микроорганизмы зоны корня, поверхности растений.
Рассмотрим состав микрофлоры зоны корня. Обычно выделяют «корневые» микроорганизмы, поселяющиеся на самой поверхности корня, — микрофлора ризопланы. Вычленяют также группу микробов, обитающих в слое почвы, прилегающем к корню,— микрофлора ризосферы. Количество микроорганизмов на поверхности корня и в ризосфере в сотни раз больше, чем в остальной массе почвы. В зоне молодого корня в основном размножаются неспорообразующие бактерии (Pseudomonas, Mycobacterium и т. д.). Здесь же встречаются микроскопические грибы, дрожжи, водоросли и другие микроорганизмы. Состав микрофлоры ризосферы меняется с возрастом растений. Например, бациллы, актиномицеты и целлюлозоразлагающие микроорганизмы, практически отсутствующие в ризосфере молодых растений, появляются при более позднем развитии последних. Очевидно, отмеченная группа микроорганизмов живет не за счет экзосмоса растений, а принимает активное участие в разложении отмирающих корней. Микрофлора поверхности корня несколько отличается по составу от микробного ценоза ризосферы. Так, в ризоплане богаче представлен род Pseudomonas, здесь слабо размножаются Azotobacter, целлюлозоразлагающие и некоторые другие микроорганизмы, которых много в ризосфере.
Микроорганизмы, развивающиеся на поверхности стеблей или листьев растений, получили название эпифитной микрофлоры . Микроорганизмы-эпифиты вынуждены довольствоваться минимальными источниками питательного субстрата, представленного выделениями растительных тканей и веществами-загрязнителями (пылью). Поэтому состав эпифитной микрофлоры весьма специфичен. Нередко 80% общего количества эпифитов составляют бактерии Erwiniaherbicola. Второе место по численности занимают различные грибы (Penicillum, Mucor, Fusarium и другие). На поверхности многих тропических растений обнаружены азотфиксирующие бактерии рода Beiyerckia, поставляющие азот непосредственно в лист.
Разнообразная и обильная микрофлора находится на поверхности семян. Так, на 1г зерна ржи приходится не менее 2.500 тыс. микробных клеток, пшеницы – 1.500 тыс., риса – 250 тыс. Общая численность эпифитных микроорганизмов резко возрастает при повышении влажности воздуха и усиленном выделении продуктов обмена растительными тканями.
При жизни растения эпифитная микрофлора не оказывает на него вредного влияния. Наоборот, питаясь продуктами выделений растений, она способствует освобождению тканей от продуктов собственного обмена. Эпифитная микрофлора образует определенный биологический барьер, препятствующий заражению растительных тканей фитопатогенными микробами.
Таким образом, симбиотические взаимоотношения микроорганизмов с высшими растениями разнообразны. При таком контакте пользу получают оба организма, не нанося друг другу вреда.
42) Пропионовокислое брожение.
Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:
3C6h22О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2h3O или 3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О
Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, оптимальная температура развития которых около 30°С. Пропионовокислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.
Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в результате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение углекислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксусная кислоты способствуют образованию специфического сырного вкуса и запаха. Пропионовокислые бактерии используются также для получения витамина B12.
studfiles.net
Ризосферная микрофлора и поглощение веществ корнями растения
Микроорганизмы исключительно важны для существования жизни на нашей планете. Благодаря деятельности микрофлоры происходит минерализация органических остатков и непрерывное поступление в атмосферу диоксида углерода, за счет которого осуществляется фотосинтез зеленых растений.
Поглощение воды с растворенными в ней минеральными веществами происходит в зоне всасывания корня. Корневые волоски этой зоны проникают между частицами этой зоны, прилегают к ним и всасывают из почвы воду с растворенными веществами. Поступление воды и растворенных веществ в корни через биологические мембраны осуществляется благодаря таким процессам как осмос, диффузия и активный транспорт.
Осмос – диффузия воды через мембрану. Диффузия – проникновение веществ через мембрану по градиенту концентрации (из области где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ воды и ионов осуществляется при участии белков мембраны, в которой имеются молекулярные поры, либо при участии жирорастворимых веществ.
Активный транспорт – перенос веществ против их градиента концентрации, связанный с затратами энергии. Он осуществляется специальными белками-переносчиками, которые образуют ионные насосы.
Из клеток с корневыми восками водный раствор просачивается в клеточные поры корня и далее из клетки в клетку попадает в сосуды. По сосудам корня вода с растворенными веществами поднимается в стебель, а по сосудам стебля – почкам, листьям, цветкам.
Главными движущими силами, которые обеспечивают передвижение почвенного раствора по сосудам, являются: присасывающие силы транспирации и корневое давление. Совокупность процессов поглощения из почвы, передвижение и усвоение макро- и микроэлементов (N, S, P, K, Ca, Mg, Mr, Zn, Fe и др.), необходимых для жизни растения составляет минеральное питание. Оно вместе с фотосинтезом составляет единый процесс питания.
Транспирация – испарение воды растением.
Процесс транспирации активно идет в губчатой ткани листа. Водяной пар по межклетникам проходит к устьицам и испаряется через них. Устьица расположены главным образом на внутренней стороне листа, что имеет очень важное значение в жизни растений, это обеспечивает меньшую потерю воды листом.
Транспирация у растений регулируется открыванием и закрыванием устьиц. Если растениям достаточно воды, то устьица открыты днем и ночью. При недостатке воды устьица закрываются и испарение прекращается. При благоприятных условиях устьица снова открываются.
Зоны, непосредственно примыкающие к корням живых растений, являются областями активного развития микроорганизмов. Это связано, прежде всего, с выделениями из корней (экзосмосом) органических веществ, синтезированных растениями.
Совокупность микроорганизмов, содержащихся в большом количестве в узкой зоне вокруг корней, называют ризосферной микрофлорой, а саму зону — ризосферой.
Взаимоотношения растений с корневой микрофлорой носят чаще характер симбиоза. Микроорганизмы питаются выделениями растений и, размножаясь на корнях, оказывают разностороннее влияние на питание растений, в том числе и на поступление веществ в корни. Так микрофлора, потребляя корневые выделения, облегчает доступ питательных веществ к клеткам корня, усиливая обменные процессы между поверхностью корневой системы и внешней средой.
Питательные вещества в почве находятся в рассеянном состоянии и чаще всего адсорбированы на твердых почвенных частицах, поэтому они не перемещаются свободно с током воды. Если бы не было посредников между почвой и растением в виде почвенных микроорганизмов, то, несмотря на огромную общую длину корневой системы, большая часть веществ, находящихся за пределами ризосферы, не поступала бы в растение.
К корням питательные вещества могут передвигаться по гифам грибов и по цепочкам бактериальных клеток. Это явление, несомненно, играет важную роль в обеспечении непрерывного поступления их из почвы, находящейся вне ризосферы. Скопление микроорганизмов на корнях и в ризосфере не приводит к обеднению прикорневого слоя почвы питательными веществами. Наоборот, здесь обычно содержится больше элементов минерального питания, чем за пределами ризосферы. Этот факт отчасти может быть объяснен приведенными выше наблюдениями о способности микроорганизмов передавать вещества на расстояние в направлении наибольшего потребления, однако основное объяснение в том, что в зоне корней интенсивно протекают процессы минерализации веществ.
Метаболизм (обмен веществ) корней оказывает большое влияние на почвенную среду, прилегающую к корням. Считают, например, что корни увеличивают кислотность примыкающих к ним микрослоев почвы за счет выделения углекислоты и Н+ ионов. Такие изменения возможны в пределах нескольких миллиметров вокруг корня.
Важным источником стимуляции почвенного микронаселения является выделение корнями питательных веществ. Патогенные и симбиотические микроорганизмы привязаны к ним либо способны растворять стенку клеток корня и проникать внутрь цитоплазмы. Экзосмос органических веществ из корней растений обусловлен активными процессами, пассивной диффузией или выделениями из отмирающих клеток. Молодые корешки обычно покрыты слизистыми чехликами, обильно заселенными микробами.
В продуктах экзосмоса корней обнаружено большое количество различных веществ, в том числе 10 разных сахаров, 23 аминокислоты, 10 витаминов, полисахаридные слизи, органические кислоты и др. Характер выделений зависит от вида и возраста растений. К сожалению, еще нет достаточных сведений о процессах корневого экзосмоса и использования веществ микроорганизмами в условиях природной нестерильной среды. Сфера воздействия корней на микрофлору в почве определяется лишь приблизительно по увеличению числа микробов по мере приближения к поверхности корня.
biofile.ru
Микроорганизмы. Аммонификация мочевины
Роль микроорганизмов в природе и сельском хозяйстве
Микроорганизмы – одни из древнейших живых существ, однако некоторые исследователи полагают, что им предшествовали неклеточные формы жизни. Считается, что развитие живого шло от простых к более сложным организмам.
Мир микроорганизмов сложен и разнообразен. Они широко распространены в природе. Академик В.Л. Омелянский писал о микробах: « Поистине они вездесуще… Незримо они сопутствуют человеку на всем его жизненном пути, властно вторгаясь в его жизнь то в качестве врагов, то как друзья. В громадном количестве они встречаются в пище, которую мы принимаем, воду которую мы пьем, и в воздухе которым мы дышим».
Микроорганизмы были первые обитатели на нашей планете. Около трех миллиардов лет назад они сформировали микробиосферу – древнейшую оболочку биосферы Земли. Биомасса таких существ превышает суммарную биомассу растений и животных. Накопившееся органическое вещество обладает высоким энергетическим потенциалом, поскольку из него образуется залежи нефти, газа угля, и других полезных ископаемых. Энергетика и в настоящее время во многом определяет прогресс науки, техники, а также благосостояние живущих на Земле.
Микроорганизмы активно участвуют в превращение веществ. Они повышают плодородие почвы. Так аммонификаторы разлагают белковые вещества. Продукты из жизнедеятельности (аммиак) окисляются нитрифицирующими бактериями вначале до азотистой, а затем да азотной кислот. Соли азотной кислоты – нитраты – усваиваются высшими растениями. Многие микроорганизмы фиксируют азот из воздуха (азотбактеры и др.), обогащают этим элементом почву, что повышает урожайность сельскохозяйственных культур.
Микроорганизмы превосходят химические сорбенты, как по количеству, так и по специфичности сорбции. Важно и то, что сорбентами могут быть отходы микробиологической промышленности (тысячи тонн), которые закапывают в глубокие траншеи. С помощью микробов-биосорбентов можно очищать промышленные стоки от тяжелых металлов, в том числе и от радиоактивных, что имеет большое значение в предотвращении загрязнения окружающей среды.
Микробы-санитары. Они очищают землю, разлагая трупы животных, остатки растений и загрязненную воду. В настоящее время большое внимание уделяют очистке воды. Чистой пресной воды становиться меньше. Очистка воды техническими целями не всегда достигает цели, поэтому изыскиваются биологические методы обезвреживания отходов производства. В некоторых странах отходы бумажных фабрик очищают с помощью микроорганизмов. Для этого загрязненную воду пропускают через большие емкости с целлюлозоразлагающими микроорганизмами.
Микроорганизмы – продуценты белка. Потребность в пищевом белке возрастает. В определенной степени эту проблему можно разрешить с помощью микроорганизмов. Их рост и развитие не зависят от времени года и погодных условий, а для своего питания они могут использовать непищевое сырьё – отходы сельскохозяйственного производства, целлюлозно-бумажной, лесной промышленности, нефть. По скорости производства белка микроорганизмы не имеют себе равных в мире.
Аммонификация мочевины – уравнение реакции, характеристика уробактерий, значение процесса
Животными и человеком ежесуточно выделяется в окружающую среду более 150 тыс. т, а в год более 20 млн.т. мочевинного азота, или 50 млн. т. мочевины. В моче содержится 47% азота, поэтому она считается одним из концентрированных азотистых удобрений.
Мочевина (карбамид) - СО(NH[])[]. Получают синтезом из аммиака и диоксида углерода при высоких давлениях и температуре. Белый микрокристаллический продукт, хорошо растворимый в воде. Гигроскопичность при температуре 20 -0С сравнительно небольшая. При хороших условиях хранения слеживается мало, сохраняет удовлетворительную рассеиваемость. Очень хорошими физическим свойствами обладает гранулированная мочевина. Гранулы диаметром 0,2-0,25 мм покрывают жировой оболочкой. В процессе грануляции образуется биурет.
Содержание биурета более 3% угнетает рост растений, поэтому мочевину лучше вносить за 10-15 дней до посева, чтобы биурет разложился. Мочевина непригодна для азотистого питания растений, и только после разложения ее уробактериями она становится усвояемой.
Уробактерии (ureae — моча) были открыты в 1862 г. Л. Пастером. Среди них встречаются как палочковидные, так и шаровидные формы микробов. Обитают в почве, навозе, сточных водах. Представители: (Bacillus pasteurii, Sporosarcina ureae и др.) Наиболее энергичные возбудители разложения мочевины — Вас. probatus и Вас. pasteuri, у которых жгутики расположены по всей поверхности тела. Такие микробы разлагают в 1 л. раствора до 140 г мочевины. Из шаровидных микробов наиболее энергичное действие на мочевину оказывает Sporosarcina ureae. В 1 л раствора она разлагает до 30 г мочевины. Характерный признак этой сарцины — наличие у нее жгутиков. Уробактерии аэробы и хорошо развиваются только в резкощелочной среде. В качестве азота они используют аммиачные соли или свободный аммиак, образующийся при гидролизе мочевины. Углерод из мочевины уробактерии использовать не могут, так как он находится в сильно окисленной форме и при гидролизе не выделяется в виде углерода диоксида. Углерод уробактерии используют из различных органических соединений (соли лимонной, янтарной, яблочной, уксусной и других кислот, а также моносахариды, сахариды и крахмал).
Разложение мочевины происходит под влиянием уреазы уробактерий, мочевина при этом превращается в аммиак и углекислоту. Для накопления данной группы бактерий пользуются средами, содержащими мочевину, которые разливают в колбы. Под ватную пробку подвешивают влажную красную лакмусовую бумажку для обнаружения аммиака.
Мочевина (Nh3)2CO растворяется и под действием фермента уреазы превращается в
На богатых гумусом почвах это превращение происходит за 2-3 дня, на песчаных и болотистых несколько медленнее. Углекислый аммоний на воздухе разлагается, образуя бикарбонат аммония и аммиака. Для того чтобы избежать потерь аммиака, удобрения следует сразу заделывать в почву. В почве углекислый аммоний подвергается гидролизу с образованием бикарбоната аммония и гидроксида аммония, который подщелачивает почвенный раствор. Затем в результате процесса нитрификации происходит подкисление. При внесении под рис и чай мочевина действует также, как сульфат аммония, на легких почвах ее действие эффективнее действия аммиачной селитры. Целесообразно применять мочевину в качестве основного удобрения, а также для ранневесенней подкормки озимых и пропашных культур при немедленной заделке в почву. При использовании мочевины в качестве некорневой подкормки раствор концентрацией до 5% не вызывает ожога листьев.
Корневая и прикорневая микрофлора, её состав и влияние на растения
Нормальная микрофлора растений представлена ризосферными и эпифитными микробами. Зона почвы, находящаяся в контакте с корневой системой растений, носит название ризосферы, а микроорганизмы, развивающиеся в данной зоне, называются ризосферными. Условно различают два типа ризосферы: ближнюю и отдаленную.
Ближняя располагается непосредственно на поверхности корней и извлекается вместе с ними, отдаленная начинается на расстоянии нескольких миллиметров от корней и распространяется в радиусе 50 см от них. Количество микроорганизмов в ближней и отдаленной ризосфере различно: на поверхности корней их от 50 млн до 10 млрд, на расстоянии 15 см от корней до 5 млн в 1 г. почвы. Число микроорганизмов в ризосфере в 100 раз больше, чем в почве, где растения не произрастают, что связано с выделением корнями растений различных питательных веществ. В свою очередь, почвенные микробы могут оказывать благоприятное воздействие на жизнь растений, что обусловлено: минерализацией органических веществ и растительных остатков; образованием витаминов, аминокислот, ферментов и других факторов роста, усиливающих ферментативные процессы в растениях и способствующих усилению корневого питания и более энергичному обмену веществ растений; антагонистической ролью в отношении фитопатогенных микроорганизмов.
Качественный и количественный состав микрофлоры ризосферы специфичен для каждого вида растений. Основная масса прикорневой микрофлоры представлена неспороносными грамотрицательными бактериями рода Pseudomonas, микобактериями и грибами, главным образом, базидиомицетами, реже фикомицетами, аскомицетами. Указанные грибы образуют симбиоз с корнями растений, в том числе и лекарственных, называемый микоризой. В зависимости от морфологических особенностей сожительства грибов с растениями различают эктотрофные и эндотрофные микоризы. Эктотрофные - ассоциации, при которых гриб не проникает внутрь корней, а поселяется на их поверхности, образуя своего рода чехол из мицелия. При эндотрофных микоризах мицелий гриба располагается в клетках коры корней растений, где образует скопления в виде клубков. Высшие растения, являясь основным источником питательных веществ для преобладающего числа микробного населения почв — гетеротрофов — оказывают существенное влияние на микробные ценозы. Зоны, непосредственно примыкающие к корням живых растений, являются областями активного развития микроорганизмов. Это связано прежде всего с выделениями из корней (экзосмосом) органических веществ, синтезированных растениями.
Совокупность микроорганизмов, содержащихся в большом количестве в узкой зоне вокруг корней, называют ризосферной микрофлорой, а саму зону — ризосферой. Кроме того, существует представление о ризоплане — непосредственной поверхности корня, заселенной микробами. Ясно, что метаболизм (обмен веществ) корней оказывает большое влияние на почвенную среду, прилегающую к корням. Считают, например, что корни увеличивают кислотность примыкающих к ним микрослоев почвы за счет выделения углекислоты и H+ ионов. Такие изменения возможны в пределах нескольких миллиметров вокруг корня. Важным источником стимуляции почвенного микронаселения является выделение корнями питательных веществ. Патогенные и симбиотические микроорганизмы привязаны к ним либо способны растворять стенку клеток корня и проникать внутрь цитоплазмы. Экзосмос органических веществ из корней растений обусловлен активными процессами, пассивной диффузией или выделениями из отмирающих клеток.Молодые корешки обычно покрыты слизистыми чехликами, обильно заселенными микробами. В продуктах экзосмоса корней обнаружено большое количество различных веществ, в том числе 10 разных Сахаров, 23 аминокислоты, 10 витаминов, полисахаридные слизи, органические кислоты и др.
Характер выделений зависит от вида и возраста растений. К сожалению, еще нет достаточных сведений о процессах корневого экзосмоса и использования веществ микроорганизмами в условиях природной нестерильной среды. Сфера воздействия корней на микрофлору в почве определяется лишь приблизительно по увеличению числа микробов по мере приближения к поверхности корня. Большинство трупп микроорганизмов обнаруживается в большем числе в ризосфере (Р), чем в окружающей почве (П), что можно выразить отношением: Р/П.
biofile.ru
Корень
Корень выполняет следующие важнейшие физиологические и механические функции.
1. Поглощение воды, минеральных и, отчасти, органических веществ из почвы и передача их в надземные части растения.
Суккуленты, растущие в аридных условиях, добывают воду, либо развивая длинные стержневые, уходящие глубоко под землю корни, либо формируя поверхностную сеть корней, расположенных всего в нескольких сантиметрах под поверхностью почвы. Такая корневая система может простираться на десятки метров в диаметре. Когда жаркий день сменяется ночью и на поверхность почвы выпадает роса, из грубых «арматурных» корней проклевываются и быстро вырастают нежные корешки, обладающие огромной всасывающей активностью. С увеличением дневной температуры и прогревом почвы они отмирают. Часто суккуленты имеют смешанный тип корневой системы.
2. Закрепление в субстрате. Растения, имеющие сильно разросшиеся (вертикально или горизонтально) корни, невозможно опрокинуть. Имея надежную опору, некоторые виды кактусов вырастают вверх на много метров (Carnegiea gigantea достигает 18 м в высоту).
3. Синтез некоторых органических соединений (например, гормонов роста) и накопление запасных питательных веществ.
4. Связь растения с микроорганизмами и грибами, активно участвующими в процессе поглощения и превращения веществ. Это так называемый симбиоз, без которого высшие растения не могут потреблять и усваивать большинство органических соединений.
В литературе можно встретить описание опыта по определению выживаемости молодых экземпляров Astrophytum sp.sp. при их длительном содержании в стерильной среде, полностью лишенной питательных веществ. При этом продолжительность жизни сеянцев приближалась к двум годам. Если же в находящийся в замкнутом сосуде субстрат периодически добавлять (например, с помощью шприца) низкомолекулярные органические вещества, ростовые процессы будут проходить вполне нормально. Именно поэтому при гидропонной культуре суккулентных растений в питательный раствор добавляют такие низкомолекулярные соединения, как глюкозу, инозит, витамины, гормоны и т. п.
Одним из общих биологических свойств корней является ветвление, значительно увеличивающее общую поверхность корней и образующее корневую систему. Травмирование верхушки корня стимулирует его ветвление, развиваются сильные боковые корни.
Корневые системы растений очень разнообразны, различаются по способу ветвления и форме, происхождению и экологическим типам. В зависимости от происхождения выделяют главный, придаточные и боковые корни.
Придаточные корни способны отрастать от любых вегетативных частей растения. Иногда они выполняют функцию прикрепления стебля к опоре или поглощения влаги из воздуха.Часто молодые побеги-детки имеют придаточные корни или их зачатки. От главного и придаточных корней отходят боковые корни.
Многообразна форма корней: шнуровидные, бичевидные, конусовидные, веретеновидные, реповидные, клубневидные и т. д. По отношению к субстрату различают подземные и воздушные корни.
У отдельных видов кактусов выделяют также особую группу сокращающихся, или контрактильных корней, которые при неблагоприятных условиях втягивают корневую шейку и даже стебель в почву, предохраняя их от перегрева (например, Ariocarpus sp.sp.).
Корни некоторых кактусов из родов Myrtillocactus, Trichocereus, Notocactus, Gymnocalycium имеют внутренние придаточные почки, из которых могут развиваться надземные побеги — корневые отпрыски.
В целом корень имеет довольно универсальное строение. Это хорошо видно на продольном разрезе.
Обычно различают три зоны и корневой чехлик, который покрывает наиболее молодые и делящиеся клетки первичной меристемы, расположенные на кончике корня. Эти молодые более или менее однородные клетки формируют конус нарастания, состоящий из клеток зоны роста и растяжения. Благодаря конусу нарастания нежные сосущие корешки кактусов могут вырасти до 6—8 см за ночь. В этих корешках конус нарастания составляет 1 — 1,5 мм, а остальное пространство занимают клетки зоны всасывания. В отличие от мезофитных растений, где протяженность зоны всасывания составляет 1,5—2 мм, у кактусов она гораздо длиннее: до 1—5 см и более. Поверхностные клетки этой зоны образуют особые выросты — корневые волоски. Корневые волоски поглощают из почвы растворы минеральных солей и своими выделениями растворяют некоторые химические соединения, например, фосфорнокислые. Благоприятное влияние на деятельность корневых волосков оказывает почвенный воздух.
Непосредственно за зоной всасывания расположена зона ветвления, покрытая корневой корой.
Внутреннее строение корня отличается от строения других органов, что хорошо просматривается на поперечном разрезе. Главное отличие в том, что корень не имеет сердцевины, а клетки ксилемы (древесины) и флоэмы (луба) расположены радиально. Между флоэмой и ксилемой лежат сегменты меристематической ткани — камбия. Однако в реповидных корнях, например, у растений родов Roseocactus, Lophophora, Coryphantha и им подобных, клетки камбия почти соединены в два полукольца. Все это следует учитывать при прививке кактусов, так как четырехсегментную корневую часть практически невозможно привить.
Процесс поглощения корнями минеральных солей и органических веществ из почвы сводится к обменным реакциям между клетками корня (корневыми волосками) и почвенным поглощающим комплексом, представленным коллоидным раствором органических и минеральных веществ.
Обменные реакции значительно облегчаются тем, что корневые волоски обычно тесно слипаются с частичками почвы. Углекислый газ, органические кислоты и некоторые ферменты, выделяемые клетками корня, играют большую роль в поглощении труднорастворимых почвенных соединений, постоянно выделяя в почву различные органические вещества, корни как бы притягивают к себе бактерии, которые обильно скапливаются вокруг них (с другой стороны, при загущенной посадке сеянцев эти же вещества оказывают тормозящее действие). Микроорганизмы способствуют переводу минеральных и органических соединений в доступную для растений форму.
Большое влияние на усвоение почвенных веществ корнями и деятельность микроорганизмов оказывает кислотность субстрата.
www.cactuz.ru