Макроэлементы в растениях. Макроэлементы — это что? Какими бывают макроэлементы и микроэлементы?

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

18 Физиологическое значение макроэлементов в жизни растений. Макроэлементы в растениях


18 Физиологическое значение макроэлементов в жизни растений.

Содержание - от неск. десятков до 0,01%. Сюда входят все органогены (С, N, О, Н), а также элементы, образующие анионы (Si, Р, S) и катионы (К, Na, Mg, Са, Fe).

Из макроэл., образующих анионы, важное физиологическое значений имеют азот, фосфор и сера. Фосфор. Растение поглощает из почвы анион ортофосфорной кислоты РО4. Примерно 80 % фосфора раст. усваивает из мин. фосфатов и 20 % — из орг-их. В поглощении Р очень важную роль играют выделения корневых систем растений — органические кислоты и фермент фосфатаза. Первые способствуют растворению труднорастворимых фосфорсодержащих минералов. Фосфатаза же катализирует отщепление мин. фосфора от орг-их соед. Наиболее высоко содерж. Р в клетках меристемы и в зародышах плодов. В клетке большое количество Р сосредоточено в ядрах, где его содержание составляет 1,3%. Основная физиологическая роль фосфора — участие в энергетических процессах. Переходя в связанную форму, Р принимает участие в образовании макроэргической связи. Отщепление Р означает ее разрыв и освобождение значительного количества энергии. Следовательно, Р участвует в процессе трансформации энергии в кл., присоединяя остаток фосфорной кислоты к аденозиндифосфату (АДФ) с образованием АТФ. Р входит в состав нуклеотидов, н/к и нуклеопротеидов, далее — коферментные системы, принимающие участие в окислительных пр-ах — НАД, ФАД, НАДФ. К ним относятся ацил- и енолфосфаты, оказывающие влияние на дыхание и фотосинтез. Сюда входит также рибулозо-1,5-дифосфат, необходимый для фотосинтеза. Наконец, это фосфорные эфиры сахаров, играющие важную роль при загрузке и разгрузке флоэмы. Р может откладываться в качестве зап. пит. в-ва (фитин и полифосфаты). Т.о., без участия Р не может обходиться ни один из важнейших обменных процессов. Сера поглощается в окисленной форме в виде аниона SО4, но в растении восст-ся до сульфгидрильной группы SH- и в таком виде входит в орг. соед. Раст. содержат до 1,0% серы. Главная физиол. роль серы — образование о/в систем типа цистин - цистеин, в которых одно соединение переходит в другое, восстанавливая или окисляя субстрат. Сера входит в состав многих орг. в-в. Она образует серосодержащие аминокислоты (метионин, цистеин, глутатион) и серосодержащие белки, гликозиды, горькие эфирные масла. Сера входит также в состав важнейших биологически активных соединений — коэнзима А и витаминов (тиамина, биотина, липоевой кислоты). Из других функций серы необходимо отметить ее участие в созданий третичной структуры белка. Кремний обнаружен у всех растений, в некоторых из них его содержится много, особенно в хвощах, злаках и осоках. Кремний пропитывает оболочки клеток и придает им твердость и прочность — в этом, видимо, главное его значение для растений. Из элементов, образующих катионы, важнейшим является Калий. Он поглощается растением в виде иона К+, в той же форме передвигается и остается в растении. Содержание его в растении составляет 1,2 %, что 1000 раз превышает его уровень в почве. К концентрируется в молодых частях растения и выполняет в растении различные регуляторные функции. Калий повышает водоудерживающую способность коллоидов цитоплазмы и способствует их высокой гидратации. При этом он понижает вязкость цитоплазмы и увеличивает проницаемость ее мембран. Он стимулирует активный мембранный транспорт, принимая участие в передвижении воды и ассимилятов. К приводит к открытию устьица на свету и увеличению транспирации. Он регулирует фотосинтез и обр-е углеводов, белков, АТФ. Противоположность калию элемент той же группы — Натрий (поглощается в форме иона Na) — находится в больших кол-ах в почве, конц. его в растении также высока. Однако он не считается необходимым для всех организмов и попадает в них пассивно, по градиенту. Из культурных растений он важен для различных форм свеклы. Катионы предст. Кальцием и Магнием. Содерж. Са в раст. может быть высоким и достигает 3 %. Он малоподвижен и находится в старых органах. Са, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются составной частью клеточных оболочек. Избыточный Са часто собирается в вакуолях, откладываясь в виде нераст.солей щавелевой, лимонной и др. к-т. Физиол. роль кальция велика. Он, подобно калию влияет на коллоидно-химические свойства цитоплазмы, но действие его противоположно: он способствует обезвоживанию коллоидов, увеличивает вязкость цитоплазмы и понижает проницаемость ее мембран. Са принимает участие в ростовых процессах, регулируя стадии роста клетки — деление и растяжение. Особенно большое значение он имеет для роста корня. Са в большом кол-ве необходим для бобовых раст., что связано с особенностями их азотного пит. Сод. магния в раст. - от 0,02 до 3,1 %. Он содержится в зеленых листьях, в узлах кущения у злаков, в зародышах семян. Внутри кл. он локализован большей частью в митохондриях и пластидах. Основная масса магния входит в состав хлорофилла (в ядро) — этим обусловлена его основная физиол. роль. Кроме того, он необходим для обмена веществ: активирует процесс фосфорилирования, приним. участие в регуляции формирования рибосом, синтезе белков и н/к.

Железо поглощается раст. в виде иона Fe3. Среднее содержание железа в раст. составляет 0,02 - 0,08 %. Оно входит в составе кофермента в различные окислительные ферментные системы: цитохромы, цитохромоксидазу, каталазу, пероксидазу, ферредоксин. Входя в ферментные системы, железо катализирует процессы окисления и восстановления. Важное значение железа заключается в том, что оно катализирует образование хлорофилла, который без железа или при его недостатке не образуется. В таком случае развивается болезнь— хлороз, который хар-ся потерей зеленой окраски молодыми листьями.

studfiles.net

Роль макроэлементов в питании растений

В химическом составе растений почти вся таблица Менделеева, о влиянии некоторых веществ данных пока нет, но самые ответственные «рычаги» управления обменными процессами изучены. Наибольшую важность в корневых подкормках представляют следующие макроэлементы:

признаки недостатка и избытка азота

Азот

Один из важнейших элементов для питания растений и формирования хлорофилла. Участвует в регуляции роста зеленой массы и влияет на продолжительность цветения.

При недостатке

  • Замедляется рост
  • Листья желтеют из-за недостаточной выработки хлорофилла: сначала снизу, т.к. элемент в первую очередь накапливается в молодых тканях, но постепенно начинает страдать вся зеленая масса

При избытке

  • Слишком быстрый рост с формированием более рыхлых тканей
  • Снижение иммунитета к заболеваниям
  • Цветение откладывается или вовсе не происходит
  • Ухудшается усвоение калия
  • Накапливаются нитраты как результат чрезмерного внесения удобрений с азотом

▲ к списку

признаки недостатка и избытка фосфора

Фосфор

Он необходим в большинстве обменных процессов, участвует в закладке бутонов и плодоношении, влияет на здоровье корневой системы и зимостойкость растения.

При недостатке

  • Задерживается цветение
  • Замедляется созревание плодов и семян
  • Формируются дефектные плоды и семена
  • Листья неестественно темнеют, становятся синеватыми или красно-коричневыми — процесс идет от нижних к более молодым
  • Листья загибаются кверху

При избытке

  • Замедляется развитие
  • Снижается устойчивость к недостатку воды
  • Ухудшается усвоение калия, цинка, железа
  • Листья желтеют из-за нарушений выработки хлорофилла и покрываются выраженными некротическими пятнами, после чего опадают
  • Растение быстро стареет

▲ к списку

признаки недостатка и избытка калия

Калий

Участвует в процессах углеводного, белкового, водного обмена, фотосинтеза. Влияет на способность растения сохранять влагу, укрепляет ткани и повышает сопротивляемость заболеваниям и вредителям.

При недостатке

  • Листья приобретают скрученную, сморщенную форму, заворачиваются книзу
  • Появляются ожоги и бурая пятнистость по краям листовой пластины
  • Листья становятся голубоватыми, тусклыми, с бронзовым оттенком
  • Стебель становится тонким, рыхлым
  • Замедляются развитие растения и формирование бутонов
  • Повышается подверженность грибковым заболеваниям
  • Размер цветков уменьшается
  • Растение сбрасывает завязи
  • Страдают качество и количество урожая

При избытке

  • Замедляется рост
  • Растение вытягивается
  • Листья деформируются и желтеют — процесс идет снизу вверх; покрываются мозаичными пятнами, вянут и опадают
  • Новые листья формируются мелкими
  • Ухудшается усвоение азота, магния, кальция, цинка
  • Укорачиваются цветоносы
  • Снижается сопротивляемость грибковым заболеваниям и неблагоприятным погодным условиям

▲ к списку

признаки недостатка и избытка магния

Магний

Это один из компонентов хлорофилла, поэтому без него процесс фотосинтеза невозможен. Элемент активизирует многие ферменты и участвует в синтезе углеводов, белков, жиров и органических кислот. Также магний задействован в образовании фитина — это вещество содержится в семенах растений, оно необходимо для обменных процессов при прорастании.

При недостатке

  • Замедляется рост
  • Задерживается цветение
  • Жилки и края листьев желтеют, становятся красноватыми или фиолетовыми, крупные жилки остаются зелеными
  • Листья приобретают куполообразную форму с загнутыми книзу кончиками и краями, края постепенно сморщиваются и отмирают
  • Плоды не вызревают

При избытке

  • Отмирают корни
  • Ухудшается усвоение кальция, железа, калия
  • Листья темнеют, незначительно уменьшаются
  • Молодые листья сморщиваются

▲ к списку

признаки недостатка и избытка кальция

Кальций

Участвует в формировании клеточных оболочек, углеводном и белковом обменах, синтезе и росте хлоропластов. Кальций требуется для усвоения аммиачного азота и препятствует выделению аммиака из нитратов.

При недостатке

  • Рост прекращается
  • Угнетается развитие корневой системы, прекращается образование корневых волосков, кончики повреждаются и приобретают бурую окраску
  • Деформируется и отмирает точка роста
  • Края листьев приобретают неправильную форму и окрашиваются в бурый оттенок
  • Листья желтеют, скручиваются или становятся волнистыми, после чего отмирают
  • Опадают бутоны, цветки и завязи
  • На плодах появляются некротические пятна
  • Ухудшается усвоение других элементов питания

При избытке

  • Листья желтеют между жилками и покрываются светлыми некротическими пятнами, быстро опадают
  • Ухудшается усвоение калия, магния, азота и других элементов
  • Растение быстро стареет

▲ к списку

признаки недостатка и избытка серы

Сера

Участвует в синтезе белков, некоторых витаминов и аминокислот, хлорофилла. Стимулирует образование азотфиксирующих клубеньков у бобовых культур.

При недостатке

  • Замедляется развитие
  • Растение вытягивается
  • Новые листья формируются мелкими
  • Листья бледнеют, но, в отличие от дефицита азота, почти не опадают; изменение окраски происходит от макушки к корням

При избытке

  • Снижается урожайность у крестоцветных и злаковых
  • Листья мельчают, становятся грубее, приобретают тусклый зеленый оттенок и постепенно отмирают
  • Края листьев заворачиваются внутрь и коричневеют, после чего окраска сменяется бледно-желтой или сиренево-бурой

▲ к списку

признаки недостатка и избытка железа

Железо

Необходимо для синтеза хлорофилла, белков и других процессов.

При недостатке

  • Замедляется развитие
  • Листья бледнеют между жилками, постепенно становятся белыми полностью — процесс идет от макушки к корням
  • Соцветия травянистых растений формируются мелкими и слабыми
  • У плодовых деревьев усыхают кончики ветвей и побегов
  • Снижается урожайность

При избытке

  • Прекращается развитие корневой системы и надземной части растения
  • Молодые листья желтеют между жилками, постепенно становятся полностью бледными, некротические пятна не появляются
  • При особенно сильной концентрации железа листья отмирают и осыпаются без изменения окраски или формы
  • Ухудшается усвоение фосфора, марганца и других элементов

▲ к списку

Поскольку дефицит или избыток одного элемента может отражаться на способности растения усваивать другие, правильно определить причину болезненного состояния и корректировать ее не всегда просто. При внесении удобрений рекомендуется строго следовать указаниям производителя: восполнить недостаток всегда можно, а нейтрализовать избыточную дозу уже не получится.

Дата публикации: 16.10.2017

flosium.ru

Макроэлементы при выращивании растений без почвы

e>

 

Макроэлементы

 

Элементы, количество которых в растениях составляет проценты или десятые доли процента, называют макроэлементами. К ним относят азот, фосфор, серу и катионы — калий, магний и кальций; железо занимает промежуточное положение между макро- и микроэлементами.

МакроэлементыАзот. Азот хорошо усваивается растением из солей азотной кислоты и аммония. Он является одним из главнейших элементов корневого питания, так как входит в состав белков всех живых клеток. Сложная молекула белка, из которого построена протоплазма, содержит от 16 до 18% азота. Протоплазма представляет собой живое вещество, в ней совершается главнейший физиологический процесс — дыхательный обмен. Лишь вследствие деятельности протоплазмы в растении происходит сложный синтез органических веществ. Азот является составной частью нуклеиновых кислот, входящих в состав ядра и являющихся носителями наследственности. Значение азота для растительной клетки определяется еще тем, что он является неотъемлемой частью хлорофилла-—зеленого пигмента растений, от присутствия которого зависит фотосинтез; он входит в состав ферментов, которые регулируют реакции обмена веществ, и ряда витаминов. Очень небольшое количество азота встречается в растении в неорганической форме. При избытке азотного питания или при недостатке света в клеточном соке накапливаются нитраты. Все формы азота п растении превращаются в аммиачные соединения, которые, вступая в реакцию с органическими кислотами, образуют аминокислоты и амиды — аспарагин и глютамин. Аммиачный азот обычно не скапливается в растении в значительных количествах. Это наблюдается только при недостатке углеводов; в этих условиях растение не может его переработать в безвредные органические вещества — аспарагин и глютамин. Избыток аммиака в тканях зачастую приводит к их повреждению. Особенно с этим обстоятельством следует считаться при выращивании растений в теплице в зимнее время. Чрезмерная доза аммиачного азота в питательном растворе и недостаточность освещения, которая снижает интенсивность фотосинтеза, могут привести к повреждению листовой паренхимы из-за скопления аммиака. Азот необходим овощным растениям в течение всей вегетации, так как они постоянно строят новые органы. Если растение испытывает недостаток в азоте, то это прежде всего сказывается на темпе роста. Новые побеги почти не образуются, размеры листьев уменьшаются. При отсутствии азота в старых листьях хлорофилл разрушается, вследствие чего листья принимают бледно-зеленую окраску, а затем желтеют и отмирают. При сильном голодании начинают желтеть листья средних ярусов, а верхние листья принимают бледно-зеленую окраску. Бороться с этим явлением при выращивании растений без почвы довольно легко. Достаточно прибавить к питательному раствору азотнокислую соль, чтобы дней через 5—6 листья приняли темно-зеленую окраску и растение начало образовывать новые побеги.

Сера. Сера усваивается растениями только в окисленной форме—в виде аниона SCV. В растении основная масса аниона сульфата восстанавливается до —SH и —S—S— групп. В виде таких группировок сера входит в состав некоторых аминокислот и белков. Сера входит также в состав ряда ферментов в том числе ферментов, участвующих в процессе дыхания. Таким образом, соединения серы играют важную роль в процессах обмена веществ и энергии. Часть серы находится в клеточном соке в виде иона сульфата. При распаде серосодержащих соединений в присутствии кислорода происходит окисление восстановленной серы до сульфата. При отмирании корня в условиях, когда ему не хватает кислорода, серосодержащие соединения распадаются с образованием сероводорода, который ядовит для корня. Это одна из причин быстрой гибели корневой системы при затоплении ее и недостатке кислорода. Недостаток серы в питательном растворе наблюдается редко. При недостатке серы, так же как и при недостатке азота, начинается разрушение хлорофилла, но первыми испытывают недостаток серы верхние листья.

Фосфор. Фосфор усваивается растениями в окисленной форме в виде солей фосфорной кислоты. Фосфор входит в состав сложных белков — нуклеопротеидов, важнейших веществ ядра и плазмы. Фосфор входит также в состав фосфатидов и жиропо-двбных веществ, играющих большую роль в образовании поверхностных мембран клетки, в состав ряда ферментов, многих физиологически активных соединений. Он играет огромную роль в процессах гликолиза и аэробного дыхания. Освобождающаяся в этих процессах энергия накапливается в виде богатых энергией фосфатных связей; эта энергия затем используется для синтеза самых различных веществ. Фосфор принимает участие и в таком важном процессе жизнедеятельности растений, как фотосинтез. Фосфорная кислота в растении не восстанавливается, а связывается с органическими веществами, образуя фосфорные эфиры. Если фосфор в окружающей среде содержится в изобилии, то он накапливается в клеточном соке в виде минеральных солей, которые являются запасным фондом фосфора. Благодаря буферным свойствам соли фосфорной кислоты регулируют также кислотность содержимого клетки, поддерживая ее на благоприятном уровне. Фосфор особенно необходим в ранние периоды жизни растений. При отсутствии фосфора в начале жизни и при последующей подкормке растения фосфорными солями листья растений некоторое время страдают из-за усиленного поступления фосфора и нарушенного фосфорными солями листья растений некоторое время страдают из-за усиленного поступления фосфора и нарушенного в связи с этим азотного обмена. Вот почему особенно необходимо с первых дней жизни обеспечить растению хорошее условие фосфорного питания.

 

Совет:Большой физиологической активностью обладают так называемые ауксины (гетероауксин, гиббереллин)

На сайте есть:

nau4im.ru

Макроэлементы — это что? Какими бывают макроэлементы и микроэлементы?

Макроэлементы — это вещества, необходимые для нормальной жизнедеятельности организма человека. Они должны поступать с пищей в количестве от 25 граммов. Макроэлементы — это простые химические вещества. Это могут быть как металлы, так и неметаллы. Однако они необязательно должны поступать в организм в чистом виде. В большинстве случаев макро- и микроэлементы поступают с пищей в составе солей и других химических соединений.микроэлементы и макроэлементы

Макроэлементы — это какие вещества?

В организм человека должно поступать 12 макроэлементов. Из них четыре называют биогенными, так как их количество в организме наибольшее. Такие макроэлементы — это основа жизни организмов. Из них состоят клетки.

Биогенные

К макроэлементам относятся:

  • углерод;
  • кислород;
  • азот;
  • водород.

Их называют биогенными, так как они являются основными составляющими живого организма и входят в состав почти всех органических веществ.

Другие макроэлементы

К макроэлементам относятся:

  • фосфор;
  • кальций;
  • магний;
  • хлор;
  • натрий;
  • калий;
  • сера.

Их количество в организме меньше, чем биогенных макроэлементов.макроэлементы это

Что такое микроэлементы?

Микро- и макроэлементы отличаются тем, что микроэлементов организму необходимо меньше. Чрезмерное поступление их в организм оказывает негативное влияние. Однако и их недостаток также вызывает заболевания.

Вот список микроэлементов:

  • железо;
  • фтор;
  • медь;
  • марганец;
  • хром;
  • цинк;
  • алюминий;
  • ртуть;
  • свинец;
  • никель;
  • йод;
  • молибден;
  • селен;
  • кобальт.

Некоторые микроэлементы при превышении дозировки становятся чрезвычайно токсичными, например ртуть и кобальт.

Какую роль эти вещества выполняют в организме?

Рассмотрим функции, которые выполняют микроэлементы и макроэлементы.

Роль макроэлементов:

  • Фосфор. Входит в состав нуклеиновых кислот и протеинов, а также солей, из которых формируются кости и зубы.
  • Кальций. Входит в состав костей, а также зубов. Кроме того, необходим для сокращения мышц. Из кальция также состоят раковины моллюсков.
  • Магний. Входит в состав хлорофилла, который обеспечивает фотосинтез у растений. В организме животных участвует в синтезе белка.
  • Хлор. Его ионы участвуют в процессе возбуждения клеток.
  • Натрий. Выполняет ту же функцию, что и хлор.
  • Калий. Обеспечивает удержание нужной воды в клетке. Участвует в процессах возбуждения клетки, а также необходим для функционирования ферментов.
  • Сера. Являются составляющей нуклеиновых кислот и белков.к макроэлементам относятся

Функции, выполняемые некоторыми микроэлементами, до сих пор не до конца изучены, так как чем меньше элемента присутствует в организме, тем сложнее определить процессы, в которых он принимает участие.

Роль микроэлементов в организме:

  • Железо. Участвует в процессе дыхания и фотосинтеза. Входит в состав белка гемоглобина, который транспортирует кислород.
  • Фтор. Является одной из составляющих эмали зубов.
  • Медь. Принимает участие в фотосинтезе и дыхании.
  • Марганец. Обеспечивает функционирование нервной системы.
  • Хром. Участвует в регуляции углеводного обмена и регулирует уровень сахара в крови. Кроме того, может замещать собой йод.
  • Цинк. Является компонентом инсулина — гормона, необходимого для превращения глюкозы в гликоген.
  • Алюминий. Участвует в процессе регенерации — восстановления тканей.
  • Ртуть. Является компонентом некоторых биологически активных веществ. Ее роль в организме человека до конца не изучена.
  • Свинец. Регулирует содержание гемоглобина в крови. Активирует некоторые ферменты. Участвует в обмене веществ. Стимулирует деление клеток.
  • Никель. Участвует в процессах кроветворения и синтеза организмом гормонов. Активизирует действие гормона инсулина и угнетает действие адреналина.
  • Йод. Обеспечивает нормальное функционирование щитовидной железы. Необходим для синтеза тиреоидных гормонов.
  • Молибден. Выводит из организма свободные радикалы. Участвует в синтезе аминокислот. Выводит из организма излишки железа, задерживает фтор.
  • Селен. Способствует усвоению йода, является компонентом биологически активных веществ, входит в состав сердца, поперечно-полосатой мускулатуры.макроэлементы клетки

Макроэлементы клетки и ее микроэлементы

Рассмотрим ее химический состав в таблице.

Элементарный состав клетки
ЭлементПроцентное содержание в клетке
Кислород65-75
Углерод15-18
Азот1,5-3
Водород8-10
Сера0,4-0,5
Фосфор0,2-1
Калий0,15-0,4
Хлор0,05-0,1
Кальций0,04-2
Магний0,02-0,03
Натрий0,02-0,03
Железо0,01-0,015
Другиедо 0,1 в общей сложности

Мы рассмотрели химический состав клетки на уровне элементов, но стоит учесть, что они, естественно, не содержатся в ней в чистом виде, а объединяются в органические и неорганические химические элементы.микро и макроэлементы

В какой еде есть нужные организму элементы?

Рассмотрим в таблице, в каких продуктах содержатся макро- и микроэлементы.

ЭлементПродукты
МарганецЧерника, орехи, смородина, бобы, овсянка, гречка, черный чай, отруби, морковь
МолибденБобы, злаки, курятина, почки, печень
МедьАрахис, авокадо, соя, чечевица, моллюски, лосось, раки
СеленОрехи, бобы, морепродукты, брокколи, лук, капуста
НикельОрехи, злаки, брокколи, капуста
ФосфорМолоко, рыба, желток
СераЯйца, молоко, рыба, мясо, орехи, чеснок, бобы
ЦинкСемечки подсолнечника и кунжута, ягнятина, сельдь, бобы, яйца
Хром

Дрожжи, говядина, помидоры, сыр, кукуруза, яйца, яблоки, телячья печень

Железо

Абрикосы, персики, черника, яблоки, бобы, шпинат, кукуруза, гречка, овсянка, печень, пшеница, орехи

Фтор

Растительные продукты

Йод

Морская капуста, рыба

Калий

Курага, миндаль, фундук, изюм, фасоль, арахис, чернослив, горох, морская капуста, картошка, горчица, кедровые орешки, грецкие орехи

Хлор

Рыба (камбала, тунец, карась, мойва, скумбрия, хек и др.), яйца, рис, горох, гречка, соль

Кальций

Молокопродукты, горчица, орехи, овсянка, горох

НатрийРыба, морская капуста, яйца
АлюминийПочти во всех продуктах

Теперь вы знаете практически все о макро- и микроэлементах.

fb.ru

Макроэлементы. Калий

Физиологическая роль калия. Среди макроэлементов, наиболее значимых в жизни растений, калий (К) занимает особое место. Он способствует синтезу белков и сахаров, передвижению и накоплению углеводов в продуктивных частях растений, нормализует процесс фотосинтеза, увеличивает осмотическое давление клеточного сока, благодаря чему повышается засухоустойчивость и зимостойкость культур. Достаточное количество калия в питании растений усиливает их защитные свойства против некоторых заболеваний, улучшает лежкость плодов и овощей. Этот элемент способствует повышению механической прочности тканей. У зерновых культур это проявляется в повышении стойкости к полеганию. В отличие от азота и фосфора, которые находятся в растениях в органических соединениях, представляющих собой малоподвижные и труднорастворимые формы, калий присутствует в виде ионов (высокоподвижные формы) в солевых растворах преимущественно в клеточном соке (80%), в вакуолях. Меньшая его часть адсорбируется коллоидами, и совсем незначительное количество (около 1%) удерживается необменно митохондриями в цитоплазме растительных клеток. По причине исключительной подвижности ионов калия он легко вымывается из листьев. Этот процесс потери элемента более активен в ночное время, так как днем калий сохраняется благодаря происходящим биохимическим процессам, к тому же происходит обратное его поглощение из почвы корневой системой (у злаков). Особенно остро растения нуждаются в полноценном калийном питании первые 15 дней после всходов, а максимальное потребление элемента происходит в период наибольшего роста и интенсивного наращивания вегетативной массы. Калий в растениях Калий распределяется в разных органах растений неравномерно: в старых листьях его запасы минимальны, а в пыльце они достигают значительных показателей. Наибольшее количество калия как участника ростовых процессов сосредоточено в самых молодых вегетативных частях (эмбриональные ткани, растущие клетки), где содержание его в 3 – 5 раз выше, чем в старых тканях. Но в период созревания культур происходит перемещение элемента. У овощных наблюдается накопление калия в корнеплодах и клубнях (до 96%), а у злаков он перемещается в нетоварные части (стебли, листья). Симптомы дефицита элемента. Недостаточная обеспеченность растений калием уже в начальных стадиях приводит к замедлению синтеза белка и нуклеиновых кислот, нарушению азотного обмена, а также снижению интенсивности процесса фотосинтеза, в результате чего тормозится деление клеток и наращивание вегетативной массы культур. С помощью исследований установлено, что нехватка калия в культурах приводит к резкому снижению содержания сахарозы, крахмала и прочих полисахаридов при одновременном возрастании количества глюкозы. При дефиците калия в растительных клетках происходит накапливание аммиака, что может оказаться губительным для культур. Дефицит калия

Недостаточное калийное питание приводит к угнетению развития репродуктивных органов растений. Наблюдается формирование слабой корневой системы, подверженной различным заболеваниям, задержка роста бутонов и соцветий, неравномерное созревание плодов, у злаков зерна формируются щуплыми и характеризуются пониженной всхожестью. Кроме того, растения, страдающие от дефицита калия, легко повреждаются различными паразитами. Внешние симптомы калийного голодания проявляются (вначале на нижних листьях) в побурении и отмирании края листовых пластин (т.н. «краевой ожог»), появлении на них ржавых крапинок. Возможна также мелколиственность и потеря тургора листовыми пластинами (вялость). Симптомы избытка калия. Повышенное содержание калия провоцирует плохую усваиваемость растениями магния, кальция и других микроэлементов. Возникшее в результате этого магниевое голодание оказывает негативное влияние на дальнейший рост и развитие культур. Сам по себе избыток калия не представляет для растений опасности, но он возникает в случае нехватки в питании растений доступных форм азота и фосфора. Внешние симптомы избытка калия проявляются в возникновении бледных мозаичных пятен между жилками листовых пластин. В дальнейшем эти зоны буреют, отмирают, и листья преждевременно опадают. Может также наблюдаться побурение и загнивание тканей других органов растений. Дефицит калия в плодах Содержание в культурах. Потребность растений в калии различна и зависит от их биологических особенностей. В среднем содержание этого элемента в культурах составляет 0,3% (в сухой массе). Значительным потреблением калия (от 180 до 400 кг/га К2О) отмечены такие овощные культуры как картофель, свекла, капуста, а также подсолнечник и гречиха. Много калия потребляют многолетние злаковые травы и бобовые культуры. Зерновые (пшеница, рожь, ячмень, овес) требуют меньшее количество этого макроэлемента (60 – 80 кг/га К2О). В семенах зерновых культур содержание калия составляет 0,5%, а в соломе – от 1 до 1,5%; в клубнях картофеля и корнеплодах от 0,3 до 0,6%, а в листьях табака, подсолнечника, сахарной свеклы и других корнеплодов – от 4 до 6% (в сухой массе). Содержание в почвах. Калий относится к элементам, широко распространенным в природе. В земной коре его содержится около 2,5%. По своему валовому содержанию в почвах (кроме торфянистых, где он легко вымывается водой) калий превышает аналогичные запасы азота и фосфора в 5 – 10 раз. В плодородных слоях почвы запасы калия (К2О) составляют 50 – 75 т/га, но большая часть его соединений (98 – 99%) находится в нерастворимых и малодоступных для растений формах (алюмосиликатах) и состоит из калийсодержащих почвенных минералов (полевые шпаты, слюды). Такой калий практически недоступен культурам, но в процессе выветривания, климатических и биологических воздействий происходит его высвобождение из минералов (до 15 – 30 кг/га ежегодно). Для нормального питания растений требуются доступные формы этого макроэлемента: обменный (или поглощенный) калий и водорастворимый калий (в почвенном растворе). Основным источником калийного питания растения является обменный калий, наибольшее количество которого находится в черноземах и сероземах, а наименьшее – в легких дерново-подзолистых почвах. В зависимости от механического и биохимического состава грунтов количество доступного калия (в составе почвенных коллоидов) может колебаться от 0,8 до 1,5% от его общего содержания. Этот элемент преобладает в глинистых  фракциях почвы, поэтому суглинистые и тяжелые глинистые грунты лучше обеспечены калием, чем песчаные и супесчаные. На дерново-подзолистых почвах доступная водорастворимая часть калия составляет всего лишь 4,5 – 18 кг/га. А самое низкое содержание элемента (0,03 – 0,05%) наблюдается в торфянистых почвах. Калийные удобрения. Необходимым условием для получения высоких урожаев является обеспечение культур достаточным калийным питанием. В качестве калийсодержащих удобрений используются переработанные (обогащенные) руды, содержащие водорастворимые формы калия. Различают два вида таких удобрений: концентрированные (хлористый калий, 30 – 40%-ные калийные соли, сульфат калия, поташ, калимагнезия) и сырые калийные соли (каинит и сильвинит), получаемые путем измельчения природных минералов и содержащие относительно небольшое количество калия, но более значительное – хлора. Калийное голоданиеКаинит и сильвинит применяются вместе с основным удобрением под культуры, отличающиеся невысокой чувствительностью к хлору. Но все же, чтобы избавиться от избыточного количества этого элемента, их вносят осенью, под зяблевую вспашку, чтобы большая часть хлора смогла переместиться в нижние горизонты почвы. Содержащиеся в каините и сильвините немалые примеси магния и натрия в комплексе с калием благоприятно действуют на рост и развитие корнеплодных растений (в том числе сахарной свеклы), капусты, клевера и др., особенно на легких почвах. Основной источник для производства концентрированных калийных удобрений – калийсодержащие руды, из которых получают хлорид калия (КCl). Этот мелкокристаллический порошок розового или белого цвета содержит до 63% К2О и наиболее широко применим в сельском хозяйстве для пополнения запасов почв доступным калием и устранения дефицита этого элемента в питании растений. Хлористый калий может применяться практически под все культуры и на любых почвах, но более предпочтителен в районах с большим количеством осадков и при кислой реакции грунтов. Для растений, чувствительных к хлору, следует соблюдать меньшую дозировку или обеспечить его преждевременное внесение с целью избежать возможно опасных концентраций и негативного воздействия хлора на эти культуры. Сульфат калия (К2SO4) – удобрение, в составе которого находится до 46% калия (К2О) и не содержится хлор, позволяет свободно применять его даже для хлорофобных культур (цитрусовые, бобовые, виноград, табак, лен, конопля, гречиха, картофель, репа, редис и др.). Кроме калия в этом удобрении присутствует еще один важный для культур элемент – сера. Сульфат калия может использоваться на любых типах почв и под любые культуры, как в закрытом, так и в открытом грунте. Наиболее предпочтительно его применение на кислых грунтах, где он помогает выровнять кислотно-щелочной баланс среды (показатель рН раствора сульфата калия составляет 5,5 – 8). Калийные соли (30- и 40%-ные) получают путем смешивания хлористого калия с одной из сырых калийных солей (каинит, сильвинит), поэтому они обладают промежуточными свойствами. В результате количество калия (К2О) в калийных солях может достигать 30 – 40%, содержание хлора снижается по сравнению с каинитом или сильвинитом, к тому же появляется очень полезная для культур примесь магния или натрия. Применять калийные соли для чувствительных к хлору растений следует с осторожностью, либо использовать другие виды калийных удобрений. Обычно калийные соли вносят в почву осенью с глубокой заделкой удобрений.   Калимагнезия отличается невысоким содержанием калия (до 29%), но содержит магний (до 9%), необходимый для питания растений, благодаря чему обладает преимуществом перед сульфатом калия, также являющимся бесхлорным соединением. В качестве калийсодержащих удобрений применяют также и отходы промышленности – цементную пыль и печную золу. Они хорошо растворимы в воде и содержат помимо калия целый комплекс других полезных элементов. В современной агрономии практикуется применение комплексных удобрений, позволяющих проводить обогащение почв сразу несколькими жизненно важными для культур элементами. Эти миксы помимо макроэлементов содержат еще множество полезных веществ, способствующих лучшему развитию растений, повышению их плодородия и получению более качественного урожая. К наиболее известным высокоэффективным азотно-фосфорно-калийным удобрениям относятся нитроаммофоска, нитрофоска, аммофоска, диаммофоска и др.Оптимальный способ устранения дефицита калия в культурах заключается в применении хелатных удобрений. Комплексные удобрения, производимые в хелатной форме, обладают максимальной доступностью для сельскохозяйственных растений и позволяют восполнить недостающие в их питании элементы в кратчайшие сроки. Хелаты представляют собой сложные металлоорганические соединения, содержащие ионы металлов в растворимой форме, что обеспечивает 90% усвоения их растениями, в отличие от 30 - 40% в случае использования растворимых солей. Учитывая высокую подвижность калия в растениях, хелатные удобрения можно применять для корневой и, в особенности, для листовой подкормки культур, получая при этом наилучшие результаты.

agrostory.com

Макроэлементы

Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в ви­де окисленных соединений, главным образом остатков ортофосфорной кисло­ты (Н2Р04-,HP042-,Р043-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и мно­гих других, играющих центральную роль в обмене веществ. Фосфолипиды яв­ляются компонентами биологических мембран, причем именно присутствие фосфата в их структуре обеспечивает гидрофильность, остальная часть молеку­лы липофильна. Многие витамины и их производные, содержащие фосфор, являются коферментами и принимают непосредственное участие в каталитиче­ских реакциях, ускоряющих течение важнейших процессов обмена (фотосинтез, дыхание и др.). Фосфор содержится в составе такого органического соединения как фитин (Са—Mg соль инозитфосфорной кислоты), который является основ­ной запасной формой фосфора в растении. Особенно много фитина в семенах (до 1—2 % сухой массы). При всех превращениях в растительном организме фосфор сохраняет степень окисленности. На самом деле, все превращения сводятся лишь к присоедине­нию или переносу остатка фосфорной кислоты (фосфорилирование и трансфосфорилирование). Фосфорилирование — это присоединение остатка фосфорной кислоты к органическому соединению с образованием эфирной связи, напри­мер взаимодействие фосфорной кислоты с карбонильной, карбоксильной или спиртовой группировками. Фосфорилирование белков осуществляется фермен­тами протеинкиназами и контролирует протекание обменных реакций в организ­ме, включая синтез белка и РНК, регуляцию активности ферментов, и лежит в основе работы сигнальных цепей. Фосфорилироваться могут и другие соедине­ния. Например, при фосфорилировании Сахаров образуются сахарофосфаты — эфиры Сахаров и фосфорной кислоты. Эти соединения, более лабильные и реакционноспособные, чем свободные сахара, играют существенную роль при дыхании, взаимных превращениях углеводов, их синтезе. Трансфосфорилирование — это процесс, при котором остаток фосфорной кислоты, включенный в состав одно­го органического вещества, переносится на другое органическое вещество. Ряд важнейших в биологическом отношении фосфорных соединений содержит не­сколько остатков фосфорной кислоты. Для фосфора характерна способность к образованию связей с высоким энер­гетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энергию на самые различные биохимические и физиологические процессы. Важным соединением, содер­жащим макроэргические фосфорные связи, является АТФ. Фосфорная кисло­та, поступая в живые клетки корня, быстро включается в состав нуклеотидов, образуя АМФ и АДФ. Далее в процессе субстратного и окислительного фосфорилирования (анаэробная и аэробная фазы дыхания) образуется АТФ. По данным А.Л. Курсанова, уже через 30 с поступивший меченый фосфор (32Р) обнаружи­вается в АТФ. Образовавшаяся АТФ используется на активацию Сахаров, ами­нокислот, синтез нуклеиновых кислот, белков и на другие процессы. Недостаток фосфора влияет практически на все процессы жизнедеятельно­сти растений. Для нормального протекания фотосинтеза, дыхания, роста тре­буется фосфор. В почве фосфор находится в малорастворимой форме, поэтому в обеспечении питания фосфором велика роль метаболизма корней. Погло­щению фосфора способствует выделение корнями кислот, ферментов, углево­дистых веществ.

Сера содержится в растениях в количестве 0,17%. Однако в растениях семей­ства крестоцветных ее содержание гораздо выше. Поступает сера в растения в виде сульфатиона S042-. Сера входит в состав органических соединений, играющих важную роль в об­мене веществ организма. Так, сера входит в состав трех аминокислот — цистина, цистеина и метионина. Почти все белки включают аминокислоты, содержащие серу, поэтому становится понятна роль серы в белковом обмене организма. Сера входит также в состав многих витаминов и многих коферментов, таких, как биотин, тиамин, коэнзим А, глютатион, липоевая кислота и др. В связи с этим сера принимает участие в многочисленных реакциях обмена (аэробная фаза дыхания, синтез жиров и др.). В составе коэнзима А (СоА—SH) сера участвует в образо­вании макроэргической связи с ацильными группами кислот. Ацетилкоэнзим А (Ch4CO~SCoA) играет роль в метаболизме углеводов, жирных кислот, амино­кислот. Аденозилметионин используется при синтезе фитогормона этилена и лигнина. Сульфгидрильные группировки (SH) и дисульфидные связи (S—S) играют большую роль, обеспечивая взаимодействие между ферментами и их простетическими группами, а также участвуя в создании определенной конфигурации белковых молекул. Так, SH-группы связывают белок с такими коферментами, как НАД или ФАД. Часто за счет дисульфидных связей сохраняется трехмерная структура белка, а следовательно, его активность. Соединения серы участвуют в поддержании уровня окислительно-восстановительного потенциала клетки. Это относится к системам цистеин — цистин и SH—глутагион <-> S—S — глутатион. В составе белка тиоредоксина сера участвует в регуляции работы таких ферментов как Rubisco, АТФ-синтаза и др.. Сера входит в состав чесночных и горчичных масел. Именно с этим связан своеобразный вкус и запах некоторых растений семейства крестоцветные. Нельзя не отметить, что соединения серы, такие, как S-аденозилметионин, участву­ют в образовании полиаминов, в частности спермедина. Согласно современ­ным представлениям, полиамины играют большую и разностороннюю роль в жизнедеятельности организмов. Полиамины благодаря наличию заряженных аминогрупп во многих реакциях могут заменять неорганические катионы. Сера, поступая в растение в виде иона S042-, быстро переходит в органиче­скую форму при участии АТФ и магния:

Такой активированный сульфат является короткоживущим соединением и через ряд этапов восстанавливается до цистеина при участии ферредоксина. Ферменты, участвующие в образовании цистеина, в частности сульфурилаза лока­лизованы в цитозоле, пластидах и митохондриях. Из цистеина образуются цистин и метионин. Производным цистеина является глютатион, участвующий в пере­движении серы по растению. Глютатион является сигналом для поступления иона S042- через корни. В восстановленной форме сера включается в аминокислоты. Восстановленная сера в растении может подвергаться снова окислению. Окис­ленная форма S042- неактивна. Показано, что в молодых органах сера находится главным образом в восстановленной форме, а старых — в окисленной.К числу необходимых растению металлов относят как макроэлементы К, Са, Mg, Fe, так и микроэлементы Си, Zn, Мл и др. Участие в каталитических реак­циях характерно, главным образом, для металлов. Металлы могут осуществлять влияние на процессы обмена различным путем:

1) непосредственно входя в ак­тивный центр фермента (в простетическую группу или в апофермент). Таковы ферменты, содержащие железо, медь и некоторые другие элементы. Функция металла заключается чаще всего в переходе из восстановленной в окисленную форму и обратно, что сопровождается переносом электрона, например: Fe2+ —» Fe3+ + е;

2) активируя тот или иной фермент путем изменения заряда белка-фермента или его конфигурации;

3) являясь связующим мостиком между фер­ментом и субстратом и тем самым облегчая их взаимодействие;

4) изменяя константу равновесия ферментативных реакций;

5) изменяя равновесие между активной и неактивной формами фермента;

6) связывая ингибиторы тех или иных ферментативных реакций.

Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит до 1 %. Поступает в виде иона Са2+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми вещест­вами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко про­является в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са2+ непосредственно соприкасались с клет­ками корня. Сказанное было продемонстрировано в опытах, поставленных по методу изолированных водных культур. В этих опытах одну прядь корней поме­щали в питательный раствор, содержащий все необходимые питательные веще­ства; другую прядь корня того же растения — в раствор с исключением кальция.

Очень скоро клетки корня, которые находились в растворе без кальция, начали ослизняться и загнивать. Кальций повышает вязкость цитоплазмы, что видно на опытах с формами плазмолиза. В солях кальция плазмолиз имеет вогнутую форму, так как более вязкая цитоплазма с трудом отстает от клеточных оболочек. Присутствие кальция важно для нормального функционирования мембран. Де­фицит кальция приводит к увеличению проницаемости мембран, нарушению их целостности, а соответственно процессов мембранного транспорта. Кальций прини­мает участие в поддержании структуры хромосом, являясь связующим звеном между ДНК и белком. При недостатке кальция наблюдаются повреждения хромосом и на­рушение митотического цикла. Кальций необходим также для поддержания струк­туры митохондрий и рибосом, образования ламелл во вновь образующихся клетках. Кальций является активатором таких ферментов, как фосфорилаза, аденозинтрифосфатаза, дегидрогеназы, амилазы и др. Са2+ служит посредником для реакций растений на внешние и гормональные сигналы, входя в состав сигналь­ных систем. В этой связи большое значение имеет связывание Са2+ с белком кальмодулином, находящимся в цитозоле. В цитоплазме в обычных условиях поддерживается низкая концентрация кальция. При повышении внутрикле­точной концентрации кальция в ответ на сигналы (внутренние и внешние) про­исходит его связывание с кальмодулином. Кальмодулин регулирует концентра­цию Са2+ в клетке по принципу обратной связи. Комплекс Са2+ — кальмодулин способен влиять на активность ферментов, участвующих в синтезе и распаде циклических нуклеотидов (аденилатциклаза, фосфодиэстеразы), Са2+-зависимых протеинкиназ, Са2+-АТФазы. Кальмодулин влияет на активность структур­ных белков цитоскелета и таким образом контролирует перемещение органелл внутри клетки, изменение формы клетки, образование веретена деления. Каль­ций участвует в образовании клеточной стенки и росте растяжением. Кальций реагирует с различными органическими кислотами, давая соли, и тем самым является в определенной мере регулятором значения рН клеточно­го сока. Нейтрализуя щавелевую кислоту, образует характерные кристаллы ща­велевокислого кальция.

Магний. Содержание магния в растениях составляет в среднем 0,17%. Маг­ний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии маг­ния, который также необходим для формирования полисом и активации ами­нокислот. Поэтому синтез белка не идет при недостатке магния, а тем более в его отсутствие. Магний является активатором многих ферментов. Важной особенностью маг­ния является то, что он связывает фермент с субстратом по типу хелатной связи (клешневидная связь между органическим веществом и катионом). Так, напри­мер, присоединяясь к пирофосфатной группе, магний связывает АТФ с соот­ветствующими ферментами. В связи с этим все реакции, включающие перенос фосфатной группы (большинство реакций синтеза, а также многие реакции энер­гетического обмена), требуют присутствия магния. Магний активирует такие ферменты, как ДНК- и РНК-полимеразы, аденозинтрифосфатазу, глютаматсинтетазу; ферменты, катализирующие перенос карбоксильной группы,— реакции карбоксилирования и декарбоксилирования; ферменты гликолиза и цикла Кребса, молочнокислого и спиртового брожений. В ряде случаев влияние магния на работу ферментов определяется тем, что он реагирует с продуктами реакции, сдвигая равновесие в сторону их образова­ния. Магний может также инактивировать ряд ингибиторов ферментативных реакций.

Калий. Содержание калия в растении в среднем составляет 0,9%. Он посту­пает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, ос­тальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повы­шает ее оводненность, увеличивая гидратацию белков. Эта особенность дейст­вия калия хорошо проявляется в том, что в его солях плазмолиз имеет выпуклую форму, протоплазма легко отстает от клеточной оболочки. Следовательно, калий является антагонистом кальция. Соли калия растворимы и участвуют в регуля­ции осмотического потенциала клетки. В частности, большое значение имеет К+ в регуляции работы устьиц. Показано, что открытие устьиц на свету связано с накоплением в замыкающих клетках ионов калия. При этом К+ в обмен на Н+ поступает из клеток, окружающих устьичные. Корневое давление также во мно­гом зависит от присутствия К+ в пасоке.

Калий активирует работу многих ферментных систем, например фермент, ка­тализирующий фосфорилирование Сахаров, — гексокиназа, ферменты, катали­зирующие перенос фосфорной кислоты с пирувата на АДФ (пируваткиназа), а также ферменты, участвующие в образовании АТФ в процессе окислительного фосфорилирования. В связи с этим, по данным Э.И. Выскребенцевой, при недостатке калия резко падает содержание макроэргических фосфатов. Калий активирует и ряд ферментов цикла Кребса. Многие ферменты, участвующие в синтезе белка, требуют для своего действия присутствия калия. Несмотря на необходимость калия для проявления активности ряда ферментов, механизм этой активации до настоящего времени не представляется ясным. Недостаток калия замедляет транспорт сахарозы по флоэме. Влияние калия на передвижение органических веществ, по гипотезе Спаннера, проявляется бла­годаря образованию градиента электрического потенциала на ситовидных пла­стинках, который возникает при циркуляции калия между ситовидной трубкой и сопровождающими клетками. Влияние К+ на транспорт углеводов определяет его роль в формировании урожая. Под влиянием калия увеличивается накопле­ние крахмала, сахарозы, моносахаридов.

Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, не­смотря на ничтожное содержание, его роль рассматривается вместе с макроэле­ментами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо вхо­дит в состав каталитических центров многих окислительно-восстановительных ферментов. В виде геминовой группировки оно входит в состав таких ферментов, какцитохромы, цитохромоксидаза, нитратредуктаза, нитритредуктаза, леггемоглобин, каталаза и пероксидаза. Цитохромная система является необходимым компонентом дыхательной и фотосинтетической электронтранспортной цепи. В силу этого при недостатке железа тормозятся оба этих важнейших процесса. Кроме того, целый ряд ферментов содержит железо в негемовой форме. К та­ким ферментам относятся некоторые флавопротеиды, нитрогеназа, железосо­держащий белок ферредоксин, фитоферритин и др. Фитоферритин — является металлопротеидом, в виде которого железо аккумулируется в клетке. Железо необходимо для образования хлорофилла. При этом железо катали­зирует образование предшественников хлорофилла 5-аминолевулиновой кисло­ты и протопорфиринов. Предполагают, что железо играет роль в образовании белков хлоропластов. При недостатке железа нет условий для образования таких важнейших компонентов хлоропластов, как цитохромы, ферредоксин и некото­рые другие. Возможно, это косвенно влияет на образование хлорофилла. В хлоропластах железо в негемовой форме входит в состав реакционных центров фо­тосистем I и II.

fizrast.ru

Макроэлементы в составе удобрения для растений

Макро Влияние азота (N), фосфора (P2O5) и калия (K2O)

Азот

Регулирует рост вегетативной массы и корней комнатных растений. Определяет уровень урожайности садовых и огородных культур. Азот является структурным компонентом органических соединений, принимает участие во всех жизненно-важных обменных процессах в растении. Входит в состав молекул аминокислот, белков, нуклеиновых кислот и их производных, содержится в хлорофилле, фосфатидах, алкалоидах, ферментах, фитогормонах, витаминах и других соединениях. Наиболее интенсивно азот поглощается в фазе максимального роста вегетативной массы и формирования генеративных органов. Азот усваивается из грунта в виде ионов аммония и нитрат-ионов. Признаки недостатка: листья становятся бледно-зелеными, рост растений задерживается, листья мельчают. Изначально проявляется на нижних листьях. Пожелтение начинается с жилок листа и распостраняется к краям листовой пластины. Только при условии оптимального азотного питания можно максимально реализовать потенциал растения. Повышение уровня азотного питания увеличивает объем усвоения растениями других элементов, таких как фосфор, калий, железо, кальций, магний, сера, медь, марганец, цинк. Эффективность удобрения для комнатных растений, содержащего азот, является наибольшей по сравнению с другими элементами. Переизбыток внесения азота приводит к чрезмерному росту вегетативной зеленой массы, снижению иммунитета, задержке цветения.

Фосфор

  • Активизирует рост корневой системы комнатных и садовых растений.
  • Ускоряет развитие всех процессов.
  • Повышает иммунитет культур.
  • Способствует интенсивному нарастанию боковых корней.

Растения усваивают фосфора значительно меньше, чем азота, но он имеет очень важное значение в их жизни. Фосфор входит в состав нуклеиновых кислот, нуклеопротеидов, фосфатидов, сахарофосфатов, фитина и лицитина. Он играет важную роль в энергетике растительных организмов, особенно в процессах дыхания и фотосинтеза. Фосфор входит в состав витаминов и многих ферментов. Хорошее обеспечение фосфором стимулирует развитие корневой системы комнатных, садовых и огородных растений, чем улучшает использование растениями водных ресурсов. Наличие фосфора в составе удобрения для комнатных растений повышает устойчивость к грибковым заболеваниям, в первую очередь - к мучнистой росе и корневым гнилям. Он также способствует скорейшему вызреванию огородных культур. Признаки недостатка: листья становятся темно-зеленого цвета, рост побегов и корней сильно замедляется, новые листья мелкие, задержка цветения. Часто признаки недостатка азота и фосфора совмещаются, поскольку фосфор обеспечивает лучшее усвоение азота растениями. Фосфор лучше усваивается из влажного грунта, поэтому удорбрения для комнатных растений нужно вносить после полива.

Калий

  • Сохраняет и удерживает воду.
  • Повышает сопротивляемость болезням, засухе и переохлаждению. 

Наряду с фосфором и азотом, калий является главным элементом питания и его обязательно должны содержать удобрения для комнатных цветов. Он не входит в состав органических соединений, но принимает участие в белковом и углеводном обмене в растениях. Высокое содержание калия в клеточном соке повышает тургор листьев, способствует росту корневой системы и улучшает кущение. Признаки недостатка: цветки не образуются либо они очень мелкие, сухая каемка по всей поверхности листа, растения легче подвергаются грибковым заболеваниям. Проявляются сначала на старых листьях. Взаимодействие макро- и микроэлементов в растении (колебание уровня одного составляющего автоматически ограничивает впитывание зависимых от него элементов)

gileya.kherson.ua


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта