Фотосинтез, раздел «Биолог». Растения не способные к фотосинтезу
Фотосинтез, раздел «Биолог» — Юнциклопедия
Фотосинтез — это процесс поглощения организмами световой солнечной энергии и преобразования ее в химическую энергию. Кроме зеленыл растений, водорослей к фотосинтезу способны и другие организмы — некоторые простейшие, бактерии (цианобактерии, пурпурные, зеленые, галобактерии). Процесс фотосинтеза у этих групп организмов имеет свои особенности.
При фотосинтезе под действием света с обязательным участием пигментов (хлорофилла — у высших растений и бактериохлорофилла — у фотосинтезирующих бактерий) из углекислого газа и воды образуется органическое вещество. У зеленых растений выделяется при этом кислород.
Все фотосинтезирующие организмы называются фототрофами, поскольку для получения энергии они используют солнечный свет. За счет энергии этого уникального процесса существуют все остальные, гетеротрофные организмы на нашей планете (см. Автотрофы, Гетеротрофы).
Процесс фотосинтеза идет в пластидах клетки — хлоропластах. Компоненты фотосинтеза — пигменты (зеленые — хлорофиллы и желтые — каротиноиды), ферменты и другие соединения — упорядоченно располагаются в мембране тилакоидов или строме хлоропласта.
Молекула хлорофилла имеет систему сопряженных двойных связей, благодаря чему при поглощении кванта света она способна перейти в возбужденное состояние, т. е. один из ее электронов изменяет свое положение, поднимаясь на более высокий энергетический уровень. Это возбуждение передается так называемой основной молекуле хлорофилла, которая способна к разделению заряда: отдает электрон акцептору, который отправляет его по системе переносчиков в электронно-транспортную цепь, где электрон отдает энергию в окислительно-восстановительных реакциях. За счет этой энергии протоны водорода «перекачиваются» с внешней стороны мембраны тилакоидов на внутреннюю. Образуется разность потенциалов водородных ионов, энергия которой идет на синтез АТФ (см. Аденозинтрифос-форная кислота (АТФ). Образование АТФ в процессе фотосинтеза называется фотофосфо-рилированием в отличие от окислительного фосфорилирования, т. е. образования АТФ за счет процесса дыхания.
Молекула хлорофилла, отдавая электрон, окисляется. Возникает так называемая электронная недостаточность. Чтобы процесс фотосинтеза не прерывался, она должна быть возмещена другим электроном. Откуда же он берется? Оказывается, источник электронов, а также протонов (помните, они создают разность потенциалов по обе стороны мембраны) — вода. Под действием солнечного света, а также с участием особого фермента зеленое растение способно фотоокислять воду:
2Н2O →свет,фермент→ 2Н+ + 2ẽ + 1/2O2 + Н2O
Полученные таким образом электроны заполняют электронную недостаточность в молекуле хлорофилла, протоны же идут на восстановление НАДФ (активной группы ферментов, транспортирующих водород), образуя еще один энергетический эквивалент НАДФ•Н в дополнение к АТФ. Помимо электронов и протонов при фотоокислении воды образуется кислород, благодаря которому атмосфера Земли пригодна для дыхания.
Энергетические эквиваленты АТФ и НАДФ•Н расходуют свою энергию макро-эргических связей на нужды клетки — на движение цитоплазмы, транспорт ионов через мембраны, синтез веществ и т. д., а также обеспечивают энергией темновые биохимические реакции фотосинтеза, в результате которых синтезируются простые углеводы и крахмал. Эти органические вещества служат субстратом для дыхания или расходуются на рост и накопление биомассы растения.
Продуктивность сельскохозяйственных растений тесно связана с интенсивностью фотосинтеза.
yunc.org
Тля с солнечной батарейкой | Geo
Что отличает животных от растений? Подвижность – неверный ответ: перекати-поле легко путешествует, а коралловый полип, наоборот, всю жизнь сидит на одном и том же месте. До сегодняшнего дня биологи были твердо убеждены: главное отличие – фотосинтез. Растения способны прокормиться солнечным светом и неорганикой. А вот животные обречены питаться органикой, которую произвели другие. Но обычная гороховая тля Acyrthosiphon pisum разом обрушила стройную картину мира ученых: похоже, это первое в мире животное, способное к фотосинтезу. Команда биохимиков из Франции и Израиля пишет об этом в журнале Scientific Reports.
Недавно биологи обнаружили, что тля сама синтезирует каротиноиды – те самые вещества, которые придают оранжевый цвет моркови и абрикосам. А еще эти молекулы – более древний, чем хлорофилл, инструмент фотосинтеза. У растений они превращают энергию света в АТФ, химическое топливо живой клетки. Это как если бы солнечные батареи выдавали бензин. Человечеству с его техникой о таком остается только мечтать.
В организме животных каротиноиды тоже иногда попадаются. За розовую окраску перьев фламинго или мяса лосося отвечают именно они. А людей делает зрячими пигмент сетчатки ретиналь - производная каротиноида. Загвоздка в том, что организм животного в принципе не способен синтезировать эти молекулы своими силами. Вот и приходится выделять их из пищи. Нет моркови с абрикосами или какой-нибудь доступной замены – прощайте, зрение и розовые перья.
Тли - единственное существо в царстве животных, которое сумело обойти запрет.«Ген моркови», инструмент производства каротиноидов, она украла из чужой ДНК. Больше 30 миллионов лет назад насекомое позаимствовало фрагмент генома в 30 тысяч «букв» длиной у неизвестного грибка-паразита, который, похоже, с тех пор уже вымер. Альтернативы воровству у них не было: насекомые сосут соки из луба в стебле растений, куда растительные каротиноиды, растворимые в жирах, но не в воде, попасть не могут.
Как насекомые употребили краденое себе на пользу? В природе они встречаются в трех разновидностях – зеленые тли, оранжевые и бесцветные. Оранжевые производят больше всего каротиноидов, зеленые – поменьше, а бесцветные лишены их совсем. Окраска (а с ней и количество пигмента) зависит от температуры и других внешних условий: к примеру, оранжевые тли рождаются в самых благоприятных обстоятельствах, а бесцветные – при жестком дефиците ресурсов.
Ученые решили сравнить, как все три разновидности ведут себя на свету – и оказалось, что оранжевые, у которых каротиноидов больше всего, производят максимальное количество АТФ, а бесцветные – минимальное. Иначе говоря, для тли погреться на солнце значит набрать лишних калорий, как после сытного обеда.
Биологам осталось уточнить технические детали – и тогда учебники, включая школьные, придется переписывать.
www.geo.ru
можно ли научить человека фотосинтезу? —
Обнаружив механизм, с помощью которого животные, подобно растениям, осуществляют фотосинтез, учёные задумались о возможности перевода человека на полное обеспечение солнечной энергией.
Представьте, что было бы, если бы люди, как растения, могли питаться напрямую солнечной энергией. Это определённо облегчило бы нам жизнь: бесчисленные часы, потраченные на покупку, приготовление и поедание пищи можно было бы потратить на что-нибудь другое. Чрезмерно эксплуатируемые сельскохозяйственные земли вернулись бы к природным экосистемам. Резко упали бы уровни голода, недоедания и болезней, распространяющихся через пищеварительный тракт.
Однако люди и растения уже сотни миллионов лет не имеют общего предка. Наша биология кардинально отличается почти во всех аспектах, поэтому может показаться, что нет способа спроектировать человека так, чтобы он мог осуществлять фотосинтез. Или же это всё-таки возможно?
Эту проблему тщательно изучают некоторые специалисты по синтетической биологии, которые даже пытались создать собственных растительно-животных гибридов. И хотя мы пока далеки от создания способного к фотосинтезу человека, в результате нового исследования был обнаружен интригующий биологический механизм, который может поспособствовать развитию этой зарождающейся области науки.
Elysia chlorotica — животное, способное осуществлять фотосинтез подобно растениям
Недавно представители Морской биологической лаборатории, расположенной в американской деревне Вудс Холл, сообщили, что учёные разгадали секрет Elysia chlorotica — бриллиантово-зелёного морского слизня, который выглядит, как лист растения, питается солнцем, как лист, но фактически является животным. Оказывается, Elysia chlorotica поддерживает такой яркий окрас, употребляя водоросли и забирая себе их гены, обеспечивающие фотосинтез. Это единственный известный экземпляр многоклеточного организма, присваивающий ДНК другого организма.
В своём заявлении соавтор исследования, почётный профессор Южно-Флоридского университета Сидни К. Пирса сказал:
На Земле невозможно такое, чтобы гены водорослей действовали внутри клетки животного. И всё-таки это происходит. Они позволяют животному получать питание от солнца.По словам учёных, если бы люди захотели взломать собственные клетки, чтобы сделать их способными к фотосинтезу, для этого можно было бы использовать подобный механизм.Если взглянуть на клетки и генетический код человека и растения, окажется, что мы не такие уж и разные. Эта поразительная схожесть жизни на её фундаментальных уровнях позволяет происходить таким необычным вещам, как кража фотосинтеза животным. Сегодня, благодаря развивающейся области синтетической биологии, у нас может получиться воспроизвести такие явления за одно эволюционное мгновение, благодаря чему биопанк-идеи о создании фотосинтезирующих участков кожи кажутся менее фантастическими.
По словам Пирса,
обычно, когда гены одного организма переносят в клетки другого — это не срабатывает. Но если это работает, это может в одночасье изменить многое. Это как ускоренная эволюция.Однако морские слизни отличаются от подобных животных тем, что они нашли способ исключить посредников и совершать фотосинтез только для себя, поглощая хлоропласты из водорослей и покрывая ими стенки своего пищеварительного тракта. После этого гибрид животного и растения может месяцами жить, питаясь только солнечным светом. Но до сих пор загадкой оставалось, как именно слизни поддерживают свои краденые солнечные фабрики.
Теперь Пирса и другие соавторы исследования нашли ответ на этот вопрос. Похоже, что слизни не только воруют у водорослей хлоропласты, но ещё и крадут важные коды ДНК. В статье, опубликованной в журнале The Biological Bulletin, значится, что поддерживать работу солнечных машин ещё долгое время после поедания водорослей слизням может помогать ген, который кодирует фермент, используемый для починки хлоропластов.
В природе генетическая экспроприация может быть редким явлением, но в лабораториях учёные экспериментируют с ней на протяжении уже многих лет. Перенося гены из одного организма в другой, люди создали множество новых форм жизни: от кукурузы, производящей собственные пестициды, до светящихся в темноте растений. С учётом всего этого, настолько ли безумно предположение, что нам стоит последовать примеру природы и наделить животных — или даже людей — способностью к фотосинтезу?
Биолог, дизайнер и писатель Кристина Агапакис, получившая в Гарварде докторскую степень в области синтетической биологии, провела много времени размышляя над тем, как создать новый симбиоз, при котором животные клетки были бы способны фотосинтезировать. По словам Агапакис, миллиарды лет назад предки растений вобрали в себя хлоропласты, которые были свободноживущими бактериями.
Как рассказала Агапакис, проблема создания питающегося солнцем организма состоит в том, что для поглощения достаточного количества солнечного света необходима поверхность с очень большой площадью. С помощью листьев растениям удаётся поглощать огромное, относительно их размера, количество энергии. Мясистые люди, с их соотношением поверхности и объёма, скорее всего не обладают необходимой пропускной способностью.
На самом деле, питающийся солнечным светом Elysia chlorotica может быть исключением, которое подтверждает правило. Слизняк стал выглядеть и вести себя настолько похоже на лист, что во многом стал больше растением, чем животным.
Но даже если человек не может существовать только за счёт солнца, кто сказал, что он время от времени не может дополнить свой рацион небольшой солнечной закуской? На самом деле, большинство способных к фотосинтезу животных, в числе которых несколько сородичей Elysia chlorotica, полагаются не только на энергию солнца. Свой фотосинтезирующий механизм они используют в качестве резервного генератора на случай нехватки еды. Таким образом, способность фотосинтезировать является страховкой от голода.
Возможно, человек смог бы найти совершенно новое применение фотосинтезу. Например, по словам Агапакис,
на коже человека могли бы быть зелёные пятна – активируемая солнечным светом система заживления ран. Что-то, не требующее такого количества энергии, которое необходимо человеку.В ближайшем будущем человек не сможет полностью перейти на обеспечение одним только солнечным светом — по крайней мере до тех пор, пока не решится на кардинальные модификации организма — поэтому пока нам остаётся продолжать вдохновляться примером природы.
Источник перевод для MixedNews — Анастасия Букина Loading...
mixednews.ru