Какова роль клеточной инженерии в селекции растений. 7) В чем особенности биотехнологий: генной и клеточной инженерии, каковы их возможности, достижения и возможные перспективы?

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

6. Что понимают под клеточной инженерией и каково ее отличие от генной инженерии? Какова роль клеточной инженерии в селекции растений


Основы клеточной инженерии

Клеточная инженерия – это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. Клеточная инженерия включает реконструкцию жизнеспособной клетки из отдельных фрагментов разных клеток, объединение целых клеток, принадлежавших различным видам, с образованием клетки, несущей генетический материал обеих клеток, и другие операции. Клеточная инженерия используется для решения теоретических проблем в биотехнологии и является одним из основных её методов для создания новых форм растений и животных.

Наряду с развитием методов генной инженерии в животноводстве перспективны способы клеточной инженерии. В растениеводстве в селекции эти методы уже получили значительное развитие. Культивирование клеток растений in vitro обеспечивает возможность применять системы интенсивного отбора клеток, культивированных в строго контролируемых селективных условиях.

Присущие растительным клеткам свойства тотипотентности (свойство отдельных клеток развиваться в целостный организм) дают возможность плюс-варианты регенерировать в целые растения и использовать в процессе селекционной работы.

Методы клеточной инженерии перспективны и в животноводстве. Уже накоплен большой опыт культивирования соматических клеток животных in vitro, разработаны оптимальные среды и режимы культивирования, отработаны способы длительного хранения клеток при низких температурах. Как уже было сказано, активные исследования проводятся и по культивированию генеративных клеток. Разработка этих методов создает прочную основу для развертывания теоретических и прикладных работ по клеточной инженерии сельскохозяйственных животных, которые будут иметь все возрастающее народнохозяйственное значение.

На первое место следует поставить уже достаточно хорошо разработанный метод разделения ранних эмбрионов. С развитием трансплантации в руках исследователей появилось достаточное количество ранних эмбрионов, что дало мощный импульс работам по манипуляции с этими объектами. Первый успешный опыт по разделению эмбрионов на стадии 2—8 бластомеров был осуществлен Виллардом (Кембридж, Великобритания). Однако получение такого материала связано с большими трудностями и может быть осуществлено в научно-исследовательских учреждениях.

В результате исследователи начали манипулировать с эмбрионами в более поздних стадиях развития (морула, бласто-циста). Сущность метода заключается в том, что предварительно вскрывается прозрачная зона (pellucida), эмбрион разделяется на две части. При этом одна половина остается в прежней зоне, а другую переносят в заранее подготовленную зону и производят обычную трансплантацию. Во многих опытах прижив-ляемость разделенных эмбрионов достигает 50—60%. Прикладной аспект этой методики заключается в увеличении числа телят, полученных от каждого донора. По данным американских исследователей, половинки эмбрионов, инкубировавшиеся без прозрачной оболочки, сохраняли жизнеспособность в культуре только в 15% случаев, а при наличии зоны пеллюцида — в 35% случаев. Наилучшие результаты были получены при нехирургическом введении половинок эмбрионов — каждая в отдельной прозрачной оболочке в разные рога матки одного и того же реципиента (55% стельности).

В другом опыте были достигнуты еще лучшие результаты при хирургическом введении каждой половинки эмбриона в рог матки на той стороне, где локализовалось желтое тело (65% стельности). Стало очевидным, что разделение эмбрионов — эффективный метод увеличения потомства коров-доноров.

В настоящее время эта методика начинает внедряться в практику племенного дела. Уже получены животные от трансплантации половинок эмбрионов свиней (США, Р. У. Роунтри). По данным ряда исследователей, число потомков может быть увеличено на 30—35%. Однако этим не ограничивается значение клеточно-инженерной операции. Возможность массового получения идентичных двоен (генетических копий) очень важна. Эти животные имеют большую ценность для исследователей, занимающихся проблемой взаимодействия генотипа и среды. Использование идентичных двоен позволяет повысить точность исследований и достичь достоверных результатов при меньшем числе подопытных животных. Кроме того, наличие идентичных близнецов позволяет на одном из них проводить изучение признаков, требующих убоя животного (например, мясные качества), и переносить эти данные на близнеца, что является методически вполне обоснованным. Все это позволяет более точно и всесторонне оценить данный генотип. Кроме того, при трудоемкой и длительной работе по оценке быков по качеству потомства эту работу можно проводить только с одним из двойневых идентичных быков. Оценка одного животного будет соответствовать оценке и другого идентичного животного. Имеется информация о том, что уже получено потомство при разделении бластоцисты на 4 части. Это еще в значительной мере увеличивает значение данного метода клеточной инженерии для повышения эффективности селекционно-племенной работы и исследований в области генетики сельскохозяйственных животных.

К важнейшим проблемам животноводства относится разра-ботка методов регулирования пола сельскохозяйственных животных. Непредсказуемость пола рождаемых животных может приобретать значительную важность, если экономическое значение животных одного пола существенно выше экономического значения животных другого пола. Пока достигнут лишь незначительный прогресс в решении проблемы контролирования соотношения полов и в разработке методов его регуляции. Идеальным методом контролирования соотношения полов могло бы стать разделение спермиев, несущих Х- и У-хромосомы. Очевидно, именно в этом направлении должны интенсивно развиваться исследования. Другим подходом для воздействия на соотношение полов является определение пола у ранних эмбрионов после извлечения из репродуктивного тракта самки и перед их трансплантацией.

Один из аспектов идентификации пола эмбрионов — цитологический, с помощью которого определяют их тип (XX или XY) путем исследования половых хромосом или хроматина. Кроме того, иммуногенетические методы, используемые для идентификации специфичных по полу антигенов эмбрионов, могут быть перспективны для разделения мужских и женских эмбрионов. Количественные различия в метаболической активности мужских и женских эмбрионов могут быть также использованы в качестве принципа для разделения эмбрионов по полу. Имеется сообщение, что с помощью колориметрического теста по определению активности глюкозо-6-фосфат-дегидрогеназы можно идентифицировать пол. Перспективны методы, основанные на гибридизации ДНК для идентификации мужских эмбрионов. Каждый из указанных способов весьма перспективен. Однако в настоящее время наиболее разработаны и эффективны цитологический и иммунологический методы.

Новый этап биотехнологии, интенсивно развивающийся в настоящее время, обусловил появление совершенно новых нетрадиционных объектов – культивируемых тканей и клеток высших многоклеточных организмов, животных и растений, а также микроорганизмов, создаваемых методами генетической инженерии. В отличие от микроорганизмов культуры клеток высших организмов являются сравнительно новыми объектами, использование которых позволяет наладить производство ценных биологически активных веществ, вакцин и моноклональных антител.

Идея о возможности культивирования клеток вне организма впервые была высказана в конце прошлого столетия, но первые культуры клеток были получены в начале нашего века, и ими явились, клетки животных, а не растений. А культивирование растительных клеток на искусственных питательных средах долгое время не удавалось. И лишь в 30-е годы были достигнуты первые успехи в этой области, которые и обеспечили бурный расцвет данного направления.

Развитие метода культуры клеток растений приходится на 70-е годы, когда были разработаны методические приемы получения изолированных протопластов растительных клеток, а также метода гибридизации соматических клеток растений.

Улучшение растений и животных на основе клеточных технологий

Выращиваемые на искусственных питательных средах клетки и ткани растений составляют основу разнообразных технологий в сельском хозяйстве. Одни из них направлены на получение идентичных исходной форме растений, а другие - на создание растений, генетически отличных от исходных (путем или облегчения и ускорения традиционного селекционного процесса или создания генетического разнообразия и поиска и отбора генотипов с ценными признаками). В первом случае используют искусственное оплодотворение, культуру незрелых гибридных семяпочек и зародышей, регенерацию растений из тканей летальных гибридов, гаплоидные растения, полученные при культивировании пыльников или микроспор. Во втором — новые формы растений создаются на основе мутантов. Таким путем получены растения, устойчивые к вирусам и другим патогенам, гербицидам, растения, способные синтезировать токсины, патогенные для насекомых-вредителей, растения с чужеродными генами, контролирующими синтез белков холодоустойчивости и белков с улучшенным аминокислотным составом, растения с измененным балансом фитогормонов. Клеточная инженерия – широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям и болезням.

Клонирование – получение идентичных потомков при помощи бесполого размножения.  Возможности клонирования открывают новые перспективы для садоводов-огородников, фермеров-животноводов, а также для его медицинского применения. Одной из главных задач в данной области является создание коров, в молоке которых будет содержаться сыворотка человеческого алгаомина. Создание органов животных, которые можно будет использовать для трансплантации человеку. Путём клонирования можно получать животных с высокой продуктивностью яиц, молока, шерсти или таких животных, которые выделяют нужные человеку ферменты (инсулин, интерферон, химозин).



biofile.ru

Главные перспективы и значения клеточной инженерии

Для непосвященного человека эта наука, а тем более перспективы и значения клеточной инженерии могу показаться тёмным лесом, отчасти это, так и будет, но стоит вникнуть в этот, сложный на первый взгляд, термин и можно узнать столько нового. Например, знаете ли вы, что клеточная инженерия это, прежде всего наука, которая позволяет учёным создавать и конструировать новые клетки. А раз так, то только представьте, какие перспективы открывает клеточная инженерия для человечества в целом!

Клеточная инженерия, как наука появилась в тысяча девятьсот шестидесятом году, именно в этот период возник метод гибридизации соматических клеток. А уже на следующий год были усовершенствованны и способы культивирования животных клеток, а чуть позже учёные открыли способы культивирования и выращивания клеток и тканей растений. С развитием росло не только значение, но и перспективы клеточной инженерии, позволяя осваивать учёным новые методы, среди которых была открыта и соматическая гибридизация.

Открытие этого способа позволило биологам выращивать новые растения без применения полового процесса, такие перспективы в клеточной инженерии, позволили проводить культивирование новых видов, а также культивировать совместные клетки от одного или разных видов. Несомненно, это открытие повысило перспективы и значение клеточной инженерии, как науки в целом.

Развиваясь, клеточная инженерия получала всё новых почитателей, и обретала существенные перспективы, особое значение эта наука приобрела после того, как учёным удалось произвести слияние двух совершенно разных клеток и в ходе эксперимента получить одну гибридную. Эта клетка содержала оба генома двух объединённых клеток. Опыты продолжались, и вскоре учёным наконец-то удалось получить требуемые гибриды между клетками животных, которые были далеки по систематическому положению, к примеру, курицы и мыши.

Благодаря таким перспективным открытиям учёных клеточная инженерия перешла на новый уровень, а значит значение клеточной инженерии, как перспективной науки будущего резко укрепились не только среди учёных-биологов, но и простых людей. В наши дни соматические гибриды, имеют большое значение, и используются не только при научных исследования и проведениях опытов, но и применяются в биотехнологиях.

Используя гибридные клетки, полученные не только от клеток человека, но и от мышей, учёными была проделана трудная, но очень важная для медицины работа по картированию генов в хромосомах человека. Полученные в результате этого опыта гибриды между опухолевыми клетками и здоровыми клетками обладали положительными свойствами обеих родительских клеточных линий. Такие клетки могут легко делиться, при использовании искусственных питательных сред. То есть по сути полученные этим способом клетки обладают особым бессмертием, так, как могут делиться неограниченное число раз.

Не менее важными и перспективными значениями в клеточной инженерии стали опыты с безъядерными клетками, а также их свободными ядрами и другими фрагментами, позволяющие учёным комбинировать разнообразные части этих клеток. Помимо простых опытов, ведутся работы и в области микроинъекции в клетку хромосом, особых красителей, всё это делается для того, чтобы увидеть взаимодействие, а, следовательно, выявить взаимное влияние не только цитоплазмы, но и самих факторов, которые регулируют активность генов.

Теперь мы рассмотрели все преимущества и значение клеточной инженерии, и вы наверняка знаете, насколько перспективна эта наука. Именно она в будущем поможет создавать не только новые организмы, но и проводить различные опыты на клетках, позволяя учёным открывать их полезные качества. Которые, несомненно, помогут не только в лечении опасных заболеваний, но и окажут существенную помощь в сельском хозяйстве и других видах промышленности.

mikrobiki.ru

Клеточная инженерия у растений

 

Клеточная инженерия у растений заключается в получении растений из одной клетки, а также в генетических манипуляциях с изолированными клетками, направленными на преобразование их генотипов.

Метод получения растений из одной клетки основан на способности тканей растений ряда видов к неорганическому росту на специальных искусственных средах, содержащих питательные вещества и регуляторы роста. При культивировании тканей растений на таких средах многие клетки оказываются способными к неограниченному размножению, образуя слои (массу) недифференцированных клеток, получивших название каллуса. Если затем каллус разделить на отдельные клетки и продолжить культивирование изолированных клеток на питательных средах, то из отдельных (одиночных) клеток могут развиться настоящие растения. Способность одиночных соматических клеток растений развиваться в настоящее (целое) растение, называют тотипотентностыо. Возможно, тотипотентность присуща клеткам всех листостебельных растений. Но пока она обнаружена у растений ограниченного круга. В частности, эта способность обнаружена у клеток картофеля, моркови, табака и ряда других видов сельскохозяйственных культур. Этот метод клеточной инженерии растений уже вошел в широкую практику. Однако растения, развившиеся из одной клетки, характеризуются генетической нестабильностью, что связано с мутациями их хромосом. Поскольку генетическая нестабильность дает разнообразные формы растений, они очень полезны в качестве исходного материала для селекции.

Однако растения можно получить и из так называемых протопластов растительных клеток, под которыми понимают клетки, у которых искусственно с помощью гидролитических ферментов (пек-тиназы и целлюлазы) удалена клеточная стенка. Обычно протопласты получают из клеток листьев, корней, лепестков, прорастающей пыльцы, плодов и других структур растений. Способность протопластов давать начало растениям выявлена у очень большого количества видов.

Получение растений из одной клетки или протопласта часто называют клональным микроразмножением. Главнейшее преимущество этого метода заключается в том, что он позволяет резко сократить сроки размножения многих видов растений, а также очень быстро воспроизвести одно и то же растение в сотнях тысяч экземпляров, что имеет исключительно важное значение в селекционной работе и в получении посадочного материала, незараженного возбудителями болезней (рис. 230).

Генетические манипуляции, связанные с растительными клетками, направлены на преобразование генотипов клеток растений, что достигают либо путем соматической гибридизации (получения гибридных клеток) либо путем переноса в клетки генетического материала, происходящего от других организмов. Во всех случаях исходным материалом являются протопласты клеток.

Соматическую гибридизацию осуществляют в несколько этапов, а именно:

1. Получение и слияние протопластов, происходящих от клеток растений разных видов.

2. Культивирование гибридных протопластов, используя селективные питательные среды.

3. Регенерация растений из соматических гибридов (гибридов протопластов) через образование последними каллуса.

 

Как видно, соматическая гибридизация осуществляется по схеме растения — протопласты — каллус — растения. Ее практическая ценность заключается в том, что соматические гибриды используют в селекционной работе.

Перенос генетического материала от одних клеток к другим осуществляют путем трансформации протопластов чужеродной ДНК либо введением в протопласты чужеродной ДНК с помощью плаз-мид. Из образующегося затем каллуса выращивают растения, содержащие интересующий ген. Растения, полученные таким путем, называют трансгенными растениями (рис. 230).

 

Вопросы для обсуждения

 

1. Что понимают под клеточной инженерией и каково ее отличие от генной инженерии?

2. Каковы биологические основы выращивания растений из одной клетки?

3. Назовите методы клеточной инженерии в применении к растениям. Какова хозяйственная ценность растений, получаемых этими методами?

4. Назовите методы клеточной инженерии в применении к животным. Какова хозяйственная ценность животных, получаемых этими методами?

5. Дайте определение понятиям «трансгенные растения» и «трансгенные животные». Сохраняют ли трансгенные организмы свою видовую принадлежность или их можно считать организмами новых видов?

6. Что такое гибридомы и моноклональные антитела? Как их получают?

7. Применима ли клеточная инженерия к человеку?

8. Допустим, что инъекция чужеродной ДНК в яйцеклетку мыши и имплантация оплодотворенной таким путем яйцеклетки в организм мыши закончились ее беременностью и рождением мышат, содержащих в гено-ме копии инъецированной ДНК. Однако мышата оказались мозаиками, т. е. одни их клетки содержат копии инъецированной ДНК, другие лишены этой ДНК. Можете ли вы объяснить природу этого явления?

 

Литература

 

Альберте В., Брей Д., Льюис Дж„ Рэфф М., Роберте К., Уотсон Дж. Молекулярная биология клетки. М.: Мир. 1994. Т. 1. 615 стр.

Пехов А. П., Щипков В. П., Кривская К. С. Новейшие биотехнологические процессы и система современного высшего образования. Вестник РУДН, серия «Фундаментальное естественнонаучное образование», 1999, стр. 120-128.

 

Глава XXI

Похожие статьи:

poznayka.org

6. Что понимают под клеточной инженерией и каково ее отличие от генной инженерии?

К генной инженерии примыкает клеточная инженерия, основанная на успехах клеточной биологии. Ученые научились соединять клетки разных видов растений, объединяя их генетические программы. Такие клетки приобретают новые свойства, становятся производителями ценных лекарственных или пищевых веществ, витаминов. Из таких гибридных клеток можно выращивать целые растения с новыми свойствами, объединяющими признаки растений разных видов, которые обычно не скрещиваются между собой. В зародыши клеток животных научились вводить новые гены и получать животных с новыми наследуемыми свойствами.

Не за горами исправление наследственной программы, полученной ребенком от родителей, в том случае, если она содержит «испорченные» гены. Станет возможным введение в зародыш на ранних этапах его развития нормальных генов и тем самым избавление людей от страданий, вызываемых генетическими болезнями.

Человечество вступило в новую эпоху конструирования генетических программ, и на этой основе создаются новые формы микроорганизмов, растений, животных. В технике начинается широкое использование физико-химических принципов работы живой клетки, ее энергетических устройств для решения практических задач и создания промышленных технологий. Возникло перспективное направление в биологии — биотехнология.

7. Назовите методы клеточной инженерии в применении к животным. Какова хозяйственная ценность животных, получаемых этими методами?

Предпосылкой к развитию клеточной инженерии у человека и животных явилась разработка методов культивирования их соматических клеток на искусственных питательных средах, а также получение гибридов соматических клеток, включая межвидовые гибриды. В свою очередь, успехи в культивировании соматических клеток оказали влияние на изучение половых клеток и оплодотворение у человека и животных. Начиная с 60-х гг., в нескольких лабораториях мира были выполнены многочисленные эксперименты по пересадке ядер соматических клеток в яйцеклетки, искусственно лишенные ядер. Результаты этих экспериментов часто были противоречивы, но в целом они привели к открытию способности клеточных ядер обеспечивать нормальное развитие яйцеклеток

Другой областью клеточной инженерии у животных является получение трансгенных животных. Наиболее простой способ получения таких животных заключается во введении в яйцеклетки исходных животных линейных молекул ДНК. Животные, развившиеся из оплодотворенных таким образом яйцеклеток, будут содержать в одной из своих хромосом копию введенного гена. Больше того, они и будут передавать этот ген по наследству. Более сложный способ получения трансгенных животных разработан на мышах, различающихся по окраске шерстного покрова и сводится к следующему. Вначале из организма беременной серой мыши извлекают четырехдневных зародышей и измельчают их на отдельные клетки. Затем из эмбриональных клеток извлекают ядра, переносят их в яйцеклетки черных мышей, предварительно лишенные ядер. Яйцеклетки черных мышей, содержащие чужие ядра, помещают в пробирки с питательным раствором для дальнейшего развития. Развившиеся из яйцеклетки черных мышей зародыши имплантируют в матки белых мышей. В выполненных по этой методике экспериментах от пяти белых мышей ("приемных матерей") было получено 36 мышей, среди которых трое были серыми. Таким образом, в этих экспериментах удалось получить клон мышей с серой окраской шерстного покрова, т.е. клонировать эмбриональные клетки с заданными свойствами. В § 35 мы рассмотрели результаты оплодотворения искусственно лишенных ядер яйцеклеток овец ядерным материалом соматических клеток животных этого же вида. В частности, из яйцеклеток овец удаляли ядра, а затем в такие яйцеклетки вводили ядра соматических клеток (эмбриональных, плодовых или клеток взрослых животных), после чего оплодотворенные таким образом яйцеклетки вводят в матки взрослых овец. Рождающиеся ягнята оказались идентичными овце-донору. Как было отмечено в § 35, такое получение трансгенных животных представляет собой прямой путь клонирования животных с хозяйственно-полезными признаками, включая особей определенного пола.

studfiles.net

Биотехнология, клеточная и генная инженерия, клонирование

4. МНОГООБРАЗИЕ ОРГАНИЗМОВ

4.1 Систематика. Основные систематические ( таксономические) категории

1. Основная задача систематики –

1) изучение этапов исторического развития организмов

2) установление взаимосвязей организмов и окружающей среды

3) выявление приспособленности организмов к среде обитания

4) объединение организмов в группы на основе родства

Биология. 7 кл.

Многообразие живых организмов.

Авт. В.В. Захаров, Н.И. Сонин.

Изд. «Дрофа» М. 2007

статья -

« Введение.

Что такое систематика?»

2.Какая схема используется при классификации растений?

1) вид род семейство порядок класс отдел

2) вид семейство порядок род класс отдел

3) вид отдел класс порядок род семейство

4) вид класс отдел порядок род семейство

-//- -//-
3. Способность растений скрещиваться и давать плодовитое потомство – это основной признак

1) рода 2) отдела 3) класса 4) вида

-//- -//-
4. Родственные виды растений объединяют в

1) семейства 2) классы 3) роды 4) популяции

-//- -//-
5. К какой категории в системе органического мира относят хордовых животных

1) царству 2) типу 3) классу 4) отряду

-//- Ст. «Тип Хордовых»
6. Бактерии, грибы, растения, животные рассматривают в системе органического мира как

1) типы 2) отделы 3) царства 4) классы

-//- Ст. « Что такое систематика?»
7. Почему бактерии относят к прокариотам?

1) имеют одну хромосому, расположенную в ядре

2) имеют одну кольцевую ДНК

3) размножаются делением надвое

4) питаются только готовыми органическими веществами

-//- Ст. «Подцарство настоящих бактерий»
8. Чем бактерии отличаются от растений?

1) специализированными половыми клетками

2) наличием в цитоплазме молекулы ДНК

3) ядром, обособленным от цитоплазмы ядерной оболочкой

4) двумя и более хромосомами

-//- -//-
9. Бактерии переносят неблагоприятные условия в состоянии

1) зиготы 2) споры 3) цисты 4) анабиоза

-//- -//-
10. Молекулярный азот атмосферы усваивают

1) плесневые грибы 3) дрожжи

2) простейшие 4) клубеньковые бактерии

-//- -//-
11. Чем питаются бактерии сапрофиты?

1)органическими веществами мертвых растений и животных

2) органическими веществами, которые сами создают из неорганических

3) неорганическими веществами, содержащимися в почве

4) неорганическими веществами, поглощаемыми из воздуха

Биология, 6 кл.

Бактерии. Грибы. Растения.

Авт. В.В Пасечный

Изд. «Дрофа» М. 2007 г.

5.6
12. К какой группе организмов относят туберкулезную палочку по способу питания?

1) сапрофитов 3) хемотрофов

2) паразитов 4) автотрофов

-//- 5.6
13. Какие бактерии улучшают азотное питание растений

1) брожение 3) уксуснокислые

2) клубеньковые 4) сапрофитные

Биология. 7 кл.

Многообразие живых организмов.

Авт. В.В. Захаров, Н.И. Сонин.

Изд.»Дрофа» М. 2007

Ст. «Подцарство настоящих бактерий»
14. Какой признак характерен только для царства бактерий?

1) имеют клеточное строение

2) дышат, питаются, размножаются

3) наличие в клетках митохондрий

4) в клетках отсутствует оформленное ядро

-//- -//-
15. Заболевание туберкулезом легких у человека вызывает

1) вирус 3) бактерия-паразит

2) плесневый гриб 4) бактерия-сапротроф

Биология, 6 кл.

Бактерии. Грибы. Растения.

Авт. В.В Пасечный

Изд. «Дрофа» М. 2007 г.

5.6-«Строение и жизнедеятельность бактерий»
16. Какую роль в круговороте веществ выполняют бактерии и грибы?

1) производителей органических веществ

2) потребителей солнечной энергии

3) разрушителей органических веществ

4) разрушителей неорганических веществ

Биология. 7 кл.

Многообразие живых организмов.

Авт. В.В. Захаров, Н.И. Сонин.

Изд.»Дрофа» М. 2007

Ст. «Подцарсво настоящих бактерий».
17. Уменьшение численности шляпочных грибов в лесах некоторых регионов связано с

1) разрушением грибницы при сборе грибов

2) конкуренцией между ними за воду и питательные вещества

3) увеличением численности хищников

4) медленным ростом и недостаточным количеством света

-//- Подумать самостоятельно
18. Чем отличаются грибы от растений?

1) имеют клеточное строение

2) поглощают из почвы воду и минеральные соли

3) бывают как одноклеточными, так и многоклеточными

4) не содержат в клетках хлоропластов и хлорофилла

-//- Ст. «Царство Грибы»
19. Какие особенности жизнедеятельности грибов указывают на их сходство с растениями?

1) накопление в оболочках клеток хитина

2)неограниченный рост в течение всей жизни

3) потребление готовых органических веществ

4) минерализация органических остатков

-//- -//-
20. В чем проявляется сходство процессов жизнедеятельности грибов и животных?

1) всасывают минеральные вещества поверхностью тела

2) питаются готовыми органическими веществами

3) ведут неподвижный образ жизни и расселяют при помощи спор

4) растут в течение всей жизни

-//- -//-
21. Грибы, по сравнению с бактериями, имеют более высокий уровень организации, так как

1) по способу питания они являются гетеротрофными организмами

2) их можно встретить в разных средах обитания

3) они выполняют роль разрушителей в экосистеме

4) их клетки имеют оформленное ядро

-//- -//-
22. Оболочка грибной клетки, в отличие от растительной состоит из

1) клетчатки 3) сократительных белков

2) хитиноподобного вещества 4) липидов

-//- -//-
23. Какую часть шляпочных грибов собирает человек?

1) микоризу 3) плодовое тело

2) мицелий 4) грибницу

-//- -//-
24. Каково значение дыхания в жизни грибов?

1) способствует образованию органических веществ в теле гриба

2) ускоряет процесс биосинтеза белка

3) способствует освобождению энергии и ее использование на процессы жизнедеятельности

4) обеспечивает поступление минеральных веществ из почвы

Биология, 6 кл.

Бактерии. Грибы. Растения.

Авт. В.В Пасечный

Изд. «Дрофа» М. 2007 г.

35

«Дыхание растений»

25. Грибы-сапрофиты, в отличие от грибов- паразитов, питаются органическими веществами

1) мертвых организмов, всасывая их всей поверхностью тела

2) синтезированные из неорганических

3) живых организмов, принося им вред

4) обрпазованными ими из углекислого газа и воды

Биология. 7 кл.

Многообразие живых организмов.

Авт. В.В. Захаров, Н.И. Сонин.

Изд.»Дрофа» М. 2007

Ст. «Царство Грибы»
26. Какие организмы вступают в симбиоз с деревьями?

1) трутовики

2) бактерии гниения

3) плесневые грибы

4) шляпочные грибы

-//- -//-
27. Лишайники не выделяют в особое царство, так как

1) их слоевище представляет собой симбиоз гриба и водоросли

2) по способу питания – это автотрофный организм

3) они размножаются частями тела

4) они представляют собой неклеточную форму жизни

-//- Ст. «Отдел Лишайники»
28. Что представляет собой микориза?

1) грибницу, на которой развиваются плодовые тела

2) совокупность клеток, выполняющих сходные функции

3) сложные переплетения гифов между собой

4) сожительство гриба и корней растений

-//- Ст. «Царство Грибы»
29. Почему лишайники не относят ни к одному из царств живой природы?

1) они совмещают в себе признаки растений и животных

2) по типу питания они сходны с бактериями и животными

3) это комплексные организмы, состоящие из гриба и водоросли

4) они поглощают воду всей поверхностью тела

-//- Ст. «Отдел Лишайники»
30. В царство растений объединяют организмы, способ-ные создавать органические вещества из неорганических с использованием энергии

1) тепловой 3) механической

2) солнечной 4) химической

-//- Ст. «Царство Растения»
31. На развитие растений используется энергия, которую организм получает в результате

1) роста и деления клеток

2) транспорта воды и минеральных веществ

3) расщепления органических веществ при дыхании

4) поглощения веществ из окружающей среды

Биология, 6 кл.

Бактерии. Грибы. Растения.

Авт. В.В Пасечный

Изд. «Дрофа» М. 2007 г.

35

Ст. «Дыхание растений»

32. В клетках растений, в отличие от клеток животных происходит

1) поглощение кислорода и выделение углекислого газа

2) выделение кислорода на свету

3) биосинтез белка и нуклеиновых кислот

4) окисление органических веществ с выделением энергии

-//- 39
33. По какому признаку такие разные по строению организмы, как мох сфагнум и береза, относят к царству Растения?

1) они имеют клеточное строение

2) их клетки содержат наружную мембрану, ядро и цитоплазму

3) в процессе дыхания они поглощают кислород и выделяют углекислый газ

4) их клетки содержат хлоропласты, в которых происходит фотосинтез

-//- 14
34. Оболочка растительной клетки

1) осуществляет синтез белков

2) отграничивает содержимое клетки от окружающей среды

3) служит местом накопления энергии

4) обеспечивает образование в клетке органических веществ

Биология 6 кл.

Растения, Бактерии, Грибы,Лишайники

Авт. И.Н. Пономарева,

О.А.Корнилова, В.С.Кучменко

М.Изд.центр «Вентана-Гриф» 1999г.

7
35.Какой буквой обозначена на рисунке часть клетки, с помощью которой устанавливают связи между органоидами?

1) А

2) Б

3) В

4) Г

Биология, 6 кл.

Бактерии. Грибы. Растения.

Авт. В.В Пасечный

Изд. «Дрофа» М. 2007 г.

4
36. В процессе жизнедеятельности растения используют органические вещества, которые они

1) поглощают из воздуха

2) всасывают их почвы

3) получают от других организмов

4) создают в процессе фотосинтеза

-//- 35
37. Растения в процессе дыхания

1) выделяют кислород и поглощают углекислый газ

2) поглощают кислород и выделяют углекислый газ

3) накапливают энергию в образующихся органических веществах

4) синтезируют органические вещества из неорганических

-//- 35
38. Корневые волоски обеспечивают

1) рост корня в толщину

2) рост корня в длину

3)защиту корня от соприкосновения с почвой

4) поглощение воды и минеральных солей из почвы

-//- 20
39. Подземный побег отличается от корня наличием у него

1) почек 2) зоны роста 3) сосудов 4) коры

-//- 20, 21, 22
40. Какую роль играет камбий в жизни древесного растения?

1) переносит питательные вещества

2) способствует росту стебля в толщину

3) защищает стебель от повреждений

4) придает стеблю прочность и упругость

-//- 26
41. За счет деления клеток какого слоя происходит рост стебля в толщину

1) древесины 3) камбия

2) сердцевины 4) лубяных волокон

-//- 26
42. Через устьица растений происходит

1) газообмен

2) транспорт минеральных солей

3) транспорт органических веществ

4) выделение тепла

-//- 24
43. Из оплодотворенной яйцеклетки растений образуется

1) семя 3) эндосперм

2) зародыш 4) околоплодник

-//- 44
44. В чем проявляется приспособленность большинства деревьев к опылению ветром?

1) образуют крупную, липкую, шероховатую пыльцу

2) цветут весной, до распускания листьев

3) имеют яркую окраску лепестков и крупные одиночные цветки

4) содержат в цветках нектар и большое количество пыльцы

-//- 44
45. Почему кактусы выживают в условиях пустыни?

1) у них приостанавливается фотосинтез

2) их корни глубоко уходят в почву

3) запасают воду в видоизмененных стеблях

4) у них интенсивное дыхание

-//- 55
46. Почему окучивание способствует повышению урожая картофеля?

1) усиливается образование придаточных корней и столонов

2) снижается загрязнение окружающей среды мутагенами

3) уменьшается вероятность заболеваний растений

4) ускоряет цветение и плодоношение

-//- 19
47. В чем проявляется космическая роль растений на Земле?

1) в использовании солнечной энергии в процессе фотосинтеза

2) в поглощении из окружающей среды минеральных веществ

3) в поглощении из окружающей среды углекислого газа

4) в выделении кислорода в процессе фотосинтеза

-//- 59
48. По какому признаку мхи относят к царству растений?

1) в процессе дыхания мхи расходуют органические вещества

2) мхи содержат в клетках хлоропласты, в которых осуществляется фотосинтез

3) клетки мхов имеют ядро, цитоплазму, наружную клеточную мембрану

4) мхи имеют клеточное строение и образованы различными тканями

-//- 14
49. Усложнение в строении папоротников, по сравнению с мхами, состоит в появлении у них

1) стеблей 3) корней

2) листьев 4) ризоидов

-//- 15
50. Чем голосеменные растения отличаются от покрытосеменных?

1) размножением с помощью спор

2) автотрофным питанием

3) наличием вегетативных органов

4) отсутствием цветка и плода

-//- 16
51. Папоротниковидные растения, в отличие от цветковых, размножаются с помощью

1) спор 3) корней

2) почкования 4) корнеклубней

-//- 15
52. Какие признаки характеризуют класс однодольных покрытосеменных растений?

1) развитие с чередованием поколений

2) стержневая корневая система, цветки четырех членного ряда

3) мочковатая корневая система, дуговое жилкование листьев

4) наличие двойного оплодотворения

-//- 46
53. Главный признак, по которому покрытосеменные растения делятся на классы, - это строение

1) цветка 2) плода 3) семени 4) стебля

-//- 46
54. Покрытосеменные растения, которые имеют стержневую систему, сетчатое строение листьев, две семядоли в зародыше семени, относят к классу

1) однодольных 3) голосеменных

2) двудольных 4) хвойных

-//- 46
55. Клевер высевают в качестве предшественника зерновых культур, так как почва обогащается

1) фосфорными и калийными солями

2) органическими веществами

3) микроэлементами

4) соединениями азота

-//- 50
56. Почему бамбук относят к классу однодольных?

1) имеет мелкие невзрачные цветки без околоцветника

2) имеет стержневую корневую систему и сетчатое жилкование листьев

3) имеет мочковатую корневую систему и параллельное жилкование листьев

4) плод зерновка богат питательными веществами, которыми питается зародыш при прорастании

-//- 46
57. Образование залежей каменного угля связано преимущественно с вымиранием древних

1) моховидных

2) папоротникообразных

3) голосеменных

4) покрытосеменных

Общая биология 10-11 кл.

Авторы: В.Н.Сивогла- зов, И.Б.Агафонова, Е.Т. Захарова

Издательство «Дрофа» М.2007 г.

4.16

asyan.org

генной и клеточной инженерии, каковы их возможности, достижения и возможные перспективы?

Генная инженерия. Высшим достижением современной биотехнологии является генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать коренные задачи селекции биологических объектов на устойчивость, высокую продуктивность и качество продукции при оздоровлении экологической обстановки во всех видах производств. Однако для достижения этих целей предстоит преодолеть огромные трудности в повышении эффективности генетической трансформации и прежде всего в идентификации генов, создании их банков клонирования, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, обеспечении высокой экспрессии генов и создании надежных векторных систем. Уже сегодня во многих лабораториях мира, в том числе и в России, с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, получившие коммерческое при­знание.

Современная биотехнология тесно стыкуется с рядом научных дисциплин, осуществляя их практическое применение или же являясь их основным инструментом

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др. Клетки животных и человека также продуцируют ряд биологически активным соединений. Например, клетки гипофиза - липотропин, стимулятор расщепления жиров, и соматотропин - гормон, регулирующий рост.

Созданы перевиваемые культуры клеток животных, продуцирующие моноклональные антитела, широко применяемые для диагностики заболеваний. В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение. Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Клеточная инженерия — необычайно перспективное направление современной биотехнологии. Учёные разработали методы выращивания в искусственных условиях (культивирование) клеток растений животных и даже человека. Культивирование клеток позволяет получать различные ценные продукты, ранее добываемые в очень ограниченном количестве из-за отсутствия источников сырья. Особенно успешно развивается клеточная инженерия растений. Используя методы генетики, удаётся отбирать линии таких клеток растений — продуцентов практически важных веществ, которые способны расти на простых питательных средах и в то же время накапливать ценных продуктов в несколько раз больше, чем само растение. Выращивание массы клеток растений уже используется в промышленных масштабах для получения физиологически активных соединений. Налажено, например, производство биомассы женьшеня для нужд парфюмерной и медицинской промышленности. Закладываются основы производства биомассы лекарственных растений — диоскореи и раувольфии. Разрабатываются способы выращивания клеточной массы других редких растений — продуцентов ценных веществ (родиолы розовой и др.). Другое важное направление клеточной инженерии — клональное микроразмножение растений на основе культуры тканей. Основан это метод на удивительном свойстве растений: из отдельной клетки или кусочка ткани в определённых условиях может вырасти целое растение, способное к нормальному росту и размножению. Этим методом из небольшой части растения можно получить до 1 млн. растений в год. Клональное микроразмножение используется для оздоровления и быстрого размножения редких, хозяйственно ценных или вновь созданных сортов сельскохозяйственных культур. Таким путём из клеток, не заражённых вирусами, получают здоровые растения картофеля, винограда, сахарной свёклы, садовой земляники, малины и многих других культур. В настоящее время разработаны методы микроразмножения и более сложных объектов — древесных растений (яблони, ели, сосны). На основе этих методов будут созданы технологии промышленного получения исходного посадочного материала ценных древесных пород. Методы клеточной инженерии позволят значительно ускорить селекционный процесс при выведении новых сортов хлебных злаков и других важных сельскохозяйственных культур: срок их получения сокращается до 3-4 лет (вместо 10-12 лет, необходимых при использовании обычных методов селекции). Перспективных способом выведения новых сортов ценных сельскохозяйственных культур является также разработанный учёными принципиально новый метод слияния клеток. Этот метод позволяет получать гибриды, которые не могут быть созданы обычным путём скрещивания в силу барьера межвидовой несовместимости. Методом слияния клеток получены, например, гибриды различных видов картофеля, томатов, табака; табака и картофеля, рапса и турнепса, табака и белладонны. На основе гибрида культурного и дикого картофеля, который устойчив к вирусам и другим заболеваниям, создаются новые сорта. Аналогичным способом получают ценный селекционный материал томатов и других культур. В перспективе — комплексное использование методов генетической и клеточной инженерии для создания новых сортов растений с заранее заданными свойствами, например, ос сконструированными в них системами фиксации атмосферного азота. Большие успехи достигнуты клеточной инженерией в области иммунологии: разработаны методы получения особых гибридных клеток, производящих индивидуальные, или моноклональные, антитела. Это позволило создать высокочувствительные средства диагностики ряда тяжёлых заболеваний человека, животных и растений. Значительный вклад вносит современная биотехнология в решение такой важной проблемы, как борьба с вирусными заболеваниями сельскохозяйственных культур, наносящими большой ущерб народному хозяйству. Учёные разработали высокоспецифичные сыворотки для выявления более 20 вирусов, вызывающих заболевания различных сельскохозяйственных культур. Разработана и изготовлена система приборов и приспособлений для массовой автоматической экспресс-диагностики вирусных болезней растений в условиях сельскохозяйственного производства. Новые методы диагностики позволяют отбирать для посадки свободный от вирусов исходный материал (семена, клубни и др.), что способствует значительному повышению урожая. Важное практическое значение имеют работы по инженерной энзимологии. Первым важным успехом её была иммобилизация ферментов — закрепление молекул ферментов с помощью прочных химических связей на синтетических полимерах, полисахаридах и других носителях-матрицах. Закреплённые ферменты более стабильны, их можно использовать многократно. Иммобилизация позволяет осуществлять непрерывные каталитические процессы, получать продукцию, не загрязнённую ферментом (что особенно важно в ряде пищевых и фармакологических производств), значительно снизить её себестоимость. Это метод применяют, например, для получения антибиотиков. Так, учёными разработана и внедрена в промышленное производство технология получения антибиотиков на основе иммобилизованного фермента пенициллинамидазы. В результате применения этой технологии в пять раз снизился расход сырья, себестоимость конечного продукта уменьшилась почти вдвое, объём производства возрос в семь раз, а общий экономический эффект составил около 100 млн. рублей. Следующим шагом инженерной энзимологии была разработка методов иммобилизации клеток микроорганизмов, а затем — клеток растений и животных. Иммобилизованные клетки являются наиболее экономичными биокатализаторами, так как обладают высокой активностью и стабильностью, а главное — применение их полностью исключает затраты на выделение и очистку ферментов. В настоящее время на основе иммобилизованных клеток разработаны методы получения органических кислот, аминокислот, антибиотиков, стероидов, спиртов и других ценных продуктов. Иммобилизованные клетки микроорганизмов используются также для очистки сточных вод, переработки сельскохозяйственных и промышленных отходов. Биотехнология находит всё более широкое применение и во многих отраслях промышленного производства: разработаны методы использования микроорганизмов для извлечения цветных благородных металлов из руд и промышленных отходов, для повышения нефтеотдачи пластов, для борьбы с метаном в угольных шахтах.. Возможности биотехнологии практически безграничны. Она смело вторгается в самые разные сферы народного хозяйства. И в недалёком будущем, несомненно, ещё более возрастёт практическая значимость биотехнологии в решении важнейших задач селекции, медицины, энергетики, охраны окружающей среды от загрязнений

studfiles.net

Клеточная селекция растений

Сомаклональная вариабельность

Метод культуры изолированных клеток, тканей и органов растений in vitro, широко используемый для решения многих фундаментальных вопросов клеточной биологии, физиологии и генетики растений, в настоящее время находит все большее применение и при создании новых биотехнологий. Начиная с первых работ по культивированию растительных клеток, тканей и органов особый интерес у исследователей вызвал вопрос о том, какие клеточные изменения могут происходить в изолированных клетках, растущих на искусственных питательных средах, и причины, их вызывающие. С разработкой техники получения растений-регенерантов из каллусной ткани появилась возможность получать новые формы растений, отличающиеся как по фенотипическим, так и по генетическим признакам от исходных растений. Такое разнообразие среди клеточных линий и растений-регенерантов получило название «сомаклоны», хотя еще в 70–80-е годы нашего столетия было принято называть растения, регенерировавшие из каллусной ткани, «калликлонами», а из протопластов – «протоклонами».

Генетическая природа и механизм возникновения сомаклональной изменчивости пока мало изучены. Однако четко можно выделить зависимость возникновения сомаклональных вариантов, прежде всего, от генетической гетерогенности соматических клеток исходного экспланта, генетической и эпигенетической изменчивости, индуцируемой условиями культивирования in vitro, а также от генотипа и исходного экспланта.

Дифференцированные клетки в нормальном растении могут иметь разную степень плоидности, но для отдельных видов характерно наличие только диплоидных клеток. Однако в процессе онтогенеза могут возникать клетки с разной плоидностью. Например, экспериментально доказано, что в меристемных тканях, наряду с фактором видового постоянства числа хромосом, почти у 80% покрытосеменных растений в процессе дифференцировки в соматических клетках может происходить эндоредупликация хромосом и формирование тканей различного уровня плоидности. Для вегетативно размножаемых и апомиктичных растений характерно образование с высокой частотой анеуплоидных клеток. Усиление хромосомных перестроек, приводящих к появлению химерности и миксоплоидии у растений, наблюдается при изменении условий произрастания, особенно при их резком ухудшении: засоление почв, повышенные или пониженные температуры, применение гербицидов или пестицидов, минеральных удобрений в повышенных дозах и др. Эти и другие часто встречающиеся в практике факторы могут приводить к физиологическим нарушениям, связанным, в первую очередь, с появлением аномальных митозов и формированием клеток с числом хромосом, отличающимся от такового в материнской ткани.

Цитологические исследования показали, что вариабельность, индуцируемая условиями культивирования in vitro, связана с генетическими изменениями. Прежде всего одним из основных источников появления фенотипических вариантов являются различные кариологические изменения и перестройки. Однако выявить, какие из них будут иметь фенотипический эффект и наследоваться как стабильная мутация генов, часто сложно. Как грубые, так и тонкие хромосомные изменения – мелкие деления, дупликации, транслокации, инверсии – могут вызвать существенные фенотипические изменения как в растениях-регенерантах, так и в последующем потомстве. Хромосомные изменения часто наблюдаются при мейозе. Анализ мейоза клетки в регенерантах показал такие интенсивные перестройки хромосом, как транслокация, инверсия, субхроматидный обмен, частичная утрата хромосом. Это является доказательством того, что большая часть фенотипических изменений обусловлена генетическими механизмами.

Сомаклональную изменчивость можно проследить на молекулярном уровне, оценивая тонкие перестройки ядерной ДНК.

Кроме сомаклональной вариабельности, связанной с наследуемыми перестройками генома, отмечены фенотипические изменения («эпигенетические»), которые могут стабильно передаваться дочерним клеткам, но не проявляться в растениях-регенерантах или их половом потомстве (Приложение 1).

Высокая степень разнообразия сомаклонов зависит от исходного генотипа, природы и стадии развития экспланта. Например, у различных злаков степень изменчивости среди сомаклонов может значительно различаться: у пшеницы (2n=6х=42) из 192 исследованных растений-регенерантов 29% были анеуплоидами, у гексаплоидного овса (2n=6х=42) выявлены цитоге-нетические изменения с такой же частотой, а для кукурузы частота возникновения анеуплоидных растений не превышала 2–3%. Образование полиплоидных и анеуплоидных растений может наблюдаться и у других видов, например, на картофеле. Причем частота появления новых вариантов у диких видов значительно ниже, чем у дигаплоидных линий культивируемого картофеля.

Тип исходного экспланта также влияет на появление сомаклональных вариантов, отличающихся количественными и качественными признаками. Для картофеля, например, аномальные растения получены в 12% случаев при использовании в качестве первичного экспланта мезофильных тканей листа, а в случае использования лепестков или оси соцветий частота формирования растений с фенотипическими отклонениями от нормы составила 50%.

Условия культивирования и, в частности, нарушение гормонального баланса питательной среды – одна из причин возникновения генетического разнообразия культивируемых клеток вследствие нарушения клеточного цикла, в частности митоза. От соотношения фитогормонов, входящих в состав питательных сред, во многом зависит цитогенетическая структура клеточных популяций. Однако морфологическая и цитогенетическая разнокачественность клеточных популяций может возникнуть и вследствие влияния отдельных компонентов питательной среды: некоторых минеральных солей, сахарозы или другого источника углеродного питания, витаминов, растительных экстрактов, а также от режима выращивания. Длительное культивирование клеток in vitro также способствует повышению генетического разнообразия сомаклонов. Причем для некоторых видов показано, что, несмотря на присутствие в культуре клеток разной плоидности, регенерировавшие растения были преимущественно диплоидными. Это явление было объяснено тем, что в процессе культивгирования отбирались растения-регенеранты с более или менее нормальной морфологией, которые регенерировали, как правило, в первую очередь.

Различные типы морфогенеза – соматический эмбриогенез или органогенез–также могут по-разному сказываться на генетических изменениях и, соответственно, на фенотипе растений. Экспериментально установлено, что при соматическом эмбриогенезе время прохождения цикла клетка – растение значительно короче, чем при органогенезе, поэтому степень сходства получаемого материала и исходного родительского генотипа может быть значительно выше.

Сомаклональные варианты имеют, несомненно, практическое применение в сельскохозяйственной практике, в силу появления форм, отличающихся от родительских по различным биохимическим, качественным и количественным признакам, а также цитогенетическим характеристикам. Например, получены сомаклоны картофеля сорта Зарево, отличающиеся высокой урожайностью, повышенной устойчивостью к заболеваниям, более высоким содержанием в клубнях протеина и крахмала. Причем наследование важных признаков при размножении клубнями сохранялось в течение трех лет полевых испытаний (В. В. Сидоров и др., 1984, 1985). Для растений табака получены через каллусную культуру сомаклоны, устойчивые к вирусу табачной мозаики, а для сахарного тростника» получен новый сорт, характеризующийся высокой урожайностью и повышенной устойчивостью к заболеваниям, в частности к болезни Fiji. В настоящее время метод культуры тканей начал широко использоваться в селекции не только кормовых и технических культур, но и декоративных и лекарственных растений. Примером тому может служить новый сорт пеларгонии Velvet Rose, полученный через каллусную культуру.

Таким образом, полученные положительные результаты свидетельствуют о необходимости более эффективного внедрения различных приемов получения сомаклональных вариантов в практику селекционной работы, и наиболее реальным является применение сомаклональной изменчивости для улучшения или «доработки» уже существующих сортов или линий по отдельным недостающим признакам.

Селекция растений на клеточном уровне

Значительный интерес представляет вопрос об использовании клеточной селекции в комплексе с получением сомаклонов. Одна из наиболее сильных сторон культуры in vitro в создании технологий для сельского хозяйства – возможность на основе сомаклональных вариаций или индуцированных мутаций отбирать в жестких селективных условиях клетки, характеризующиеся искомыми признаками.

Для проведения клеточной селекции используют следующие приемы:

—     прямая (позитивная) селекция, при которой выживает лишь определенный искомый мутантный тип клеток;

—     непрямая (негативная) селекция, основанная на избирательной гибели делящихся клеток дикого типа и выживания метаболически неактивных клеток, но требующая дополнительной идентификации у них мутационных изменений;

—     тотальная селекция, при которой индивидуально тестируются все клеточные клоны;

—     визуальная селекция и неселективный отбор, когда вариантная линия может быть идентифицирована среди всей популяции клеток визуально или при использовании биохимических методов (тонкослойная или жидкостная хроматография, радиоиммунный анализ, микроспектрофотометрия и др.).

Из перечисленных выше приемов клеточной селекции прямая селекция является наиболее распространенным методом и используется главным образом для выделения растений-регенерантов, устойчивых, например, к гербицидам, антибиотикам, токсинам, тяжелым металлам, солям и другим антиметаболитам.

Для проведения работ по клеточной селекции растений в условиях in vitro в качестве объекта исследования могут быть использованы каллусные, суспензионные культуры или изолированные протопласты. Выбор объекта зависит от наличия разработанных технологий применительно к различным видам растений, а также от конечных целей исследования.

Каллусная ткань представляет собой легко доступный материал, который наиболее часто используют для клеточной селекции. Как правило, работу проводят на первичной или пересадочной каллусной ткани, которая не утрачивает способности к регенерации на протяжении ряда субкультивирований. Однако при работе с каллусными культурами многие исследователи отмечают существенные недостатки данного объекта, медленный рост ткани, неравноценное для всех клеток действие токсических веществ, которые применяются в качестве селективного фактора, а также потеря регенерационной способности в процессе культивирования каллусных клеток. Несомненно, проводить селекцию целесообразно на уровне одиночных клеток (суспензионная культура, протопласты). Однако для многих видов растений не разработаны эффективные технологии и способы культивирования одиночных клеток. Поэтому, несмотря на перечисленные выше недостатки использования каллусных культур, этот способ селекции остается для некоторых видов растений пока единственным.

Получение стабильно устойчивых линий – процесс длительный. Как правило, селекция начинается с получения достаточного количества каллусной массы из изолированных растительных эксплантов, использующейся в дальнейшем для определения концентрации селективного фактора (построение дозовой кривой), при которой наблюдается одновременно рост каллусной ткани, и в то же время часть каллусных колоний погибает. Выбранная концентрация селективного фактора признается оптимальной и используется в дальнейших экспериментах. Так как первично полученные на средах с селективными факторами колонии клеток могли возникнуть вследствие физиологической адаптации или определенного состояния дифференцировки клеток и не быть генетически устойчивыми, то в течение последующих 4–6 субкультивирований на селективной среде проверяется стабильность устойчивости полученных клонов. Затем их переносят на среду без селективного фактора и субкультивируют еще 2–3 пассажа. И только после повторного возвращения в селективные условия отбирают стабильные клоны, из которых пытаются получить растения-регенеранты. Однако работы, проведенные с получением растений, устойчивых к повышенным солям, а также к токсинам, выделенным из грибов–возбудителей болезней, показали, что устойчивость клетки и растения к исследуемому селективному фактору может совпадать и не совпадать. Прямая корреляция между устойчивостью растений и клеток in vitro отмечена лишь для низких температур, устойчивостью к гербицидам, высоким концентрациям алюминия и другим факторам.

Большое число работ по культивированию каллуса, с целью получения нового селекционного материала, проведено на пшенице, ячмене, рисе, сорго, а также на картофеле, томатах, люцерне и, крайне редко, на древесных. Уже достигнуты первые положительные результаты по получению растений пшеницы, риса, картофеля, устойчивых к NaCl или Na2 S04. Получены клетки, а из них растения моркови, которые синтезируют в 20 раз больше метионина, в 30 раз – триптофана, в 5 раз – лизина путем добавления в питательную среду токсичных аналогов аминокислот. Для картофеля получены растения, устойчивые к кольцевой гнили. Что касается древесных, то для них работы в этом направлении крайне редки и часто имеют поисковый характер. Таким образом, использование каллусной культуры в селекционных целях открывает огромные возможности в создании новых форм растений, несущих ценные признаки, необходимые для человечества.

Наряду с перечисленными выше объектами (каллусная, суспензионная культура, изолированные протопласты), в качестве исходного материала для селекции могут быть использованы культуры соматических или андрогенных эмбриоидов, такие органогенные экспланты, как сегменты листьев или различные меристематические и стеблевые части растений, а также культура изолированных зародышей. Например, путем культивирования и селекции in vitro зародышей из семян получены растения ячменя, устойчивые к аналогам аминокислот, с улучшенным содержанием белка. Для картофеля разработан эффективный метод обработки побегов и черенков мутагеном, приводивший к получению химерных мутантов хлорофиллдефектности и антибиотикоустойчивости. При культивировании пыльников яровой пшеницы сорта Саратовская-29 и Москов-ская-35 на питательных средах с повышенным содержанием солей хлорида натрия получены соматические эмбриоиды, а в дальнейшем растения-регенеранты, проявившие повышенную солеустойчивость (Беккужина, 1993).

Таким образом, проведение селекции на клеточном уровне позволяет создавать новые формы растений в 2–4 раза быстрее по сравнению с традиционными способами селекции.



biofile.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта