Как размножаются полиплоидные растения. Шпаргалка: Полиплоидия и получение полиплоидов

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Полиплоидия и получение полиплоидов. Как размножаются полиплоидные растения


Шпаргалка - Полиплоидия и получение полиплоидов

Реферат на тему

Подготовила Удинцова С., 11 «Б»

Введение

В 1892 году русский ботаник И.И. Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление — изменение числа ядер в клетке. После воздействия низкой температурой или снотворным (хлороформом и хлоралгидратом) он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом — полиплоидов.

В природе хорошо отлажены механизмы, обеспечивающие сохранение постоянства генетического материала. Каждая материнская клетка при делении на две дочерние строго распределяет наследственное вещество поровну. При половом размножении новый организм образуется в результате слияния мужской и женской гаметы. Чтоб сохранилось постоянство хромосом у родителей и потомства, каждая гамета должна содержать половину числа хромосом обычной клетки. И в самом деле, происходит уменьшение в два раза числа хромосом, или, как назвали ученые редукционное деление клетки, при котором в каждую гамету попадает только одна из двух гомологичных хромосом. Итак, гамета содержит гаплоидный набор хромосом — т.е. по одной от каждой гомологичной пары. Все соматические клетки диплоидны. У них два набора хромосом, из которых один поступил от материнского организма, а другой от отцовского. Полиплоидия успешно используется в селекции.

Явление полиплоидии.

Явление изменения числа хромосом в клетке называют полиплоидией.

Некоторые определения: гаплоидным (n) набором хромосом называют такой набор, в котором из каждой пары гомологичных хромосом представлена только одна. Он несет в себе часть наследственной информации родителей. Совокупность генов в гаплоидном наборе называют геном. Полиплоидия возникает в следующих случаях:

1. Неравное расхождение хромосом к полюсам в анафазе.

2. Деление ядра без деления клетки.

3. Удвоение хромосом без их разделения в силу того, что центромеры утрачивают свойство взаимного отталкивания.

Организмы, у которых произошло умножение целых гаплоидных наборов, называют собственно полиплоидами или эуплоидами. Полиплоиды, у которых число хромосом не является кратным гаплоидному, называют гетероплоидами или анеуплоидами. Если организм имел n = 4 хромосомам, 2n = 8, то тетраплоид имеет 16 хромосом. Если диплоид был гомозиготным, тетраплоид тоже будет гомозиготой. Если диплоид был гетерозиготным, тетраплоид – тоже гетерозиготный.

Полиплоидизация может возникать в результате митоза – это соматическая полиплодия.

Если удвоение геномов происходит в первом делении зиготы – такая полиплоидия называется мейотической и все клетки зародыша будут полиплоидными.

Г. Винклер (1916) – впервые описал полиплоиды томатов и паслена. К настоящему времени установлено, что 1/3 всех покрытосеменных растений являются полиплоидами. Группа родственных видов, у которых наборы хромосом составляют ряд возрастающего кратного увеличения числа хромосом, называется полиплоидным рядом. Рассмотрим данную ниже таблицу.

Род

Основное гаплоидное число хромосом.

Число хромосом у видов данного рода.

Пшеница

7

14, 28, 42

Пырей

7

14, 28, 42, 56, 70

Овес

7

14, 28, 42

Роза

7

14, 21, 28, 35, 42, 56, 70

Земляника

7

14, 28, 42, 56, 70, 84, 98

Люцерна

8

16, 32, 48

Сахарный тростник

8

48, 56, 64, 72, 80, 96, 112, 120

Свекла

9

18, 36, 54, 72

Хризантема

9

18, 27, 36, 45, 54, 63, 72, 81, 90

Щавель

10

20, 40, 60, 80, 100, 120, 200

Хлопчатник

13

26, 52

Таблица 1. Полиплоидные ряды у покрытосеменных растений.

Соматическая полиплоидия распространена у всех видов, а зиготическая – главным образом у растений. У животных она встречается у червей (земляных и аскарид), а так же очень редко у некоторых амфибий. Очень широко распространена частичная полиплоидизация клеток некоторых тканей. Она свойственна всем изученным классам животных и растений. Например, у млекопитающих много полиплоидных клеток находят в печени, сердце, среди пигментных клеток.

Искусственное получение полиплоидов.

Человек давно использует полиплоидию для выведения высокопродуктивных сортов сельскохозяйственных растений. Сначала это делалось бессознательно: просто размножали самые крупные экземпляры, дающие много зерна или же особенно крупные плоды. С появлением генетики выяснилось, что такие гиганты – природные полиплоиды и, следовательно, их отбор – это выделение полиплоидного сорта из предкового, диплоидного вида. Тогда полиплоиды стали размножать.

Все факторы, влияющие на митоз и мейоз, могут вызвать полиплоидию: изменение температуры, влияние радиации, действие наркотиков, механические воздействия – пасынкование, декапитация (удаление точки роста стебля у растений). Особенно популярным является колхицин – алкалоид, выделяемый из растения безвременника осеннего – Colchicum autumnale. Колхицином обрабатывают точки роста растений или инъецируют его животным в водном растворе.

Колхицин парализует механизм расхождения хромосом к полюсам, но не препятствует их репродукции.

У растений встречается и другой, более редкий способ хромосомного видообразования — путем гибридизации с последующей полиплоидией. Близкородственные виды часто различаются своими хромосомными наборами, и гибриды между ними получаются бесплодными вследствие нарушения процесса созревания половых клеток. Гибридные растения, тем не менее, могут существовать довольно продолжительное время, размножаясь вегетативно. Мутация полиплоидии «возвращает» гибридам способность к половому размножению. Именно таким образом — путем гибридизации терна и алычи с последующей полиплоидией — возникла культурная слива.

Полиплоидия используется селекционерами с целью получения межвидовых гибридов и их закрепления. Не секрет, что это этот метод очень перспективен: у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Эти растения лучше приспосабливаются и чаще выживают. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Использованная литература

1. «Общая и молекулярная генетика», курс лекций для студентов 3-го курса, И.Ф. Жимулева, 2001 г.

2. Биологический энциклопедический словарь юного биолога, Москва «Педагогика», 1986 г.

www.ronl.ru

ПОЛИПЛОИДИЯ

ПОЛИПЛОИДИЯ

(от греч. polyploos— многократный и eidos — вид), эуплоидия, наследств, изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Наиб, часто встречается у растений и простейших, а из многоклеточных животных — у дождевых червей. Возникает в резулыате нарушения расхождения хромосом в митозе или мейозе под действием высокой или низкой темп-ры, ионизирующих излучений, химич. веществ (как в природе, так и в эксперименте). При П. наблюдаются отклонения от диплоидного числа хромосом в соматич. клетках и от гаплоидного — в половых; могут возникать клетки, в к-рых каждая хромосома представлена трижды (Зп — триплоиды), четырежды (4п — тетраплоиды), пять раз (5п — пентаплоиды) и т. д. Различают автополиплоидию (кратное увеличение числа наборов хромосом одного вида), характерную, как правило, для видов с вегетативным способом размножения (автополиплоиды стерильны в связи с нарушением конъюгации гомологичных хромосом в процессе мейоза), и аллополиплоидию (изменение числа наборов хромосом на основе межвидовой гибридизации), при крой обычно происходит удвоение числа хромосом у бесплодного диплоидного гибрида, и он становится в результате этого плодовитым. П. имеет важное значение в эволюции культурных и дикорастущих растений (полагают, что около трети всех видов растений возникли за счёт П.), а также нек-рых групп животных (преим. партеногенетических). Полиплоиды часто характеризуются крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внеш. среды и др. хозяйственно полезными признаками. Они представляют важный источник изменчивости и м. б. использованы как исходный материал для селекции (на основе П. созданы высокоурожайные сорта с.-х. растений, устойчивые к болезням). В широком смысле под термином «П.» понимают как кратное (эуплоидия), так и некратное (анеуплоидия) изменение числа хромосом в клетках организма.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

полиплоиди́я

увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации. Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т.д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т.д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т.д.) обычно не дают потомства (стерильны), т.к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному. Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматиче–ской клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани. Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых ок. 47% видов – полиплоиды. Высокая степень плоидности свойственна простейшим – число наборов хромосом у них может возрастать в сотни раз. Среди многоклеточных животных полиплоидия редка и более характерна для видов, утративших нормальный половой процесс, – гермафродитов (см. Гермафродитизм ), напр. земляных червей, и видов, у которых яйцеклетки развиваются без оплодотворения (см. Партеногенез ), напр. некоторых насекомых, рыб, саламандр. Одна из причин, по которой полиплоидия у животных встречается значительно реже, чем у растений, заключается в том, что у растений возможно самоопыление, а большинство животных размножается путём перекрёстного оплодотворения, и, значит, возникшему мутанту-полиплоиду нужна пара – такой же мутант-полиплоид другого пола. Вероятность подобной встречи крайне низка. Довольно часто у животных бывают полиплоидными клетки отдельных тканей (напр., у млекопитающих – клетки печени). Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях. Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала. С этой целью используют специальные мутагены (напр., алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе. Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и др. культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам. Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным ещё в 1-й пол. 20 в. впервые получить плодовитые полиплоидные гибриды растений (Г.Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б.Л. Астауров, гибрид-тетраплоид тутового шелкопряда). См. также Гаплоид.Геном.Диплоид.Кариотип.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

Источник: Биологический энциклопедический словарь

предыдущие статьи

последующие статьи

mirznanii.com

Полиплоидия | AgroCounsel

Полиплоидия

Полиплоидия - явление кратного увеличения числа хромосом в ядрах клеток растений, простейших, реже - многоклеточных животных. Полиплоидия образуется в природе спонтанно, а также может быть вызвана искусственно. Различают полиплоидии сбалансированную, которая характеризуется образованием клеток с четным числом хромосом (2n - диплоидные; 4n - тетраплоидные, 6n - гексаплоидный, 8n - октаплоидные, 10n - декаплоидные и т.д.), несбалансированную, при которой образуются клетки с нечетным числом хромосом (Зn - триплоидные, 5n - пентаплоидные, 7n - гектаплоидные и т.д.). Организмы, образовавшиеся из полиплоидных клеток, наз. полиплоидами (соответственно триплоиды, тетраплоиды, пентаплоиды и т.д.) При половом размножении сбалансированные природные полиплоиды нормально плодовиты, а несбалансированные - бесплодные (размножаются бесполом или партеногенетически). Полиплоиды разделяют на автополиплоиды, образующихся удвоением числа хромосом в пределах вида, и алополиплоиды, возникающие от удвоения числа хромосом в межвидовых гибридов. Полиплоидные организмы отмечаются увеличением вегетативной массы, размеров отдельных органов (цветков, листьев и т.д.) и продуктивности растений. Напр., диплоидная пшеница (2n - 14) имеет меньшие органы по сравнению с тетраплоидными (2n - 21), дает меньший урожай. Полиплоидные (тетраплоидные) сахарная свекла содержат больше сахара, чем диплоидные. В с.-х. изделия, широко используют природные сбалансированные полиплоиды: пшеницы (2n - 28,42), овса (2n - 42), сои (2n - 40), арахиса (2n - 40), хлопчатника (2n - 52), картофеля (2n - 48 ), табака (2n - 48), винограда (2n - 38) и др..

Полиплоидия имеет большое общебиологическое значение, она повышает устойчивость организма к различным воздействиям, является важным источником наследственной изменчивости, способна закреплять гетерозис первого поколения, расширяет возможности подбора и дивергенции видов и т.п.. Закономерности, лежащие в образовании полиплоидиb, используют в практике народного хозяйства для получения ценных хозяйственных форм.

www.agrocounsel.ru

Полиплоидия и получение полиплоидов

Реферат на тему

Подготовила Удинцова С., 11 «Б»

В 1892 году русский ботаник И.И. Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление — изменение числа ядер в клетке. После воздействия низкой температурой или снотворным (хлороформом и хлоралгидратом) он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии , а организмы с увеличенным числом хромосом — полиплоидов.

В природе хорошо отлажены механизмы, обеспечивающие сохранение постоянства генетического материала. Каждая материнская клетка при делении на две дочерние строго распределяет наследственное вещество поровну. При половом размножении новый организм образуется в результате слияния мужской и женской гаметы. Чтоб сохранилось постоянство хромосом у родителей и потомства, каждая гамета должна содержать половину числа хромосом обычной клетки. И в самом деле, происходит уменьшение в два раза числа хромосом, или, как назвали ученые редукционное деление клетки, при котором в каждую гамету попадает только одна из двух гомологичных хромосом. Итак, гамета содержит гаплоидный набор хромосом - т.е. по одной от каждой гомологичной пары. Все соматические клетки диплоидны. У них два набора хромосом, из которых один поступил от материнского организма, а другой от отцовского. Полиплоидия успешно используется в селекции.

Явление полиплоидии.

Явление изменения числа хромосом в клетке называют полиплоидией.

Некоторые определения: гаплоидным (n) набором хромосом называют такой набор, в котором из каждой пары гомологичных хромосом представлена только одна. Он несет в себе часть наследственной информации родителей. Совокупность генов в гаплоидном наборе называют геном. Полиплоидия возникает в следующих случаях:

1. Неравное расхождение хромосом к полюсам в анафазе.

2. Деление ядра без деления клетки.

3. Удвоение хромосом без их разделения в силу того, что центромеры утрачивают свойство взаимного отталкивания.

Организмы, у которых произошло умножение целых гаплоидных наборов, называют собственно полиплоидами или эуплоидами. Полиплоиды, у которых число хромосом не является кратным гаплоидному, называют гетероплоидами или анеуплоидами. Если организм имел n = 4 хромосомам, 2n = 8, то тетраплоид имеет 16 хромосом. Если диплоид был гомозиготным, тетраплоид тоже будет гомозиготой. Если диплоид был гетерозиготным, тетраплоид – тоже гетерозиготный.

Полиплоидизация может возникать в результате митоза – это соматическая полиплодия.

Если удвоение геномов происходит в первом делении зиготы – такая полиплоидия называется мейотической и все клетки зародыша будут полиплоидными.

Г. Винклер (1916) – впервые описал полиплоиды томатов и паслена. К настоящему времени установлено, что 1/3 всех покрытосеменных растений являются полиплоидами. Группа родственных видов, у которых наборы хромосом составляют ряд возрастающего кратного увеличения числа хромосом, называется полиплоидным рядом. Рассмотрим данную ниже таблицу.

Таблица 1. Полиплоидные ряды у покрытосеменных растений.

Соматическая полиплоидия распространена у всех видов, а зиготическая – главным образом у растений. У животных она встречается у червей (земляных и аскарид), а так же очень редко у некоторых амфибий. Очень широко распространена частичная полиплоидизация клеток некоторых тканей. Она свойственна всем изученным классам животных и растений. Например, у млекопитающих много полиплоидных клеток находят в печени, сердце, среди пигментных клеток.

Искусственное получение полиплоидов.

Человек давно использует полиплоидию для выведения высокопродуктивных сортов сельскохозяйственных растений. Сначала это делалось бессознательно: просто размножали самые крупные экземпляры, дающие много зерна или же особенно крупные плоды. С появлением генетики выяснилось, что такие гиганты – природные полиплоиды и, следовательно, их отбор – это выделение полиплоидного сорта из предкового, диплоидного вида. Тогда полиплоиды стали размножать.

Все факторы, влияющие на митоз и мейоз, могут вызвать полиплоидию: изменение температуры, влияние радиации, действие наркотиков, механические воздействия – пасынкование, декапитация (удаление точки роста стебля у растений). Особенно популярным является колхицин – алкалоид, выделяемый из растения безвременника осеннего – Colchicum autumnale. Колхицином обрабатывают точки роста растений или инъецируют его животным в водном растворе.

Колхицин парализует механизм расхождения хромосом к полюсам, но не препятствует их репродукции.

У растений встречается и другой, более редкий способ хромосомного видообразования — путем гибридизации с последующей полиплоидией. Близкородственные виды часто различаются своими хромосомными наборами, и гибриды между ними получаются бесплодными вследствие нарушения процесса созревания половых клеток. Гибридные растения, тем не менее, могут существовать довольно продолжительное время, размножаясь вегетативно. Мутация полиплоидии «возвращает» гибридам способность к половому размножению. Именно таким образом — путем гибридизации терна и алычи с последующей полиплоидией — возникла культурная слива.

Полиплоидия используется селекционерами с целью получения межвидовых гибридов и их закрепления. Не секрет, что это этот метод очень перспективен: у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Эти растения лучше приспосабливаются и чаще выживают. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Использованная литература

1. «Общая и молекулярная генетика», курс лекций для студентов 3-го курса, И.Ф. Жимулева, 2001 г.

2. Биологический энциклопедический словарь юного биолога, Москва «Педагогика», 1986 г.

mirznanii.com

Полиплоидия у животных

Полиплоидия широко представлена у растений.

Это связано с тем, что у растений весьма распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Очевидно, существуют и другие причины, способствующие полиплоидии у растений. К таким причинам, по-видимому, могут относиться специфические для гибридных растений ядерно-плазменные отношения.

Особенно большие препятствия для сохранения полиплоидных клеток и их воспроизведения в поколениях возникают у раздельно — полых организмов, имеющих гетерогаметный и гомогаметный пол. Установлено, что у раздельнополых животных полиплоидия встречается редко. У тех животных, у которых половое размножение заменено партеногенезом, полиплоидия может осуществляться почти так же, как у растений.

О полиплоидных рядах у животных вообще говорить еще преждевременно. В этом отношении могут быть названы пока единичные примеры, известные у аскариды, земляных червей, амфибий и некоторых др. Так, исследованиями С. Мюльдаля установлено, что в семействе земляных червей (Lumbricidae) имеются полиплоидные ряды с разными основными числами: 11, 16, 17, 18 и 19 хромосом, в некоторых из них найдены даже декаплоиды. Все эти полиплоиды размножаются обычно партеногенетически. Полиплоидные земляные черви оказываются более крупными, чем ближайшие родственные им диплоидные виды. Более известны у животных двучленные полиплоидные ряды, т. е. диплоиды (2n) и тетраплоиды (4n). Такие ряды обнаружены у некоторых насекомых и амфибий. В настоящее время получены автополиплоидные особи у тутового шелкопряда, тритона, аксолотля и даже у млекопитающих (мышь, кролик).

Явление партеногенетического развития неоплодотворенных яиц довольно часто встречается у птиц. У индюшек найдены некоторые линии, у которых яйца развиваются партеногенетически даже еще до инкубации. В таких линиях около 80% зародышевых дисков яиц девственны. Большинство из них является диплоидными, но встречаются также и гаплоиды.

У автотетраплоидов шелковичного червя (Bombyx mori) самки плодовиты, а самцы стерильны. Причиной этого является то, что у самцов (гомогаметный пол) в профазе мейоза образуются поливаленты, в силу чего возникают гаметы с анеуплоидным числом хромосом. У самок (гетерогаметный пол) поливаленты не образуются, а если и образуются, то не препятствуют распределению хромосом вследствие отсутствия кроссинговера; мейоз у них протекает более нормально.

У аксолотля было получено несколько поколений автотетраплоидных и триплоидных самок. Самки амфибий, являясь генетически гетерогаметным полом, в случае автотетраплоидии оказываются частично или полностью плодовитыми. Самцы, являясь гомогаметным полом, оказываются полностью стерильными. То же самое имеет место у тутового шелкопряда. Интересно также отметить, что триплоидные самки аксолотля оказываются более жизнеспособными и плодовитыми, чем тетраплоидные.

У млекопитающих (в частности, у домашней мыши и кролика), по-видимому, возможно получение полиплоидных яйцеклеток. Этого удается достигнуть путем воздействия тепловым или холодовым шоком на оплодотворенное яйцо, в котором такие воздействия задерживают второе деление созревания. В результате яйцеклетка оказывается с диплоидным набором хромосом. После слияния материнского диплоидного ядра с мужским гаплоидным пронуклеусом образуется триплоидная зигота (мейотическая полиплоидия). Этот механизм образования триплоидных зигот является общим для насекомых, амфибий и млекопитающих. Кроме этого способа, существует другой, а именно — подавление тепловым шоком (45,5°) первого деления дробления, что дает возможность получать тетраплоидные зиготы.

Таким образом, причинами образования триплоидии у животных могут быть:

  • полиандрия, когда два сперматозоида сливаются с гаплоидным ядром яйцеклетки;
  • полигиния, когда один сперматозоид сливается с двумя гаплоидными ядрами в яйцеклетке;
  • анеугамия, когда один сперматозоид сливается с диплоидной (не созревшей) яйцеклеткой.

Недавно (1963 г.) у кур был обнаружен случай спонтанной триплоидии по аутосомам с хромосомной формулой 3А + XX.

Эта курица имела нормальную жизнеспособность, но ее правая гонада была рудиментарной, а левая — мозаичной — частью мужеской и частью женской.

У млекопитающих также возникают триплоидные зиготы благодаря полиандрии и полигинии. Например, полиандрия у крыс встречается с частотой 1,2—3,2% от числа оплодотворенных яйцеклеток. Такая же частота обнаружена у золотистых хомячков, полевок и мышей. Однако триплоидные эмбрионы у мышей доживают только до половины беременности. По мнению некоторых авторов, случаи триплоидии могут иметь место и у человека. Триплоидия встречается в цикле размножения насекомых с партеногенетическим развитием. Особенно успешное изучение распространения триплоидии в природных популяциях возможно у тех насекомых, у которых имеются гигантские хромосомы в слюнных железах. На этих хромосомах удается точно установить гомологичность хромосом.

Все указанные примеры касаются автополиплоидии. Получение аллополиплоидов у животных до недавнего времени считалось неразрешимой проблемой. Однако совсем недавно Б. Л. Астаурову с сотрудниками удалось искусственно создать первый аллополиплоид от межвидового гибрида шелкопрядов Bombyx mori X В. mandarina. У обоих этих видов n = 28 хромосомам.

При синтезировании аллотетраплоида использовался метод искусственного партеногенеза. Вначале были получены партеногенетические автополиплоиды В. mori — 4 n, 6 n. Все эти особи оказались женского пола и были плодовиты. Затем произвели скрещивание партеногенетических самок В. mori (4n) с самцами другого вида В. mandarina (2n). В потомстве от такого скрещивания появлялись аллотриплоидные самки 2n В. mori + 1 n В. mandarina. Эти самки, стерильные в обычных условиях, размножались путем партеногенеза. При этом партеногенетически иногда возникали аллогексаплоидные самки 4n В. mori + 2n В. mandarina. В потомстве от скрещивания этих самок с диплоидными самцами В. mandarina (2n) были отобраны формы обоего пола с удвоенным набором хромосом каждого вида 2n В. mori +2n В. mandarina — аллотетраплоиды, или амфидиплоиды.

Схема получения аллотетраплоида у Bombyx

Схема получения аллотетраплоида у Bombyx

Если гибрид 1n В. mori + 1n В. mandarina был бесплодным, то аллотетраплоид оказался плодовитым и при разведении внутри себя дал плодовитое потомство. Плодовитость этих форм была невысокой, как и следует ожидать, в силу отсутствия селекции, но к настоящему времени воспроизведено уже шесть поколений аллотетраплоидов. С помощью полиплоидии, таким образом, удалось синтезировать новую форму шелкопряда. В. Н. Верейская, исследуя мейоз у самцов аллотетраплоидов, пришла к выводу, что значительная стерильность у них зависит от образования поливалентов, приводящих к возникновению анеуплоидных нежизнеспособных сперматозоидов. А образование поливалентов у аллотетраплоида объясняется высокой гомологией хромосом указанных двух видов.

Выше мы отметили, что полиплоидия у раздельнополых животных является довольно редким событием. Для объяснения причины такого явления Г. Мёллером было высказано два предположения:

1) препятствием сохранения полиплоидии у раздельнополых животных является изменение нормального соотношения половых хромосом и аутосом в зиготе, что ведет к нарушению полового генного баланса и возникновению стерильности особей;

2) так как вероятность встречи редуцированных гамет двух полов тетраплоидов очень мала, то тетраплоидная бисексуальная форма обычно скрещивается с диплоидной, и поэтому гибриды почти всегда оказываются триплоидными и, следовательно, стерильными.

Недавно Б. Л. Астауров обратил внимание еще на одну причину препятствия полиплоидии у бисексуальных форм — практически полное бесплодие одного из полов при полиплоидии, вследствие образования поливалентных комплексов. Таким полом является, как правило, гомогаметный, у которого совершается кроссинговер, ведущий к анеуплоидии гамет.

Однако не следует думать, что полиплоидия в мире животных в принципе ограничена. Она довольно широко распространена в соматических клетках ряда тканей многоклеточных организмов, т. е. в тех случаях, где нет синапсиса хромосом и нормально текущего кроссинговера, а также редукции числа хромосом.

В последние годы усиленно изучается явление полиплоидии у простейших. Оказывается, что в ряде случаев полиплоидия у них играла существенную роль в изменении циклических превращений ядра и возникновении ядерного дуализма, т. е. наличия макро- и микронуклеусов. Установлено, что генетически активным ядром, определяющим фенотип инфузории, является макронуклеус, а микронуклеус прямо не влияет на фенотип; он является лишь Передатчиком наследственной информации при половом процессе. В исследованиях Ю. И. Полянского и его сотрудников (И. Б. Майкова и др.), а также ряда зарубежных авторов установлено, его макронуклеус инфузорий является автополиплоидным; в нем насчитываются сотни геномов. При таком умножении наборов идентичных геномов митоз утрачивает свое значение как механизм равного распределения наследственного материала между дочерними клетками при бесполом размножении инфузорий. Предполагается, что на этой основе митоз в эволюции мог замениться амитотическим делением макронуклеусов. Наличие большого числа идентичных геномов даже при амитозе всегда обеспечивает попадание нескольких геномов в каждую дочернюю клетку. Это очень правдоподобное объяснение раскрывает важную проблему происхождения амитотического деления. Такое объяснение позволяет пересмотреть представление об амитозе как о филогенетически более древней форме деления ядра по сравнению с митозом. С данной точки зрения амитоз мог возникнуть как вторичное явление на основе высокой плоидности ядра.

В настоящее время большинство генетиков придерживается той точки зрения, что в эволюции животных основную роль играла все же не полиплоидия, а межхромосомные и внутрихромосомные перестройки. И эта точка зрения сейчас наиболее оправдана. У млекопитающих, как правило, большое число хромосом. Возможно, что наблюдающаяся у них изменчивость соматического числа хромосом обязана хромосомным мутациям типа транслокации. Эволюция кариотипов посредством фрагментации хромосом кажется для них наиболее вероятной. Однако пути эволюции организмов разнообразны, и механизмы, ею выработанные, приурочены к конкретной эволюции каждого класса, отряда, рода и вида.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Полиплоидия

Примером автополиплоидов служат растения мягкой пшеницы, у которых 2п = 42 и которые являются гексаплоидами. Искусственные полиплоиды, полученные из гибридов диплоидных растений, относящихся К далеко отстоящим друг от друга видам, называют аллополиплоидами.[ ...]

Полиплоидия — мутация в виде увеличения кратного набора хромосом.[ ...]

Полиплоидия растений имеет хозяйственную ценность (повышенные размеры плодов, большая сахаристость, лучшая сохранность и др.). По этой причине полиплоиды используют в селекционной работе для получения новых сортов сельскохозяйственных растений.[ ...]

Полиплоидия встречается также у человека в пренатальном периоде развития.[ ...]

Полиплоидия — это хромосомная мутация в виде увеличения числа полных гаплоидых наборов хромосом. Почти третья часть всех видов диких цветковых растений представлена полиплоидами. Типичными полиплоидами являются виды пшеницы, у которых соматические числа 2п = 14,28 и 42, при основном гаметном числе п = 7, картофель, табак, белый клевер, люцерна и другие растения. Родственные виды, наборы хромосом которых представляют ряд возрастающего увеличения (кратного) основного числа хромосом, составляют полиплоидные ряды.[ ...]

Полиплоидия в клетках корешков лука под действием колхицинаПолиплоидия в клетках корешков лука под действием колхицина

Одногенные отношения в диплоидных организмах основываются на существовании двух аллелей на один ген. Однако у тетраплоидов в каждом локусе располагаются по четыре аллеля. Генетические отношения, возникающие при скрещиваниях данных типов, отличаются от диплоидов. Если А полностью доминантный и даже при трех а (Аааа) образует фенотип А , в потомстве от самоопыления ААаа отношение по фенотипу будет 35А : 1 аа. Но такое соотношение зависит от местоположения гена в хромосоме. Так, тетраплои-дия склонна к запутыванию генетической картины. По-видимому, рецессивные гены скрываются и поэтому встречаются менее часто. В результате этого генетический анализ полиплоидных видов очень сложный.[ ...]

Редкость полиплоидии у раздельнополых животных, по-видимому, определяется тем, что она нарушает нормальные соотношения аутосом и половых хромосом в зиготах.[ ...]

Получение полиплоидов при использовании лучей Рентгена весьма затруднительно. Из крайне ограниченного числа случаев возникновения полиплоидов под действием рентгеновских лучей следует указать на тетраплоидные формы табака и ржи.[ ...]

Механизмы полиплоидии заключаются в том, что они являются результатом извращений одного или более митотических делений клеток зародыша или результатом нерасхождения в период мейоза всего набора хромосом, ведущего к образованию диплоидных гамет. Нерасхождение хромосом у женщин имеет место в 80% случаев, а у мужчин оно наблюдается в 20% случаев, причем оно отмечается как в первом, так и во втором мейотических делениях.[ ...]

У животных полиплоидия очень редка. Она встречается у земляных червей, размножающихся партеногенетически (обнаружены полиплоидные ряды с основными числами 11, 16, 17, 18 и 19 хромосом), у некоторых членистоногих, рыб и земноводных. В частности, она описана у морских креветок АНюта ваНуапа. Женские особи саламандр отдельных видов, которые имеют крупные эритроциты с ядрами, продуцируют триплоидные личинки с 42 хромосомами, тогда как саламандры с малыми ядерными эритроцитами продуцируют диплоидные личинки с 28 хромосомами. Все тихоокеанские лососевые рыбы являются полиплоидами.[ ...]

Велико значение полиплоидии в эволюционном развитии растительного мира. В той или иной степени она свойственна всем систематическим группам растений. Среди покрытосеменных растений около 50% представлено полиплоидными видами. У голосеменных она встречается значительно реже. Частота возникновения полиплоидных форм у цветковых растений, различна; наивысший процент полиплоидов имеется у многолетних трав, меньше их у однолетних й очень незначительное число у древесных растений. Редкая полиплоидизация голосеменных (преимущественно древесных) растений, как и древесных покрытосеменных, согласуется с идеей вторичности происхождения травянистого типа стеблей у покрытосеменных, подтверждаемой многочисленными фактами их филогении. О том же говорит и большее распространение полиплоидных форм у многолетних трав по сравнению с однолетними.[ ...]

Вновь полученные полиплоиды характеризуются меньшей жизнеспособностью, чем прошедшие длительный селекционный отбор. У перекрестноопыляемых видов рекомбинация полезных признаков идет естественным путем, поэтому работа с ними наиболее перспективна. Перекрестноопыляемые растения более гетерозиготны, чем самоопылители, поэтому способны давать больше разнообразных форм для отбора; причем на проявление полиплоидии у них влияет гетерозис. Именно этим и объясняется эффективность использования полиплоидии в селекции таких перекрестноопыляемых культур, как рожь, клевер, сахарная свекла, турнепс и др.[ ...]

Естественная полиплоидия у тюльпанаЕстественная полиплоидия у тюльпана

Проблеме плодовитости полиплоидов придается громадное значение. Тем не менее, бывают случаи, когда стерильность гамет не вызывает опасений и даже желательна. Так, возделываемая в качестве салата триплоидная настурция (Nasturtium officinale) отличается пониженной плодовитостью, но прекрасно размножается вегетативным путем.. Многие культурные растения, размножаемые луковицами (тюльпаны, нарциссы, канна и желтые лилии), также являются триплоидами. Например, значительное число ценных американских сортов яблонь является триплоидами. У двулетних овощных культур, образующих в 1-й год жизни корнеплоды и клубни, стерильность не является препятствием при промышенном возделывав нии. Так обстоит дело и с триплоидным гибридом сахарной свеклы, отличающимся высоким содержанием сахара в соке, большой массой корня, а следовательно, и большой урожайна-стью сахара с 1 га. Триплоидные гибриды, полученные таким образом, по урожайности превышают диплоидные сорта.[ ...]

Помимо этого, в природе полиплоиды могут возникать и вследствие умножения наборов хромосом одного растения (авто-полиплоидия) иод воздействием внешних факторов среды: резкие перепады температуры, изменение содержания минеральных веществ в почве, ионизация, механические повреждения генеративных органов и т. п. В данном случае можно полагать, что воздействия, которым организм подвергается в природе, в основном тождественны методам, применяемым экспериментаторами.[ ...]

Проблема возникновения полиплоидов в природе была разрешена путем их экспериментального получения. Чаще всего они образуются при переопылении двух разных диплоидных видов с последующим удвоением числа хромосом у спонтанных гибридов (аллополиплоидия . В подобных случаях, как правило, поли-плоидизация происходит вследствие образования нередуцированных гамет; при этом вновь возникший аллополиплоид содержит диплоидный набор отцовских и материнских хромосом.[ ...]

Таким образом, используя метод полиплоидии, мы преодолел не только стерильность первого поколения гибрида A. glaucum > X A. repens, но также его нескрещиваемость с пшеницей.[ ...]

Изучение политенных хромосом и явления полиплоидии тесно связано с исследованиями эндомитоза. Однако в тех случаях, когда самовоспроизведение хроматид идет интенсивно,.гомологичные хромосомы не спирализуются, а спариваются между собой, сохраняя вытянутую форму. Таким путем образуются пучки хроматид, причем число хроматид в одном пучке всегда соответствует диплоидному набору хромосом изучаемого объекта.[ ...]

Многие растения являются естественными полиплоидами. Для избежания путаницы в этом отношении основное число хромосом в наборе принято обозначать через х. Так, основное число хромосом в роде Fragaria, к которому относится земляника, равно 7 (х = 7). Число хромосом в вегетативных клетках культурной земляники составляет 56 (8 наборов по 7 хромосом в каждом), или 2п=56=8х. Число хромосом в гаметах называется гаплоидным, или тг-числом, составляет п 28=4г. Под п понимается половинное число, под х — основное число хромосом.[ ...]

Болыцие успехи получены по использованию полиплоидии у лекарственных растений: валерианы лекарственной (Valeriana officinalis), мака снотворного (Papaver somniferum), аира болотного (Acorus calamus) и др.[ ...]

Сходный способ применяется для получения полиплоидов у клевера, только его семена сразу проращивают в чашках Петри на фильтровальной бумаге, которая играет роль сетки. На 4—5-й день после начала проращивания фильтровальную бумагу вместе с проростками переносят в другую чашку Петри с раствором колхицина [ ...]

При нередуцированном партеногенезе наблюдается полиплоидия. В роде Taraxacum обнаружено более 30 апомиктичных видов. Среди них те, у которых 16 хромосом, являются диплоидными и размножаются половым путем, а все виды с большим числом хромосом (24, 32, 40, 48) — полиплоидны и размножаются партеногенетически.[ ...]

Наряду с этим существуют полигаплоиды, возникшие от полиплоидов, которые также при спонтанном удвоении числа хромосом дают гомозиготное потомство. Чаще всего они бывают полностью или частично фертильными. При опылении пыльцой других видов равной плоидности полигаплоиды образуют гибридные семена, так называемые вторичные гаплоиды, обладающие довольно устойчивой фертильностью.[ ...]

У листостебельных мхов известны числа хромосом от 5 до 66. Полиплоидия у них распространена так же широко, как и у цветковых. Полиплоидные растения возникают из регенеративной протонемы спорофита, нередуцированных спор и при удвоении числа хромосом в вегетативных клетках, особенно в органах вегетативного размножения.[ ...]

Не может существовать общего правила, позволяющего предвидеть эффект полиплоидии в каждом отдельном случае. Поэтому для рационального использования полиплоидии в сельском хозяйстве, лесоводстве, медицине необходимо проведение как практических, так и теоретических исследований.[ ...]

В зтом подсемействе наблюдается интенсивная гибридизация, сочетающаяся с полиплоидией: здесь нередки 12-плоидные виды, существуют даже 16-плоидные с соматическим числом хромосом 576. Более того, как предполагают японские ученые С. Татуно и С. К а в а-к а м и, характерное для всего подсемейства основное хромосомное число х=36 само является результатом древней полиплоидии и возникло из первичного числах =12. Отсюда следует, что самый низкий современный уровень полиплоидии в подсемействе — гексаплоидный. Интересно, что процент полиплоидных видов в этом подсемействе значительно выше в тропических и южных умеренных зонах по сравнению с северными умеренными. Но главным центром видообразования этой группы папоротников являются тропики.[ ...]

Геномные мутации затрагивают изменения числа хромосом в клетках организма (полиплоидия, гаплоидия, анеуплоидия).[ ...]

Основное хромосомное число у каркасовых такое же, как у коноплевых (х —10). Характерна полиплоидия, причем отдельные виды достигают очень высокой степени плоидпости (трема амбоинская — Trema aiuboinonais — 16-плоид!).[ ...]

Принято считать увеличение размеров клеток растений наиболее характерным признаком полиплоидии. Поэтому для предварительного определения полиплоидных форм измеряют замыкающие клетки устьиц и зрелые пыльцевые зерна (рис. 78, 79).[ ...]

Другое важное достижение селекции — преодоление бесплодия у ржано-пырейных гибридов. Использование полиплоидии способствовало выведению высокоурожайных сортов из ржано-пырейных гибридов. Спонтанные полиплоидные мутанты пшеницы встречаются крайне редко, поэтому многие советские и зарубежные исследователи работают над их получением, сочетая! методы отдаленной гибридизации и полиплоидии.[ ...]

В природе встречаются как автополиплоиды, так и аллополиплоиды, однако географическое распределение полиплоидов обычно отличается от распределения их диплоидных «родственников». Например, флора о. Шпицберген содержит очень высокий процент полиплоидных рядов, тогда как в других местах количество их меньше по сравнению с диплоидами.[ ...]

Довольно хорошо изучены антиподы аконита. Для ядер антипод этого растения характерна высокая степень полиплоидии. Наличие в антиподах большого количества рибосом и крупного лопастевидного ядрышка указывает на активность белкового синтеза (объем ядрышка и интенсивность синтеза белка в клетках антипод взаимосвязаны). Изучение ультраструктуры антипод зародышевого мешка у аконита показало, что перед оплодотворением их цитоплазма имеет выраженную полярность, насыщена органеллами (главным образом пластидами и митохондриями), обладающими большой функциональной активностью. Однако крахмальных зерен в них не обнаружено.[ ...]

Путем опыления кукурузы с ЦМС пыльцой линий, лишенных этого признака, были получены андрогенные моно- и полиплоиды, а при последующем опылении этих гаплоидов пыльцой отцовской формы — мужские стерильные линии (аналоги). Идут эксперименты по использованию андрогенеза и у хлопчатника. Созданные этим методом формы промышленного хлопчатника наряду с ценными хозяйственными признаками обладают скороспелостью материнских (азиатских) форм. Появление андрогенных гаплоидов у кукурузы и хлопчатника позволяет использовать их в производстве гомозиготных линий вместо матроклинных гаплоидов.[ ...]

Аллополиплоиды имеют более сложную формулу увеличения хромосомных наборов, чем автополиплоиды. В частности, такие гетерозиготные полиплоиды, представляющие собой удвоенные гибриды, были получены экспериментальным путем у табака. Своеобразный род Nicotiana, включающий более 60 видов, способен на естественную анэуплоидию, т. е. самопроизвольное изменение числа хромосом на некратное основному (п) их набору.[ ...]

Эти кажущиеся противоречия объясняются тем, что растения после достижения известного полиплоидного уровня отрицательно отзываются на полиплоидию, максимальный эффект которой проявляется лишь на определенной пороговой границе (Клаусен, 1941). Следовательно, в зависимости от особенностей организма оптимальные показатели могут проявляться на различных уровнях плоидности — триплоидном, гексаплоидном, причем различно реагируют на полиплоидию не только роды и виды, но и отдельные сорта растений.[ ...]

Нефитотоксичен (за исключением тыквенных) при инсектицидных концентрациях, но при более высоких концентрациях может вызывать деформацию корней и полиплоидию. Может вызывать порчу некоторых культур, например картофеля.[ ...]

Из других биологических особенностей многоножковых следует указать на высокий процент аутополиплоидов (основное число хромосом у многих родов семейства 37), т. е. полиплоидов с увеличенным числом идентичных наборов хромосом того же вида.[ ...]

Полиплоидные растения с нечетными наборами хромосом характеризуются пониженной плодовитостью и снижением уровня количественных признаков. Напротив, для растений-полиплоидов с четными наборами хромосом характерен повышенный уровень количественных признаков.[ ...]

Хромосомные мутации связаны с изменениями числа и структуры хромосом.[ ...]

Культурные растения развиваются под контролем человека. Огромное значение в этом отношении имеет селекция на экологических и генетических основах. При этом используются такие явления, как гетерозис, полиплоидия совместимость, апомиксис, иммунитет и многие другие.[ ...]

Кроме авто- и аллополиплоидии, в соматических клетках ряда многоклеточных организмов установлена эндополиплоидия, характеризующаяся увеличением числа хромосом в покоящемся ядре (при отсутствии митоза). От полиплоидии следует отличать псевдополиплоидию отдельных растений и насекомых, возникающую в результате однократного или многократного деления компонентов генома, когда центромеры имеют диффузный характер.[ ...]

В результате народной селекции, основанной на использовании хозяйственно ценных признаков растений, в культуре распространились полиплоидные формы. Можно полагать, что среди них было отобрано значительное число полиплоидов. По-видимому, процессу полиплоидизации культурных растений способствовало также их перемещение в новые районы с другими природно-климатическими условиями.[ ...]

Обширная и разнородная группа рыб выделяется среди прочих позвоночных значительными вариациями в размерах геномов своих представителей. Это объясняется тем, что в группе рыб широко распространены явления тандемной дупликации генов и полиплоидии с последующей диплоидизацией геномов в большей или меньшей степени. Уже по указанным причинам исследование молекулярной организации геномов рыб очень важно.[ ...]

Различия в числе геномов накладывают отпечаток на приспособляемость и устойчивость вида в меняющихся условиях окружающей среды. Увеличение числа генов, рекомбинаций и особенно гетерозигот-ности, вероятно, способствует более энергичному развитию и лучшей приспособляемости. Полиплоиды — чукучановые и некоторые карповые (карп, серебряный карась, усач) — по сравнению с диплоидными представителями родственных таксонов отличаются большими размерами, дольше живут, у них выше экологическая приспособляемость. В свете этих данных находит объяснение другая особенность химического мутагенеза в опытах с белым толстолобиком, связанная с реализацией большинства нарушений, вызванных мутагенами в эмбриональном периоде.[ ...]

Как уже отмечалось, каждый вид растений и животных имеет определенное и постоянное число хромосом, причем в клетках соматических тканей оно вдвое больше, чем в генеративных. Наличие в клетках более двух целых гаплоидных хромосомных наборов, например трех, четырех, пяти и т, д., относят к явлению полиплоидии. Полиплоидия наблюдается в природе, особенно среди цветковых растений, это также довольно частое явление в опухолевых тканях.[ ...]

Эуплоидия (греч. ей — хороший, настоящий и ploos — складывать) означает наличие в клеточных ядрах целых хромосомных наборов, равных гаплоидному или кратных ему. Гаплоидный набор хромосом обозначается символом п, а кратные ему — соответственно 2п, 3п и т. д.[ ...]

В клетках некоторых тканей при их развитии происходит незавершенный митоз: материал хромосом в ядрах удваивается, хромосомы делятся пополам, но, вместо того чтобы образовать два ядра, остаются в исходном ядре. С этого момента оно заключает в себе не диплоидный, а тетраплоидный (четверной) набор хромосом. Процесс, ведущий к подобному удвоепию хромосом внутри одного ядра, называется эндомитозом — внутренним митозом. Если он происходит с одним ядром дважды, то оно становится октоплоидпьтм (восьмикратным) набором и т. д. Клетки, ядра которых несут в себе больше двух наборов хромосом, называются полиплоидными, т. е. многоплоидными. Полиплоидия клеток в ряде случаев повышает их жизнеспособность, поскольку каждый ген дублируется несколькими другими такими же генами. Однокачественные гены действуют в унисон, и повреждение какого-нибудь из них пе ведет к выпадению определяемого им признака, так как компенсируется работой остальных однородных генов. Во многих случаях полиплоидные клетки крупнее и богаче содержимым, чем диплоидные. Выведены сорта полиплоидных культурных растений, которые обладают повышенными хозяйственными качествами.[ ...]

После этого первого сообщения многие исследователи получали адвентивные зародыши в культуре каллусов, в суспензионной культуре и в культуре изолированных пыльников и пыльцевых зерен (рис. б.З). Процесс регенерации, особенно в связи с эмбриогенезом в стерильной культуре, был тщательно изучен у дикого вида и культурных сортов моркови (Daucus carota) (рис. 6.5), но было также обнаружено, что способность к образованию адвентивных зародышей широко распространена в растительном мире. Тем не менее нельзя сказать, что все клетки растения или клетки всех видов сохраняют тотипотентность, так как было и много безуспешных попыток вызвать эмбриогенез и/или органогенез в стерильной культуре тканей многих видов. Возможно, что эмбриогенез происходит только у диплоидных клеток (или гаплоидных в случае пыльцевых зерен), и неудача в образовании адвентивных зародышей может быть связана с полиплоидией культивируемых клеток и тканей.[ ...]

ru-ecology.info

Полиплоидия - Википедия

Пло́идность — число одинаковых наборов хромосом, находящихся в ядре клетки или в ядрах клеток многоклеточного организма.

Иногда этот термин применяют и в отношении прокариотических клеток, лишённых ядра. Большинство прокариот гаплоидны, то есть имеют одну копию бактериальной хромосомы, однако встречаются диплоидные и полиплоидные бактерии.

Различают клетки гаплоидные (с одинарным набором непарных хромосом), диплоидные (с парными хромосомами), полипло́идные (их также называют три-, тетра-, гексаплоидными и т. д. в зависимости от того, сколько раз в ядре клетки повторяется гаплоидный набор) и анеуплоидные (когда удвоение или утрата — нуллисомия, моносомия или трисомия — охватывает не весь геном, а лишь ограниченное число хромосом). Полиплоидию не следует путать с увеличением количества ядер в клетке и увеличением числа молекул ДНК в хромосоме (политенизацией хромосом).

Гаплоиды[ | ]

Гаплоиды — ядро, клетка, организм, с одним набором хромосом, представляющим половину полного набора (n), свойственного исходной форме (виду) (2n)[1][2].

Спонтанная гаплоидия — явление редкое, однако постоянно встречающееся у многих видов растений, в том числе и у древесных, например у сосны обыкновенной. Обычно частота гаплоидии не превышает 0,1%. Описаны миксоплоиды, содержащие как диплоидные, так и гаплоидные клетки. Предполагается, что гаплоидные клетки возникают в результате , сопровождаемой «выпадением» их репликации в отдельных клеточных циклах[3].

В настоящее время, гаплоиды найдены у большинства культурных растений.

Классификация гаплоидов[ | ]

Общепринятой классификации гаплоидов не существует. Различными исследователями выделяются следующие группы:

  • Моноплоиды — гаплоидные потомки диплоидных родителей.
  • Полигаплоиды — гаплоидные потомки полиплоидных родителей.
  • Эугаплоиды — растения с нормальным для данного генома числом хромосом.
  • Анеугаплоиды — растения с числом хромосом, отклоняющимся от нормального для данного генома.
  • Псевдогаплоиды — гаплоиды, произошедшие от автополиплоидов.
  • Матроклинные гаплоиды — растения, произошедшие от яйцеклетки с редуцированным числом хромосом, или из клеток зародышевого мешка выполняющих функции яйцеклетки. К этому типу относят подавляющее большинство гаплоидов.
  • Андрогенные гаплоиды — гаплоидные растения, развивающиеся из яйцеклетки или клеток зародышевого мешка, хромосомы которых замещены хромосомами спермия. Этот вид гаплоидии известен у небольшого числа видов.
  • Андроклинные гаплоиды — гаплоидные растения, произошедшие из клеток мужского гаметофита – пыльцевых зерен. Получение андроклинных гаплоидов возможно только экспериментальным путём.
  • Моноплоиды, или моногаплоиды — гаплоиды, имеющие один геном.
  • Полигаплоиды — гаплоиды несущие два или более одинаковых – в случае автополигаплоидов, либо различных – в случае аллополигаплоидов, генома[4].

Чередование гаплоидной и диплоидной фаз в жизненном цикле[ | ]

В норме у большинства организмов, для которых известен половой процесс, в жизненном цикле происходит правильное чередование гаплоидной и диплоидной фаз. Гаплоидные клетки образуются в результате мейотического деления диплоидных клеток, после чего у некоторых организмов (растения, водоросли, грибы) могут размножаться при помощи митотических делений с образованием гаплоидного многоклеточного тела или нескольких поколений гаплоидных клеток-потомков. Диплоидные клетки образуются из гаплоидных в результате полового процесса (слияния половых клеток, или гамет) с образованием зиготы, после чего могут размножаться при помощи митотических делений (у растений, водорослей и некоторых других протистов, животных) с образованием диплоидного многоклеточного тела или диплоидных клеток-потомков.

Полиплоидия[ | ]

Образование автополиплоидов. В процессе неудачного мейоза диплоидной клетки образуются диплоидные гаметы, которые сливаются с образованием тетраплоидной зиготы.

Полиплоиди́ей (др.-греч. πολύς — многочисленный, πλοῦς — зд. попытка и εἶδος — вид) называют кратное увеличение количества хромосом в клетке эукариот.

Полиплоидия гораздо чаще встречается среди растений, нежели среди животных. Среди раздельнополых животных описана у нематод, в частности аскарид, а также у ряда представителей земноводных.[5]. Так, для европейских съедобных лягушек P. esculentus, являющихся стабильным гемиклонально размножающимся межвидовым гибридом лягушек Р. ridibundus и Р. lessonae, типична триплоидия (3n = 36)[6].

В растительном мире экологический успех во многих случаях обусловлен гибридизацией и появлением полиплоидных форм[7]. В целом около 70% растений полиплоидны, при этом преобладает аллополиплоидия. У ряда видов описаны внутривидовые и даже внутрисортовые полиплоидные серии[3].

Искусственно полиплоидия вызывается ядами, разрушающими веретено деления, такими как колхицин.

Различают автополиплоидию и аллополиплоидию.

  • А́втополиплоиди́я — наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.[8]
  • А́ллополиплоиди́я — кратное увеличение количества хромосом у гибридных организмов. Возникает при межвидовой и межродовой гибридизации.[5]

Миксоплоидия[ | ]

Явление впервые описал в 1931 году Богумил Немец у лука голубого (Allium caeruleum)[9]. В настоящее время это широко употребляемый термин, означающий наличие и сосуществование в одной ткани, помимо диплоидных, клеток других уровней плоидности, в частности полиплоидных. Для растений миксоплодия скорее правило, чем исключение[3].

Нарушения плоидности у человека[ | ]

У человека, как и у подавляющего большинства многоклеточных животных, большая часть клеток диплоидна. Гаплоидны только зрелые половые клетки, или гаметы. Нарушения плоидности (как анеуплоидия, так и более редкая полиплоидия) приводят к серьёзным болезненным изменениям. Примеры анеуплоидии у человека: синдром Дауна — трисомия по 21-й хромосоме (21-я хромосома представлена тремя копиями), синдром Клайнфельтера — избыточная X хромосома (XXY), синдром Шерешевского — Тёрнера — моносомия по одной из половых хромосом (X0). Описаны также трисомия по X хромосоме и случаи трисомии по некоторым другим аутосомам (помимо 21-й). Примеры полиплоидии редки, однако известны как абортивные триплоидные зародыши, так и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней) и диплоидно-триплоидные мозаики.[10]

Примечания[ | ]

  1. ↑ Самигуллина Н. С. Практикум по селекции и сортоведению плодовых и ягодных культур: Учебное издание. — Мичуринск: Мичуринский государственный аграрный университет, 2006. — 197 с.
  2. ↑ Ляпустина Е.В. Словарь терминов. Биотехнология растений.. bio-x.ru/. Проверено 13 ноября 2012. Архивировано 18 апреля 2013 года.
  3. ↑ 1 2 3 Кунах В. А. Геномная изменчивость соматических клеток растений // Биополимеры и клетка. — 1995. — Т. 11, № 6.
  4. ↑ Струнин Д.Е. Классификация гаплоидов. bio-x.ru/. Проверено 13 ноября 2012. Архивировано 18 апреля 2013 года.
  5. ↑ 1 2 Полиплоидия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  6. ↑ Евгений Писанец. Амфибии Украины. — Киев, 2007. — С. 258—265.
  7. ↑ Thompson J. D., Lumaret R. The evolutionary dynamics of polyploid plants : origins, establishment and persistence // Trends Ecol. Evol.. — 1992. — № 7. — С. 302-307.
  8. ↑ Автополиплоидия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  9. ↑ Němec B. Über Mixoploidie bei Allium coeruleum (нем.) // Bull. Int. Acad. Sci. Bohème. — 1931. — 16 Oktobers (Bd. 1, Nr. 1). — S. 12.
  10. ↑ Фогель Ф., Мотульски А. Генетика человека. В 3-х т. Пер. с англ. — М. Мир, 1989.

Ссылки[ | ]

encyclopaedia.bid


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта