Из чего состоит клетка (клетка животного или клетка растения)? Клетка животного растения
Клетки животных и растений | Vunderkind.Info
Клетки животных и растений. Все живые организмы состоят из клеток. За исключением клеток бактерий, все клетки имеют похожее строение, хотя и различаются в зависимости от своих функций.
В теле человека существует несколько сотен разновидностей клеток, а общее их количество может превышать десять триллионов. Большинство из них очень малы.
Досконально рассмотреть строение клетки стало возможно только с появлением мощных микроскопов.
Ядро — самая примечательная из всех частей клетки, или органелл, это командный центр клетки.
Оно окружено ядерной мембраной и содержит хромосомы, в которых заложена вся наследственная информация.
В ядре синтезируется материал для рибосом (p-РНК), а в рибосомах синтезируются белки клетки.
Рибосомы располагаются на эндоплазматической сети. Это состоящая из мембран сложная система каналов и полостей, которая пронизывает всю цитоплазму клетки.
Цитоплазма — полужидкая среда клетки, в которой находятся ядро и все органеллы; в ней протекают основные процессы обмена веществ.
Аппарат Гольджи накапливает и выводит из клетки органические вещества, синтезируемые в эндоплазматической сети.
Митохондрии — это генераторы энергии для жизнедеятельности клетки.
Клеточная мембрана ограничивает внутреннюю среду клетки, защищает ее, но мембрана пронизана многочисленными порами, через которые пища, вода в виде молекул и ионов могут поступать внутрь или выделяться наружу.
Все вышеупомянутые органеллы встречаются как в животных, так и в растительных клетках.
Но в растительных клетках еще имеется жесткая целлюлозная клеточная оболочка, или стенка.
У большинства растительных клеток есть также объемистые образования — вакуоли, наполненные растворами органических и неорганических солей, углеводов, аминокислот, белков.
Давление наполняющей вакуоли жидкости придает растительным тканям упругость.
Если растение не получает достаточного количества воды, оно увядает.
Растительные клетки отличаются от животных и наличием пластид.
Клетка, ее строение и свойства
Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки.
Примерная история клетки
Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.
Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).
Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.
Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).
В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.
Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.
Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.
Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.
Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.
Прокариотическая клетка
Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.
У прокариотических клеток есть цитоплазматическая мембрана, также как и эукариотических. У бактерий мембрана двуслойная (липидный бислой), у архей мембрана довольно часто бывает однослойной. Мембрана архей состоит из веществ, отличных от тех, из которых состоит мембрана бактерий. Поверхность клеток может быть покрыта капсулой, чехлом или слизью. У них могут быть жгутики и ворсинки.
Клеточное ядро, такое как у эукариот, у прокариот отсутствует. ДНК находится внутри клетки, упорядоченно свернутая и поддерживаемая белками. Этот ДНК-белковый комплекс называется нуклеоид. У эубактерий белки, которые поддерживают, ДНК отличаются от гистонов, которые образуют нуклеосомы (у эукариот). А у архибактерий гистоны есть, и этим они похожи на эукариот. Энергетические процессы у прокариотов идут в цитоплазме и на специальных структурах - мезосомах (выростах клеточной мембраны, которые закручены в спираль для увеличения площади поверхности, на которой происходит синтез АТФ). Внутри клетки могут находиться газовые пузырьки, запасные вещества в виде гранул полифосфатов, гранул углеводов, жировых капель. Могут присутствовать включения серы (образующейся, например, в результате бескислородного фотосинтеза). У фотосинтетических бактерий имеются складчатые структуры, называемые тилакоидами, на которых идет фотосинтез. Таким образом, у прокариот, в принципе, имеются те же самые элементы, но без перегородок, без внутренних мембран. Те перегородки, которые имеются, являются выростами клеточной мембраны.
Размер различных представителей прокариотов представлен на схеме ниже. Самая маленькая бактерия – это паразитическая микоплазма (она живет внутри клеток эукариот). Она имеет размер 0,1 мкм. Самые большие представители прокариот видны невооруженным глазом (граница видимости – 70-80 мкм). Эта спирохета имеет длину 250 мкм. Типичный же представитель прокариот имеет размер 0,5 мкм в ширину и 2 мкм в ширину. Для сравнения приведены размеры вируса герпеса – одного из самых крупных вирусов (имеет размер, сравнимый с размерами паразитической микоплазмы), и вируса желтой лихорадки – одного из самых маленьких вирусов, в пять раз меньше вируса герпеса; а также размеры молекул глобулярных белков и эукариотических одноклеточных организмов (размеры у них намного больше, чем у прокариот).
Форма прокариотических клеток не так уж и разнообразна. Круглые клетки называются кокки. Такую форму могут иметь как археи, так и эубактерии. Стрептококки – это кокки, вытянутые в цепочку. Стафилококки – это «грозди» кокков, диплококки –кокки, объединенные по две клетки, тетрады - по четыре, и сарцины – по восемь. Палочкообразные бактерии называются бациллами. Две палочки – диплобациллы, вытянутые в цепочку – стрептобациллы. Еще выделяют коринеформные бактерии (с расширением на концах, похожим на булаву), спириллы (длинные завитые клетки), вибрионы (коротенькие загнутые клетки) и спирохеты (завиваются не так, как спириллы). Ниже проиллюстрировано все выше сказанное и приведены два представителя архебактерий. Хотя и археи, и бактерии относятся к прокариотическим (безядерным) организмам, строение их клеток имеет некоторые существенные отличия. Как уже было отмечено выше, бактерии имеют липидный бислой (когда гидрофобные концы погружены в мембрану, а заряженные головки торчат с двух сторон наружу), а археи могут иметь монослойную мембрану (заряженные головки имеются с двух сторон, а внутри единая целая молекула; эта структура может быть более жесткой, чем бислой). Ниже представлено строение клеточной мембраны архебактерии.
Бактерии и археи отличаются строением и размером РНК-полимеры. В состав бактериальных РНК-полимераз входит 4-8 белковых субъединиц, в сотав эукариотических РНК-полимераз входит 10-14 белковых субъединиц, а у архей размер промежуточный: 5-11 субъединиц. Рибосомы бактерий меньше рибосом эукариот и меньше, чем рибосомы архей (которые также имеют промежуточные размеры). По образу жизни археи отличаются от бактерий тем, что среди них нет паразитирующих организмов. Кроме того, археи часто живут в экстремальных условиях. Ниже представлен диапазон температур, в которых могут существовать прокариоты (от -10С до 110С). В зависимости от оптимальной температуры роста выделяют психрофилов (любителей холода), мезофилов (средний диапазон температур; к ним относятся все симбионты и паразиты человека) и термофилов (любителей тепла).
Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.
Животная клетка
Строение клетки животного базируется на трех основных составляющих – ядро, цитоплазма и клеточная оболочка. Вместе с ядром цитоплазма образует протоплазму. Клеточная оболочка – это биологическая мембрана (перегородка), которая отделяет клетку от внешней среды, служит оболочкой для клеточных органоидов и ядра, образует цитоплазматические отсеки. Если поместить препарат под микроскоп, то строение животной клетки легко можно увидеть. Клеточная оболочка содержит три слоя. Внешний и внутренний слои белковые, а промежуточный – липидный. При этом липидный слой делится еще на два слоя – слой гидрофобных молекул и слой гидрофильных молекул, которые располагаются в определенном порядке. На поверхности клеточной мембраны располагается особая структура – гликокаликс, которая обеспечивает избирательную способность мембраны. Оболочка пропускает необходимые вещества и задерживает те, которые приносят вред.
Рис.2. Строение животной клетки
Строение животной клетки нацелено на обеспечение защитной функции уже на этом уровне. Проникновение веществ через оболочку происходит при непосредственном участии цитоплазматической мембраны. Поверхность этой мембраны достаточно значительна за счет изгибов, выростов, складок и ворсинок. Цитоплазматическая мембрана пропускает как мельчайшие частицы, так и более крупные. Строение животной клетки характеризуется наличием цитоплазмы, в большинстве своем состоящей из воды. Цитоплазма – это вместилище для органоидов и включений.
Кроме этого цитоплазма содержит и цитоскелет – белковые нити, которые участвуют в процессе деления клетки, отграничивают внутриклеточное пространство и поддерживают клеточную форму, способность сокращаться. Важная составляющая цитоплазмы – гиалоплазма, которая определяет вязкость и эластичность клеточной структуры. В зависимости от внешних и внутренних факторов гиалоплазма может менять свою вязкость – становиться жидкой или гелеобразной. Изучая строение животной клетки, нельзя не обратить внимание на клеточный аппарат – органоиды, которые находятся в клетке. Все органоиды имеют собственное специфическое строение, которое обусловлено выполняемыми функциями.
Ядро – центральная клеточная единица, которая содержит наследственную информацию и участвует в обмене веществ в самой клетке. К клеточным органоидам относятся эндоплазматическая сеть, клеточный центр, митохондрии, рибосомы, комплекс Гольджи, пластиды, лизосомы, вакуоли. Подобные органоиды есть в любой клетке, но, в зависимости от функции, строение животной клетки может отличаться наличием специфических структур.
Функции клеточных органоидов: - митохондрии окисляют органические соединения и аккумулируют химическую энергию; - эндоплазматическая сеть благодаря наличию специальных ферментов синтезирует жиры и углеводы, ее каналы способствуют транспорту веществ внутри клетки; - рибосомы синтезируют белок; - комплекс Гольджи концентрирует белок, уплотняет синтезированные жиры, полисахариды, образует лизосомы и готовит вещества к выведению их из клетки или непосредственному использованию внутри нее; - лизосомы расщепляют углеводы, белки, нуклеиновые кислоты и жиры, по сути, переваривая поступающие в клетку питательные вещества; - клеточный центр участвует в процессе деления клетки; - вакуоли, благодаря содержанию клеточного сока, поддерживают тургор клетки (внутреннее давление).
Строение клетки живого чрезвычайно сложно - на клеточном уровне протекает множество биохимических процессов, которые в совокупности обеспечивают жизнедеятельность организма.
biofile.ru
9. Каковы сходства и различия между клетками растений и клетками животных?
Развитие живой природы на земле привело к образованию двух основных групп организмов — растений и животных. Между животными и растениями, несмотря на внешние различия, существует много общего. Сходство растительных и животных клеток обнаруживается на элементарном химическом уровне. Современными методами химического анализа в составе живых организмов обнаружено около 90 элементов периодической системы. На молекулярном уровне сходство проявляется в том, что во всех клетках найдены белки, жиры, углеводы, нуклеиновые кислоты, витамины и т. д.
Особенность молекулярной организации растительных клеток состоит в том, что в них находится фотосинтезирующий пигмент - хлорофилл. Благодаря фотосинтезу в атмосфере Земли накапливается - кислород и ежегодно образуются сотни миллиардов тонн органических веществ. Растениям, как и животным, присущи такие свойства живого, как рост (деление клеток за счет митоза - прим. biofile.ru), развитие, обмен веществ, раздражимость, движение, размножение, причем половые клетки животных и растений формируются путем мейоза и в отличие от соматических имеют гаплоидный (n) набор хромосом. Клетки и растений, и животных окружены тонкой цитоплазматической мембраной. Однако у растений имеется еще толстая целлюлозная клеточная стенка. Клетки, окруженные твердой оболочкой, могут воспринимать из окружающей среды необходимые им вещества только в растворенном состоянии. Поэтому растения питаются осмотически. Интенсивность же питания зависит от величины поверхности тела растения, соприкасающейся с окружающей средой. Вследствие этого у большинства растений наблюдается значительно более высокая степень расчлененности, чем у животных, за счет ветвления побегов и корней. Существование у растений твердых клеточных оболочек обусловливает еще одну особенность растительных организмов — их неподвижность, в то время как у животных мало форм, ведущих прикрепленный образ жизни. Именно поэтому распространение животных и растений происходит в разные периоды онтогенеза: животные расселяются в личиночном или во взрослом состоянии; растения осваивают новые местообитания путем переноса ветром или животными зачатков (спор, семян), находящихся в состоянии покоя. Растительные клетки отличаются от клеток животных особыми органоидами-пластидами, а также развитой сетью вакуолей, в значительной мере обусловливающих осмотические свойства клеток. Животные клетки изолированы друг от друга, а у клеток растений каналы эндоплазматической сети через поры в клеточной стенке сообщаются друг с другом. В качестве запасных питательных веществ в клетках животных накапливается гликоген, а в растительных — крахмал. Форма раздражимости у многоклеточных животных - рефлекс, у растений – тропизмы и настии. У растений встречается как половое, так и бесполое размножение и у подавляющего большинства их существует чередование полового и бесполого поколений. У животных определяющей формой воспроизводства потомков служит половое размножение.
Низшие одноклеточные растения и одноклеточные простейшие животные трудно различимы не только внешне. Например, у эвглены зеленой – организма, стоящего как бы на границе растительного и животного мира, питание смешанное: на свету она синтезирует органические вещества с помощью хлоропластов, а в темноте питается гетеротрофно, как животное. Рост растений почти непрерывен, а у большинства животных он ограничен определенным периодом онтогенеза, после прохождения которого рост прекращается. Бесспорно то, что у современных растений и животных были общие предки. Именно они и послужили общим корнем для эволюционного развития и дивергенции растений и животных.
Растения | Животные |
1 Клетки имеют целлюлозную оболочку и пластиды, вакуоли наполнены клеточным соком. | 1. Клетки лишены твердых оболочек, пластид, вакуолей. |
2 Растения автотрофы, способные к фотосинтезу (из неорганических веществ создавать органические вещества). | 2 Животные - гетеротрофы, способны питаться готовыми органическими веществами (но это не абсолютно - эвглена зеленая может фотосинтезировать на свету). |
3 Растения неподвижны (исключение: росянка, мимоза - свойственно движение отдельных частей организма). | 3 Животные передвигаются с помощью специальных органов: жгутиков, ресничек, конечностей. (Но некоторые ведут неподвижный образ жизни - это вторичное явление). |
4 Растения растут в течение всей своей жизни. | 4 У животных рост происходит только на определенных стадиях развития. |
5 Таких органов и систем органов, как у животных, у растений нет. | 5 В ходе эволюции возникли разнообразные органы и системы органов: движения, пищеварения, выделения, дыхания, кровообращения, нервная система и органы чувств. |
Различия в строении клеток растений и животных
В процессе эволюции, в связи с неодинаковыми условиями существования клеток представителей различных царств живых существ, возникло множество отличий. Сравним строение и жизнедеятельность клеток растений и животных.
Главное отличие между клетками этих двух царств заключается в способе их питания. Клетки растений, содержащие хлоропласты, являются автотрофами, т. е. сами синтезируют необходимые для жизнедеятельности органические вещества за счет энергии света в процессе фотосинтеза. Клетки животных — гетеротрофы, т. е. источником углерода для синтеза собственных органических веществ для них являются органические вещества, поступающие с пищей. Эти же пищевые вещества, например углеводы, служат для животных источником энергии.
Есть и исключения, такие как зеленые жгутиконосцы, которые на свету способны к фотосинтезу, а в темноте питаются готовыми органическими веществами. Для обеспечения фотосинтеза в клетках растений содержатся пластиды, несущие хлорофилл и другие пигменты.
Так как растительная клетка имеет клеточную стенку, защищающую ее содержимое и обеспечивающую постоянную ее форму, то при делении между дочерними клетками образуется перегородка, а животная клетка, не имеющая такой стенки, делится с образованием перетяжки.
Резкую границу между животными и растениями провести нельзя. Если высшие, сложно организованные животные и растения всегда резко отличаются друг от друга многими признаками, то их низшие формы, особенно одноклеточные животные и растения, нередко имеют черты сходства. Это свидетельствует об общности происхождения животных и растений.
Какие свойства характерны для высших растений?
Первое и, пожалуй, самое главное свойство растений - это способность к фотосинтезу. Организмы, использующие для питания синтезируемые ими же вещества, называются автотрофами, т.е. питание у растений автотрофное. Однако, как все в мире природы, подобное свойство есть не только у растений, но и у некоторых бактерий и протистов. Тем не менее, именно растения являются самыми главными фотосинтезирующими организмами на Земле. Благодаря сложным биохимическим процессам в зелёных клетках растений из воды и углекислого газа образуются органические соединения - углеводы (глюкоза). При этом от воды отщепляется кислород и выделяется в атмосферу. Второй, вытекающий отсюда признак - это свойственные только растениям пигменты: хлорофилл (зелёный), присутствующий во всех зеленых частях растений и выполняющий основную долю фотосинтеза, различные каратиноиды (красный, оранжевый, желтый), также фотосинтезирующие, благодаря которым листья осенью приобретают соответствующую окраску. Кроме того, существует множество других пигментов, обуславливающих разнообразие окраски цветков плодов и прочих частей растений.
Третий признак - это неограниченный рост. Растения, в отличие от животных, способны расти в течение всей своей жизни (с перерывами на зимний период). Здесь опять же нужно сказать о том, что расти в течение всей жизни способны и грибы.
Четвертый признак - особенность клеточного строения. У растений клетка снаружи помимо мембраны покрыта так называемой клеточной стенкой, состоящей из целлюлозы, которая является своеобразным каркасом клетки. У животных подобной клеточной стенки нет, а у грибов она состоит из хитина. В совокупности клеточные стенки придают тканям растений большую прочность.
studfiles.net
Как устроена грибная клетка?
Очень долгое время древние ученые ошибочно относили грибы в одну группу с растениями. И делалось это только из-за их внешнего сходства. Ведь грибы, как и растения, не могут передвигаться. И с первого взгляда они вовсе не похожи на животных. Однако как только ученые получили возможность исследовать клетки, они обнаружили, что грибная клетка во многом похожа на клетку животных. Поэтому данные живые организмы перестали причислять к растениям. Однако и к животным их отнести нельзя, так как грибная клетка, кроме сходств, имеет и ряд отличий от животной. В связи с этим грибы выделили в отдельное царство. Таким образом, в природе существует пять царств живых организмов: животные, растения, грибы, бактерии и вирусы.
Основные особенности грибной клетки
Грибы относятся к эукариотам. Это живые организмы, в клетках которых присутствует ядро. Оно необходимо для того, чтобы защищать генетическую информацию, записанную на ДНК. Эукариотами, кроме грибов, являются животные и растения.
Существуют как одноклеточные грибы, так и многоклеточные.
Грибная клетка, как и все клетки эукариотов, состоит из трех частей: плазматической мембраны, ядра и цитоплазмы. В последней находятся органоиды и включения. Органоиды являются постоянными. Они выполняют в клетке определенные функции. Включения же нестабильны. Они в основном выполняют запасную функцию. Они обладают не такой сложной структурой, как органоиды. В основном это просто капли или кристаллы питательных веществ, которые грибная клетка может при необходимости использовать.
Чем клетка гриба похожа на клетку растения?
Основное сходство заключается в том, что строение грибной клетки предусматривает наличие клеточной стенки поверх плазматической мембраны. Такое образование не характерно для клеток животных, а вот у растений она также присутствует. Однако у представителей флоры клеточная стенка построена из целлюлозы, а у грибов она состоит из хитина.
Сходства клетки гриба и животного
Основная черта, которая делает строение грибной клетки похожим на животную, это наличие включений из гликогена. В отличие от растений, которые запасают крахмал, грибы, как и животные, запасают гликоген.
Еще одна сходная черта — способ питания клетки. Грибы являются гетеротрофами, то есть получают готовые органические вещества извне. Растения же являются автотрофами. Они фотосинтезируют, получая питательные вещества самостоятельно.
Органоиды
Грибная клетка, рисунок которой можно увидеть ниже, обладает такими органоидами, как митохондрии, рибосомы, эндоплазматический ретикулум, лизосомы, клеточный центр и комплекс Гольджи. Кроме того, в старой клетке гриба может присутствовать вакуоль. Все перечисленные выше органоиды выполняют свои функции. Рассмотрим их в краткой табличке.
Органоид | Функция |
Митохондрии | Клеточное дыхание (выработка энергии) |
Рибосомы | Процесс трансляции (формирование полипептидной цепи из отдельных аминокислот) |
Эндоплазматический ретикулум | Синтез жиров, участие в обмене веществ |
Лизосомы | Клеточное пищеварение |
Клеточный центр | Участие в процессе деления клетки |
Комплекс Гольджи | Синтез органических веществ, классификация белков |
В отличие от растений, клетки грибов не содержат пластид. У растений эти органоиды отвечают за фотосинтез (хлоропласты) и окраску лепестков (хромопласты). Также грибы отличаются от растений тем, что в их случае только старая клетка имеет вакуоль. Растительные же клетки обладают этим органоидом на протяжении всего жизненного цикла.
Ядро у грибов
Так как они являются эукариотами, в каждой их клетке содержится ядро. Оно предназначено для защиты генетической информации, записанной на ДНК, а также для координации всех процессов, происходящих в клетке.
Данная структура обладает ядерной мембраной, в которой присутствуют специальные поры, состоящие из специальных белков — нуклеоприонов. Благодаря порам ядро может обмениваться веществами с цитоплазмой.
Та среда, которая находится внутри мембраны, называется кариоплазмой. В ней находится ДНК в виде хромосом.
В отличие от растений и животных, клетки которых обычно содержат одно ядро (исключением могут быть, например, многоядерные клетки мышечной ткани или безъядерные тромбоциты), грибная клетка зачастую имеет не одно, а два и больше ядер.
Заключение — разнообразие грибов
Итак, когда мы уже разобрались, как устроена клетка этих организмов, давайте в двух словах рассмотрим их разновидности.
Прежде всего, существуют грибы одноклеточные и многоклеточные. Среди одноклеточных наиболее известными и широко используемыми человеком являются дрожжи. Кроме того, существует ряд одноклеточных грибов, которые паразитируют на других организмах, тем самым вызывая разнообразные заболевания, такие как мучнистая роса у растений или стригущий лишай у животных.
Многоклеточные грибы, в зависимости от строения, делятся на такие классы: базидиомицеты, аскомицеты, оомицеты, зигомицеты и хитридиомицеты.
fb.ru
Клетка | Биология животных
Изобретение микроскопа открыло путь к познанию микроструктуры тела животных и растений, их строения. Клеточная теория — учение об общих чертах строения животных и растений, о клетке как элементарной структуре, о тканях, образованных клетками.
Использование электронного микроскопа, микроманипуляторов, физико-химических методов и т. д. углубило познание общего в строении клеток и особенного. Выяснено, что в деталях клетки имеют специфическое строение не только у организмов, далеко отстоящих в системе, но и у особей одного вида, и у клеток разных тканей в одном организме. Установлено также, что непрерывное физиологическое взаимодействие клеток в организме происходит через их поверхностную мембрану. Отошло в прошлое суждение о многоклеточном организме, как о «государстве клеток» (механистическая теория анатома Вир-хова). Клетки свое начало берут при дроблении яйца и в дальнейшем, численно возрастая путем деления, продолжают сохранять взаимосвязь.
Жизненные отправления клеток обусловлены целым организмом, закономерностями его роста и развития. В клетках происходит обмен веществ — процессы ассимиляции и диссимиляции. Новым стало и понимание физиологической роли межклеточных веществ.
В теле многоклеточных животных клетки дифференцированы в зависимости от их функций. Они различаются по размерам, форме и строению.
Большинство из клеток микроскопически малы, но некоторые достигают относительно большой величины. Например, отростки некоторых нервных клеток мозга крупных млекопитающих достигают длины свыше метра. Формы клеток (рис. 7) обусловлены их функцией и положением в организме. Встречаются клетки округлой, овальной, кубической, призматической, веретено-видной, звездчатой и других форм. Некоторые клетки не имеют постоянной формы, она изменяется путем образования временных выпячиваний.
Строение клеток животных отличается большой сложностью. Обычно в них можно различить наружную мембрану, цитоплазму, клеточное ядро (или ядра) и различные органоиды (рис. 8).
Рис. 7. Различные формы клеток животного;
/ — нервная клетка; 2—4 — клетки эпителия; 5 — клетка соединительной ткани; 6 — яйцеклетка; 7 — мышечная клетка
Рис. 8. Схема строения клетки животного:
/ — ядро; 2 -- ядрышко; 3 -- ядерная мембрана; 4 — цитоплазма;5 — аппарат Гольджи; в — митохондрии; 7 — лизосома; 8— андоилазматическая
сеть;9 — рибосомы; 10 - клеточная мембрана
Наружная мембрана клеток животных, как правило, очень тонка (толщина около 10~ь см). Она состоит из трех слоев: наружного, среднего и внутреннего. Наружный и внутренний слои образованы белками, средний — липоидами. На внутренней поверхности мембрана образует складки и разветвления, переходящие в эндоплазматическую сеть цитоплазмы.
Мембрана служит защитной оболочкой клетки и активно участвует в регуляции обмена веществ между клеткой и окружающей средой.
Цитоплазма занимает большую часть тела клетки. Цитоплазма—сложная коллоидная система. В ее состав входят белки, часть которых соединена с липидами, различные соли, ферменты и большое количество воды. Общими для всех клеток структурными образованиями цитоплазмы являются эндоплазма-тическая сеть, аппарат Гольджи, рибосомы и митохондрии.
Эндоплазматическая сеть пронизывает всю цитоплазму клетки. Она представляет собой систему тончайших мембран. Около ядра мембраны переходят в мембраны ядерной оболочки. Эндоплазматическая сеть выполняет функцию остова клетки, а по ее канальцам и синусам происходит внутриклеточный обмен веществ, синтезируемых в различных частях клетки.
Аппарат Гольджи имеет структуру, близкую к структурным образованиям эндоплазматической сети. Он образован мембранами, ограничивающими более крупные вакуоли и мелкие пузырьки. Функции аппарата Гольджи еще недостаточно выяснены, но, вероятно, он служит для временного накапливания некоторых продуктов внутриклеточного синтеза, главным образом ферментов и гормонов. При определенном состоянии организма эти вещества могут быть выведены из клетки через эндоплазматическую сеть и вовлечены в обменные процессы всего организма.
Митохондрииявляются энергетическими центрами клетки и оказывают влияние на ее многие жизненные отправления. Это мелкие удлиненные тельца длиной 0,2—5 мкм. Они покрыты двухслойной оболочкой. Из внутреннего слоя оболочки в полость митохондрии направлены многочисленные гребни. Они резко увеличивают внутреннюю поверхность митохондрий, что важно для ускорения биохимических реакций накопления и превращения энергии в клетке.
Рибосомы— мельчайшие зерна диаметром около 0,015 мкм, расположенные преимущественно на поверхности мембран эндо-плазматической сети. Они имеются также и в ядре клетки. Функция рибосом заключается в синтезе белков, которые затем по каналам эндоплазматической сети разносятся по всей клетке.
Центрозома присуща почти всем клеткам животного. Обычно она имеет вид светлого поля, в Котором размещены 1—2, реже больше мелких зернышек — центриол. В некоторых клетках, особенно находящихся в состоянии деления, от центрозомы ради-ально расходятся тончайшие лучи, образующие лучистую сферу. Центриоли принимают важное участие в расхождении хромосом при сложном делении клеток.
Нередко в цитоплазме клеток животных можно обнаружить различные тончайшие нити и волоконца. Одни из них служат как бы опорным каркасом клеток (тонофибриллы), другие обладают способностью сокращаться (например, миофибриллы мышечных клеток). В нервных клетках нити цитоплазмы (нейрофибриллы) участвуют в проведении нервных импульсов.
В цитоплазме клеток тела животных периодически наблюдаются различные временные включения (капельки жира, зерна и глыбки запасных белков и др.). Они возникают и исчезают в зависимости от баланса обмена веществ. Железистые клетки содержат капли секрета, позднее выводимого из них. К клеточным включениям относятся и зерныш'ки различных пигментов — красящих веществ, придающих клеткам ту или иную окраску. Нередко наружный слой цитоплазмы (эктоплазма) отличается от ее внутренних частей (эндоплазмы) более плотной консистенцией и отсутствием включенных пузырьков и зерен.
Ядро присуще почти всем клеткам животных. Лишь некоторые специализированные клетки (например, красные кровяные клетки высших позвоночных) в процессе своего формирования утрачивают ядро. Ядра клеток животных разнообразны по величине и форме. Снаружи ядро клетки одето двухслойной ядерной мембраной. В ней имеются многочисленные поры, через которые осуществляется обмен веществ между ядром и цитоплазмой. Описана' также система тончайших канальцев, которые связывают ядро со структурными элементами цитоплазмы. Кариоплазма — вещество ядра, содержит белки, липоиды, ферменты, минеральные вещества, нуклеиновые кислоты. В ядре расположены хромосомы и ядрышко. Хромосомы — носители наследственной информации. Число и форма их постоянны для данного вида животного. Они видны в период деления ядра. Ядрышко — мелкое тельце округлой формы, хорошо различимое в неделящихся клетках.
animaldir.ru
Из чего состоит клетка (клетка животного или клетка растения)?
Из чего состоит клетка (клетка животного или клетка растения)?
Как растительная, так и животная клетка состоят из оболочки, ядра, цитоплазмы и находящихся в ней органоидов. Отличаются же животная и растительная клетки именно этими органоидами: в растительной клетке есть пластиды, есть большая центральная вакуоль, есть клеточная стенка. В животной выщеперечисленных органоидов нет, зато вакуоли делятся по функциям - пищеварительные (лизосомы), сократительные, митохондрии и т.п.
Устройство клетки на первый взгляд просто и не замысловато, то что преподают в школьной программе весьма поверхностное представление, а вот как все взаимодействует и за счет чего, такие вопросы ставят в тупик многих ученых, уж слишком сложно мы устроены.
Клетка животного состоит из ядра, митохондрий, рибосом, лизосом, комплекса Гольджи, центриолей, цитоплазмы, плазматической мембраны, вакуолей. Все эти органеллы выполняют свои функции. Например, ядро клекти, хранит генетическую информацию. Рибосомы синтезириуют белок. Функции митохондрий - синтез АТФ. В аппарате Гольджи формируются лизосомы. Центриоли играют важную роль при делении клетки. Они участвуют в образовании веретена деления. Цитоплазма представляет собой внутреннюю полужидкую среду клетки, в которой, собственно, и находятся органеллы.
Состав клетки животного или растения.
Каждая живая клетка состоит из ядра, мембраны и цитоплазмы. Это основные органы клетки. Функции ядра и мембраны клетки обсуждали здесь в таком вопросе:
http://www.bolshoyvopros.ru/questions/33439-kakie-funkcii-vypolnjaet-kletka-funshy;kcii-jadra-kletki-membrany.html
Клетка состоит из следующих частей:
- ядра, митохондрий , рибосом, лизосом, комплекса Гольджи, центриолей, цитоплазмы, плазматической мембраны, вакуолей,(центральная вакуоль, хлоропласт, пластиды).
Видео.
Ооо, биология пошла=)
Клетка состоит из ядра, цитоплазмы, органелл и вместо кожи у нее мембрана. Еще есть комплекс Гольджи, который выводит из клетки продукты е переработки, митохондрии... Может что-то еще, но я уже не помню. Будет повод почитать на досуге=)
Растительная клетка имеет почти те же органеллы. Добавляем лишь центральную вакуоль, хлоропласт, пластиды.
Клетки как животного, так и растения содержат и органические вещества. Последние представлены очень сложными по своему составу соединениями: белками, нуклеиновыми кислотами, углеводами, жирами (липидами) и жироподобными веществами (липоидами) и др.
info-4all.ru
Строение клетки животных
Эукариотический тип клеточной организации представлен двумя подтипами – простейших и многоклеточных.
Организм простейших в анатомическом отношении соответствует уровню одной клетки, а в физиологическом – полноценной особи. Характерным признаком простейших является наличие структур, выполняющих на клеточном уровне функцию органа многоклеточного организма. В качестве примера можно привести такие образования, как цитостом, цитофарингс и порошица, аналогичные пищеварительной системе многоклеточных. Клетку второго подтипа (растительную, животную) представляют как объект, отграниченный от внешней среды оболочкой с ядром и цитоплазмой. Ядро имеет оболочку, ядерный сок, ядрышки и хроматин. Цитоплазма представлена матриксом, в котором сосредоточены включения и органеллы.
Внутреннее содержимое эукариотической клетки исключительно упорядоченно. Упорядоченность достигается путем так называемой компартментации ее объема, т.е. разделения на различные участки, отличающиеся химическим составом. Компартментация объема клетки способствует пространственному распределению веществ в клетке и последовательному течению биохимических процессов. Решающая роль в реализации компартментации принадлежит биохимическим мембранам, которые выполняют барьерную функцию, обеспечивают избирательную проницаемость веществ, разделяют между водными и не водными фазами и т.д.
Благодаря упорядоченности клеточного объема в клетке осуществляется распределение функций между разными структурами и целесообразное взаимодействие, обеспечивающее жизнедеятельность клетки и, в конечном счете, многоклеточного организма.
Клетки многоклеточных организмов (животных, растений) отграничены друг от друга оболочкой. Клеточная оболочка ( плазмолемма) животных клеток имеет наружный слой (гликокаликс) толщиной 10-20 нм. Этот слой состоит из гликопротеидов и гликолипидов. К клеточной мембране изнутри примыкает корковый слой цитоплазмы толщиной 0,1-0,5 мкм. В этом слое находятся микротрубочки и микрофиламенты, имеющие в своем составе белки. Способные к сокращению. Оболочка выполняет отграничивающую, барьерную, защитную и транспортную функцию, регулирует химический состав клетки, избирательно распознает биологически активные вещества с помощью рецепторов. Благодаря наличию рецепторов, клетка воспринимает сигналы из внешней среды, адекватно реагирует на эти сигналы, а следовательно, на изменения окружающей среды и состояние самого организма.
Ядро клетки отделено от цитоплазмы ядерной оболочкой, которая обособляет генетический материал клетки от протоплазмы и осуществляет взаимодействие ядра и гиалоплазмы. Оболочка состоит из двух мембран. Разграниченных перенуклеарным пространством, которое может контактировать с канальцами ЦПС. Ядерная оболочка пронизана порами (диаметром 80-90 нм). Поры обеспечивают перемещение веществ из ядра в цитоплазму и наоборот. Количество пор находится в прямой зависимости от функционального состояния клетки. с повышением синтетической активности клетки число пор увеличивается. Внутреннюю мембрану ядерной оболочки выстилает белковый слой. Он выполняет опорную функцию.
Значение ядра хорошо показано в опытах по энуклеации клеток. особенно демонстративны эти опыты на амебе. Часть амебы, лишенная ядра, погибает, а часть амебы с ядром продолжает жить и развиваться. Если в безъядерную часть амебы внести ядро, то ее жизнедеятельность восстанавливается.
Ядерный сок состоит из белков, которые представляют внутреннюю среду ядра. Обеспечивающую сохранение и функционирование генетического материала. В ядерном соке обнаружены фибрилярные белки. выполняющие опорную функцию.
Ядрышко представляет собой структуру, состоящую из нитчатого и зернистого компонентов, что установлено с помощью электронной микроскопии. Нитчатый компонент состоит из белков и гигантских молекул РНК, из которых образуются более мелкие зрелые молекулы рибосомальных РНК. Зернистый компонент представлен рибонуклеиновыми зернами ( гранулами).
Цитоплазма клетки представлена основным веществом, различными включениями и органеллами. Цитоплазма заполняет всю клетку, это ее внутренняя среда. Основное вещество цитоплазмы иначе называют матриксом, гиалоплазмой. Состав гиалоплазмы сложный. Она включает все внутриклеточные структуры и обеспечивает их взаимодействие. Гиалоплазма – сложная коллоидная система. Она способна переходить из одного агрегатного состояния в другое (из золеобразного в гелеобразное и наоборот). В результате таких переходов совершается работа, происходит образование мембран, микротрубочек, выброс из клетки секретов и т.д.
В цитоплазме обнаружены включения, которые носят временный характер. Это могут быть запасные питательные вещества ( жир, гликоген), продукты метаболизма. Подлежащие удалению из клетки ( пигменты, гранулы секрета).
Важную роль в жизнедеятельности клетки играют органеллы. Их подразделяют на органеллы общего и специального назначения. К первым относят цитоплазматическую сеть, рибосомы, митохондрии, полисомы, лизосомы, пероксисомы, микрофибриллы, микротрубочки, центриоли, а ко вторым – органеллы, специализированные к выполнению определенной функции. В качестве примера можно указать на микроворсинки эпителиальных клеток кишечника, реснички эпителия дыхательных путей, миофибриллы и т.д.
Вся цитоплазма клетки пронизана канальцами, вакуолями, цистернами, которые в совокупности образуют цитоплазматическую сеть. Различают гранулярную и агранулярную цитоплазматические сети. К мембранам шероховатой ( гранулярной) сети прикреплены структурные образования клетки – полисомы. Основная функция этой сети – синтез белка. Гладкая ( агранулярная) сеть не имеет полисом, поэтому она выполняет функции, связанные с обменом углеводов, жиров и других веществ, не относящимся к белкам. Цитоплазматическая сеть иначе называется эндоплазмотической, она выполняет многочисленные процессы обмена веществ, осуществляет связь между всеми органоидами клетки.
К органоидам клетки относятся рибосомы – частицы, диаметром 20-30 нм. Это образования округлой формы рибонуклеопротеиновой природы. Несколько рибосом, объединенных матричной РНК, называют полисомами. Полисомы активно синтезируют белок. Полагают, что полисомы гиалоплазмы синтезируют белки для нужд клетки, а полисомы гранулярной сети производят белки. выводимые за пределы клетки и используемые для жизнедеятельности всего организма.
Комплекс Гольджи представляет собой совокупность большого количества диктиосом, которых может быть в клетке от нескольких десятков до нескольких тысяч. Диктиосомы составлены из 3-12 уплощенных дискообразных цистерн. От краев этих цистерн отшнуровываются мелкие пузырьки (везикулы) и крупные (вакуоли). Диктиосомы обычно локализуются в цитоплазме вокруг ядра. Содержимое везикул и вакуолей подлежит удалению из клетки. в комплексе Гольджи образуются лизосомы. Содержимое лизосом заключено в оболочку, которая снаружи зачастую окаймлена белками. В лизосомах содержатся ферменты. Расщепляющие нуклеиновые кислоты, жиры, полисахариды.
Лизосомы подразделяют на первичные и вторичные, первичные называют не активными. Вторичные разделяют на гетеролизосомы (фаголизосомы) и аутолизосомы (цитолизасомы). В фаголизасомах переваривается материал, поступающий в клетку извне, а в цитолизосомах – материал клетки, выполнивший свои функции и оказавшийся не нужным. Вторичные лизосомы, в которых процесс переваривания завершен, называются телолизосомами.
Главная функция лизосом – гидролитическое расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Эта функция осущетсвляется с помощью набора ферментов в составе лизосом.
Митохондрии – это образования округлой или продолговатой формы, толщиной 0,5 мкм, длиной 5-10 мкм. Оболочка митохондрий состоит из двух мембран – наружной и внутренней. От внутренней отходят листовидной формы кристы, или трубчатой – тубулы. Содержимое митохондрий называется матриксом.
Основная функция митохондрий – накопление энергии в форме аденозинтрифосфата (АТФ). Кроме этого митохондрии участвуют в синтезе гормонов и некоторых аминокислот.
Микротельца относят к сборной группе органелл. Это пузырьки, диаметром 0,1-1,5 мкм с мелкозернистым содержимым. К сборной группе органелл относят пероксисомы, содержащие оксидазы, катализирующие образование пероксида водорода, который разрушается под действием фермента пероксидазы.
Электронной микроскопией в цитоплазме обнаружены микротрубочки, которые выполняют опорную функцию и обеспечивают направленное перемещение внутриклеточных компонентов.
В цитоплазме выявлены так называемые микрофиламенты – длинные, тонкие, иногда собранные в пучки образования. Различают разные типы микрофиламентов. Например, активные микрофиламенты, обеспечивают клеточные формы движения в связи с присутствием в их составе белка актина, способного к сокращению. Промежуточные филаменты выполняют каркасную функцию. Они располагаются по периферии клеток растений, грибов, водорослей обязательно наличие клеточного центра, состоящего из центриоли. Центриоль представляет собой цилиндр диаметром 150 нм, длиной 300-500 нм. Клеточный центр участвует в процессе деления клетки.
Сложные обменные процессы в клетке инициируют поток информации, энергии, веществ. Эти три потока обеспечивают жизнедеятельность клетки. Поток информации, исходящий от генетического аппарата клетки, позволяет ей приобретать структуры, характерные для категории живого, которые обеспечивают существование клетки во времени и передачу наследственной информации о приобретенных структурах в ряду поколений.
Процессы брожения, фотосинтеза, хемосинтеза, дыхания обеспечивают клетку необходимой энергией. Однако, основным механизмом образования потока энергии является дыхательный обмен, в результате которого происходит расщепление глюкозы, жирных кислот, аминокислот и использование выделяемой энергии для образования АТФ. Энергия АТФ преобразуется в определенную работу – химическую, осмотическую, электрическую, механическую, регуляторную.
Клетки по способу извлечения энергии делятся на два основных типа: гетеротрофные и автотрофные. Гетеротрофные клетки (организма человека, высших животных) требуют постоянного притока готового горючего – углеводов, белков, жиров. Автотрофные клетки в процессе фотосинтеза связывают энергию солнечного света, используют ее для своей жизнедеятельности.
Механизмы образования энергии в живой клетке характеризуется необычной эффективностью, оставляя далеко позади достижения современной техники. Так, например, коэффициент полезного действия митохондрии составляет 45-60 %, а этот же показатель двигателя внутреннего сгорания – 17 %.
Процесс дыхания и связанные с ним реакции поставляют клетке не только энергию но и снабжают ее продуктами расщепления пищевых веществ, поступающих извне. Дыхательный обмен является основным фактором, обеспечивающим поток веществ в метаболизме клетки.
biofile.ru