Формы гуморальной регуляции. Гуморальная регуляция у растений
Формы гуморальной регуляции
При описании форм управления в учебнике допущены неточности, вероятно опечатки. Нельзя перечислять формы управления следующим образом «аутокринная, паракринная и гуморальная …». Аутокринная и паракринная регуляция являются формами гуморальной регуляции. Говоря о форме управления, которая «… реализуется при выделении биологических веществ в кровь», авторы, по всей видимости имели ввиду гормональную регуляцию, при условии использования в качестве средств управления гормонов.
Перечислим как можно полнее формы гуморальной регуляции.
Аутокринная.Вещество оказывает влияние на ту же клетку, в которой он образуется, изменяя ее функциональную активность.
Юкстакринная.Вещество не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетке.
Изокриннаяили местная. Вещество, синтезированное в клетке, высвобождается в межтканевую жидкость и оказывает свое действие на соседнюю клетку.
Паракринная.Вещество, синтезированное в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных поблизости.
Солинокринная.Вещество из одной клетки поступает в просвет протока и достигает другой клетки, оказывая на нее специфическое воздействие.
Гормональная(эндокринная, гемокринная, телекринная). Вещество действуют на значительном удалении от места образования.
Нейрокринная(синаптическая и несинаптическая).Вещество, высвобождаясь из нервных окончаний, выполняет функцию медиатора (обычно усиливающего).
Важно помнить, что нейроны осуществляют и паракринную и эндокринную регуляцию.
В настоящее время гуморальную регуляцию чаще разделяют на две основных формы:
местную саморегуляцию
систему гормональной регуляции.
Местная регуляция
Местная регуляция — передача химических сигналов в пределах одной ткани или органа.
Местная регуляция осуществляется тремя способами с помощью:
креаторных связей(кейлонов- простых белков или гликопротеидов)
простейших метаболитов (молочная, уксусная, адениловая кислоты,CO2и др.)
тканевых гормонов.
Местная регуляция с помощью креаторных связи
studfiles.net
определение, особенности, функции и способы. Гуморальная регуляция осуществляется с помощью...
Сложная структура человеческого организма на данный момент является вершиной эволюционных преобразований. Такой системе необходимы особые способы координации. Гуморальная регуляция осуществляется с помощью гормонов. А вот нервная представляет собой координацию деятельности при помощи одноименной системы органов.
Что такое регуляция функций организма
Тело человека имеет очень сложное строение. От клеток до систем органов он представляет собой взаимосвязанную систему, для нормального функционирования которой должен быть создан четкий механизм регулирования. Он осуществляется двумя путями. Первый способ является самым быстрым. Он называется нервной регуляцией. Данный процесс воплощает в жизнь одноименная система. Существует ошибочное мнение, что гуморальная регуляция осуществляется с помощью нервных импульсов. Однако это совсем не так. Гуморальная регуляция осуществляется с помощью гормонов, которые поступают в жидкостные среды организма.
Особенности нервной регуляции
Данная система включает центральный и периферический отдел. Если гуморальная регуляция функций организма осуществляется с помощью химических веществ, то данный способ представляет собой "транспортную магистраль", связывающую организм в единое целое. Происходит этот процесс достаточно быстро. Только представьте, что вы дотронулись рукой до горячего утюга или зимой босиком вышли на снег. Реакция организма будет практически мгновенной. Это имеет важнейшее защитное значение, способствует и адаптации, и выживанию в различных условиях. Нервная система лежит в основе врожденных и преобретенных реаций организма. Первыми являются безусловные рефлексы. К ним относятся дыхательный, сосательный, мигательный. А с течением времени у человека формируются приобретенные реакции. Это безусловные рефлексы.
Особенности гуморальной регуляции
Гуморальная регуляция функции осуществляется с помощью специализированных органов. Они называются железами и объединяются в отдельную систему, которая называется эндокринной. Эти органы образованы особым видом эпителиальной ткани и способны к регенерации. Действие гормонов носит долгосрочный характер и продолжается на протяжении всей жизни человека.
Что такое гормоны
Железами выделяются гормоны. Благодаря особой структуре эти вещества ускоряют или нормализуют различные физиологические процессы в организме. К примеру, в основании головного мозга находится железа гипофиз. Она продуцирует гормон роста, в результате действия которого тело человека увеличивается в размерах в течение более двадцати лет.
Железы: особенности строения и функционирования
Итак, гуморальная регуляция в организме осуществляется с помощью особых органов - желез. Они обеспечивают постоянство внутренней среды, или гомеостаз. Их действие носит характер обратной связи. К примеру, такой важнейший для организма показатель, как уровень сахара в крови, регулируется гормоном инсулином в верхнем пределе и глюкагоном - в нижнем. Таков механизм действия эндокринной системы.
Железы внешней секреции
Гуморальная регуляция осуществляется с помощью желез. Однако в зависимости от особенностей строения данные органы объединяют в три группы: внешней (экзокринные), внутренней (эндокринные) и смешанной секреции. Примерами первой группы являются слюнные, сальные и слезные. Они характеризуются наличием собственных выводных протоков. Экзокринные железы выделяют биологически активные вещества на поверхность кожи или в полости организма.
Железы внутренней секреции
Железы внутренней секреции выделяют гормоны в кровь. Они не имеют собственных выводных протоков, поэтому гуморальная регуляция осуществляется с помощью жидкостных сред организма. Попадая в кровь или лимфу, они разносятся по всему организму, поступают к каждой его клетке. А результатом этого является ускорение или замедление различных процессов. Это может быть рост, половое и психологическое развитие, обмен веществ, деятельность отдельных органов и их систем.
Гипо- и гиперфункции эндокринных желез
Деятельность каждой железы внутренней секреции имеет "две стороны медали". Рассмотрим это на конкретных примерах. Если гипофизом выделяется избыточное количество гормона роста, развивается гигантизм, а при недостатке этого вещества наблюдается карликовость. И то, и другое является отклонением от нормального развития.
Щитовидная железа выделяет сразу несколько гормонов. Это тироксин, кальцитонин и трийодтиронин. При их недостаточном количестве у младенцев развивается кретинизм, который проявляется в отставании в умственном развитии. Если гипофункция проявляется в зрелом возрасте, она сопровождается отеком слизистой оболочки и подкожной клетчатки, выпадением волос и сонливостью. Если же количество гормонов данной железы превышает предел нормы, у человека возможно развитие базедовой болезни. Она проявляется в повышенной возбудимости нервной системы, дрожании конечностей, беспричинной тревожности. Все это неминуемо приводит к исхуданию и потери жизненных сил.
К железам внутренней секреции также относятся паращитовидные, вилочковая и надпочечники. Последние железы в момент стрессовой ситуации выделяют гормон адреналин. Его наличие в крови обеспечивает мобилизацию всех жизненных сил и способность к адаптации и выживанию в нестандартных для организма условиях. Прежде всего это выражается в обеспечении мышечной системы необходимым количеством энергии. Гормон обратного действия, который также выделяется надпочечниками, называется норадреналином. Он также имеет важнейшее значение для организма, поскольку защищает его от чрезмерной возбудимости, потери сил, энергии, быстрого изнашивания. Это еще один пример обратного действия эндокринной системы человека.
Железы смешанной секреции
К ним относятся поджелудочная и половые железы. Принцип их работы является двойным. Поджелудочная железа вырабатывает сразу два вида гормонов. Это инсулин и глюкагон. Они, соответственно, понижают и повышают уровень глюкозы в крови. В здоровом организме человека эта регуляция проходит незаметно. Однако при нарушении данной функции возникает серьезное заболевание, которое называется сахарным диабетом. Людям с таким диагнозом необходимо искусственное введение инсулина. Как железа внешней секреции поджелудочная выделяет пищеварительный сок. Это вещество выделяется в первый отдел тонкого кишечника - двенадцатиперстную кишку. Под его влиянием там происходит процесс расщепления сложных биополимеров до простых. Именно в этом отделе белки и липиды распадаются на составные части.
Половые железы также выделяют различные гормоны. Это мужской тестостерон и женский эстроген. Данные вещества начинают действовать еще в эмбриональный период. В ходе зародышевого развития половые гормоны влияют на формирование пола, а после формируют определенные половые признаки. Как железы внешней секреции они формируют гаметы. Человек, как и все млекопитающие животные, является раздельнополым организмом. Его половая система имеет общий план строения и представлена половыми железами, их протоками и непосредственно клетками. У женщин это парные яичники с их путями и яйцеклетки. У мужчин половая система состоит из семенников, выводящих каналов и клеток-сперматозоидов. В этом случае данные железы выступают в качестве желез внешней секреции.
Нервная и гуморальная регуляции тесно взаимосвязаны. Они работают как единый механизм. Гуморальная является более древней по своему происхождению, имеет долгосрочное влияние и действует на весь организм, поскольку гормоны разносятся кровью и поступают к каждой клетке. А нервная работает точечно, в конкретное время и в определенном месте по принципу "здесь и сейчас". После изменения условий ее действие прекращается.
Итак, гуморальная регуляция физиологических процессов осуществляется с помощью эндокринной системы. Эти органы способны выделять в жидкостные среды особые биологически активные вещества, которые называются гормонами.
fb.ru
Гуморальная регуляция
Нервно-гуморальные различия. Огромная регулирующая роль в формировании животных того или иного конституционального типа принадлежит нервной и эндокринной системам, оказывающим свое влияние не на отдельные ткани и органы животного, а на весь организм в целом. Гормональной системе принадлежит химическая регуляция жизненных процессов. Во взаимодействии с ферментными системами гормоны оказывают влияние на основные жизненные процессы и на обмен веществ. Они регулируют рост, развитие животных, процессы размножения; оказывают влияние на их нервную деятельность. Существенная роль в процессах приспособления и сопротивляемости организма принадлежит гормонам. Изучены химическая природа большинства гормонов и механизм их действия на организм. Многие из них выделены в чистом виде и получены синтетическим путем.[ ...]
У позвоночных животных центральная регуляция циркадианных ритмов на уровне целого организма связывается с промежуточным мозгом. Полагают, что высший уровень биологических часов, регулирующих на основе обратной связи циркадианные ритмы, локализован в гипоталамусе и функционирует по принципу мембранной модели, тогда как клеточные циклы осуществляются на основе модели хронона. Гипсггаламическая регуляция реализуется нейросекреторной системой и связана с участием гуморальных механизмов. Показано, в частности, что у млекопитающих циркадианный ритм митозов и содержания эозинофилов в крови регулируется при участии надпочечников.[ ...]
Кровь служит прежде всего для питания и дыхания тканей, регуляции между отдельными клетками, тканями и органами (гуморальная связь), а также несет защитную функцию. Чтобы кровь могла все это выполнить, она должна находиться в постоянном движении. Кровообращение решает в основном три задачи: 1) перенос питательных веществ и газов от одних участков тела к другим; 2) перенос и распределение резервного материала внутри тела рыбы; 3) освобождение клеток от продуктов их обмена.[ ...]
Эндокринная система у высших организмов ответственна за гуморальную регуляцию роста и развития. Все гормоны представляют собой химические соединения, обладающие функциями сигналов, связывающих внутренние коммуникационные системы организма, чем помогают клеткам «чувствовать и реагировать на изменяющиеся физиологические условия. Различают пептидные гормоны (все гормоны гипоталамуса, гипофиза, инсулин и глюка-гон), стероидные (гормоны коры надпочечников, андрогены и эстрогены) и гормоны типа аминов (эпинефрин и тиреоидные гормоны).[ ...]
Рост и индивидуальное развитие животных организмов подвержены нейрогуморальной регуляции со стороны гуморальных и нервных механизмов регуляции. У растений обнаружены гормоноподобные активные вещества, получившие название фитогормонов. Последние влияют на жизненно важные отправления растительных организмов.[ ...]
Какое бы влияние на онтогенез животных ни оказывали эндокринная система (как внутренний фактор развития), регулирующая роль в этом сложном процессе принадлежит нервной системе. Работы ряда ученых позволили увидеть нервно-гуморальную регуляцию там, где раньше видели только гуморальную. Косвенным доказательством того, что нервная система оказывает регулирующее влияние на развитие животных, служит тот факт, что эндокринные железы сильно иннервированы окончаниями как центральной, так и симпатической нервной систем. Высшего развития регуляция (пусковая и трофическая) жизни тканей достигает, по справедливому заключению В. Н. Никитина, в нервной регуляции жизненного процесса. Принцип антагонизма и синергизма в действии нервной системы гораздо выше и разнообразнее, чем в эндокринной.[ ...]
Влияние температуры окружающей среды. Существеннейшее значение В развитии и жизнедеятельности тканей, органов и организма в целом имеет постоянство температуры тела, (гомойотерм-ность) животных. Гомойотермные животные отличаются эволюционно развившейся способностью изменять величину теплоотдачи (физическая терморегуляция) путем регуляции кровообращения в поверхностных тканях и испарением из организма влаги, а также изменять теплообразование (химическая терморегуляция) при сохранении постоянной температуры тканей и всего тела. Относительное постоянство температуры тела домашних животных поддерживается сложными, нервно-гуморальными регуляциями процессов теплообразования и теплоотдачи. При охлаждении тела в организме усиливаются обменные процессы и теплообразование увеличивается, а теплоотдача уменьшается; при нагревании, наоборот, теплопродукция уменьшается, а теплоотдача увеличивается.[ ...]
Рост и развитие. Рост организмов происходит путем прироста массы организма за счет увеличения размеров и числа клеток. Он сопровождается развитием, проявляющимся в дифференцировке клеток, усложнении структуры и функций. В процессе онтогенеза формируются признаки в результате взаимодействия генотипа и среды. Филогенез сопровождается появлением гигантского разнообразия организмов, органической целесообразностью. Процессы роста и развития подвержены генетическому контролю и нейро-гуморальной регуляции.[ ...]
Внутренние факторы развития. К их числу относятся наследственность и те наследственно обусловленные , закономерности онтогенеза, которые исторически выработались в процессе приспособления животных к определенным условиям внешней среды. Особо важная роль в формообразовательных процессах принадлежит ДНК и РНК, белкам, БН-группам и АТФ. На ранних же стадиях внутриутробного развития начинают функционировать эндокринная и нервная системы. Как известно, процесс дифференциации клеточных элементов зародыша приводит затем к созданию сложной системы специализированных органов и тканей. Некоторые из них, в частности железы внутренней секреции и нервная система, становятся своеобразными внутренними регуляторами последующего развития. Такие железы, как гипофиз, щитовидная, нилоч-ковая, надпочечники, половые и некоторые другие, вместе с нервной системой представляют собой сложный комплекс нервно-гуморальной регуляции индивидуального развития животных. При этом ведущую роль в регулировании роста животных, как н всех их жизненных процессов, играет нервная система.[ ...]
ru-ecology.info
9.2. Гуморальные и нервные механизмы регуляции функций
- Учебно-методический комплекс по дисциплине «физиология центральной нервной системы», 1510.33kb.
- «Северо-Кавказский социальный институт», 340.94kb.
- Физиология центральной нервной системы Цель дисциплины, 20.01kb.
- Б. Н. Шварц русско-эсперантский, 1382.08kb.
- Учебно-методический комплекс по дисциплине «анатомия центральной нервной системы», 450.28kb.
- Учебное пособие раскрывает происхождение и значение более 1000 учебных терминов, 1634.01kb.
- Словарь лингвистических терминов, 13990.3kb.
- Учебное пособие Северо-Кавказский социальный институт 2004 удк 572 Печатается 88., 3788.2kb.
- Учебно-методический комплекс дисциплины «анатомия центральной нервной системы» Специальности, 294.67kb.
- «Анатомия и физиология центральной нервной системы и сенсорных систем», 102.43kb.
Физиологической регуляцией называется активное изменение функций организма или его поведения, направленное на обеспечение оптимальных условий жизнедеятельности, сохранение гомеостаза в меняющихся условиях окружающей среды.
Например, в состоянии покоя артериальное давление поддерживается на определенном уровне. При физической работе благодаря регуляторным механизмам артериальное давление повышается и тем самым обеспечивает лучшую работу мышечной системы, а после прекращения нагрузки оно восстанавливается на прежнем значении. Таким образом, благодаря регуляции органы кровообращения обеспечивают оптимальную величину артериального давления и в покое, и при нагрузке.
Регуляция функций может проявляться различными изменениями. Иногда бывает необходимым включить или выключить какую-то функцию: сокращение и расслабление мышцы, начало и прекращение слюноотделения. В других случаях требуется усилить или ослабить какой-то процесс: сокращения сердца, частоту и глубину дыхания, или же произвести количественные и качественные изменения в составе секретов - желудочного сока, молока и т.п.
В процессе эволюции в живом организме сложились две регуляторные системы - гуморальная (химическая) и нервная (рефлекторная).
Гуморальная регуляция (humor - жидкость) осуществляется за счет биологически активных веществ, которые образуются в организме и оказывают влияние через кровь на другие ткани и органы.
Какие вещества могут участвовать в регуляции функций и являются гуморальными агентами?
1. Электролиты. Ионы натрия, калия, кальция, магния, хлора ответственны за возникновение и проведение электрических импульсов в биологических мембранах (биотоки). Растворенные в крови минеральные соли создают осмотическое давление, определяют кислотно-щелочные свойства крови, от величины которых зависят многие процессы в организме.
2. Конечные и промежуточные продукты обмена веществ - углекислый газ, глюкоза, мочевина и др. Так, например, углекислый газ является важнейшим стимулятором дыхательного центра, а от уровня глюкозы в крови зависит деятельность многих желез внутренней секреции и других органов.
3. Гормоны - биологически активные вещества, образующиеся во многих эндокринных железах и клетках.
4. Нервные медиаторы - вещества, образующиеся в нервных окончаниях и передающие возбуждение с нерва на мышцу или железу.
5. Цитомедины - вещества, образующиеся в различных клетках и несущие информацию для других клеток.
Гуморальная регуляция - более древний способ регуляции, она имеется у растений, одноклеточных и многоклеточных животных. У высших животных гуморальная регуляция не утратила своего значения.
В процессе эволюции в связи с усложнением строения организмов гуморальной регуляции оказалось недостаточно для быстрых изменений жизненных реакций, их корреляции и взаимодействия в условиях меняющейся окружающей среды. На определенном этапе развития появилась нервная система, которая обеспечила быструю и направленную передачу сигналов в виде нервных импульсов (биотоков) к определенным органам - адресатам, в то время как гуморальная регуляция - неспецифична, так как гуморальные раздражители, циркулируя в крови, оказывают воздействие на любые чувствительные к ним ткани (инсулин, например - гормон поджелудочной железы - участвует в 22 реакциях, а адреналин - гормон надпочечников - влияет почти на все функции организма).
Нервная система состоит из центрального и периферического отделов. Центральная нервная система - это головной и спинной мозг, где расположены нервные клетки (нейроны), объединенные в нервные центры. Периферическая нервная система - это отростки нейронов, формирующие нервы и пронизывающие все тело животного.
По функциям нервная система подразделяется на соматическую и вегетативную.
Соматическая нервная система иннервирует поперечно-полосатые мышцы и обеспечивает движение животного, поэтому называется также анимальной («животной»), или двигательной нервной системой.
Вегетативная нервная система иннервирует внутренние органы и регулирует системы органов пищеварения, кровообращения, дыхания, выделения, размножения и обмен веществ. Эти функции имеются и у растений, а слово «вегетативный» означает «растительный».
Как соматическая, так и вегетативная нервная система имеют нервные центры в головном и спинном мозге, и периферические нервы, через которые осуществляется двусторонняя связь нервной системы с органами.
Основной формой деятельности нервной системы является рефлекс. Рефлекс - это ответная реакция организма на раздражение из внешней или внутренней среды при участии нервной системы. Примерами могут служить отдергивание руки от горячего предмета (двигательный рефлекс) или выделение желчи из желчного пузыря (вегетативный рефлекс).
Любой рефлекс осуществляется при участии определенных морфологических структур, которые составляют рефлекторную дугу. Рефлекторная дуга - это путь, по которому проходит возбуждение от места раздражения через центральную нервную систему к исполнительному органу.
Рефлекторная дуга состоит из следующих звеньев.
1. Рецепторы - чувствительные нервные окончания, воспринимающие раздражения. Под воздействием раздражителя в рецепторах возникает потенциал действия (биоток).
2. Центростремительный, или афферентный нерв, по которому возбуждение (потенциал действия) передается в центральную нервную систему.
3. Нервный центр - совокупность нейронов, перерабатывающих полученную от рецепторов информацию и подготавливающих команду для исполнительных органов.
4. Центробежный, или эфферентный нерв, по которому нервный импульс передается исполнительным органам.
5. Эффектор, или исполнительный орган.
^ 9.3. Единство нервной и гуморальной регуляции
В организме высших животных и человека в результате длительной эволюции сложилась единая нейрогуморальная система регуляции функций. Деление этой системы на нервную и гуморальную - условное, оно необходимо для анализа сложнейших процессов, управляющих живым организмом.
Ведущую роль в регуляторных реакциях играет нервная система и ее высший отдел - кора больших полушарий головного мозга. От многочисленных рецепторов, находящихся во всех органах и тканях сюда поступает, как в главный диспетчерский центр, информация о состоянии внешней среды и внутренней среды организма, обо всех изменениях в работе органов и систем, об изменениях в составе крови и тканевой жидкости.
Однако, гуморальные агенты играют роль не только раздражителей, они могут включаться в рефлекторные дуги как самостоятельные звенья. Такое место, например, занимают гормоны. Допустим, в крови животного увеличился уровень глюкозы. Это вызывает возбуждение рецепторов сосудов (хеморецепторов), информация поступает в гипоталамус - отдел промежуточного мозга, и в кору больших полушарий. После оценки ситуации из гипоталамуса возбуждение передается в островковый аппарат поджелудочной железы, где вырабатывается гормон инсулин. Инсулин выделяется в кровь, действует на клеточные мембраны и снижает содержание глюкозы в крови до обычного уровня. Таким образом, гормон включился в эфферентную часть рефлекторной дуги.
Однако единство нервной и гуморальной регуляции этим не ограничивается. Известно, что нервные клетки (нейроны) обладают двумя функциями: способностью генерировать биотоки и передавать их на другие клетки, и способностью вырабатывать биологически активные вещества.
О том, что в нервных окончаниях выделяются химические вещества - медиаторы - было известно еще в 20-х годах XX века. Медиаторы являются химическими посредниками между эфферентными нервами и органами. Никогда нервные окончания не проникают внутрь другой клетки. Они заканчиваются на небольшом расстоянии от мембраны иннервируемой клетки. Место контакта нервного окончания с другой клеткой - нервной, мышечной или секреторной - называется синапсом.
Синапс состоит из трех элементов: пресинаптической мембраны (часть нервного окончания), постсинаптической мембраны (часть мембраны другой клетки) и синаптической щели (пространство между пре- и постсинаптической мембранами). Передача возбуждения с нерва на орган (клетку) заключается в том, что под влиянием нервного импульса из пресинаптической мембраны выделяется медиатор, который является химическим раздражителем для постсинаптической мембраны. В результате в ней возникает возбуждение, распространяющееся по всей клетке.
Самыми распространенными медиаторами являются ацетилхолин, норадреналин, адреналин и др.
Помимо медиаторов, нейроны головного мозга вырабатывают гормоны - нейропептиды. Таковы, например, гормоны гипоталамуса. Их называют релизинг-факторами. Эти гормоны стимулируют или угнетают образование гормонов в передней доле гипофиза, которые, в свою очередь, регулируют деятельность других желез внутренней секреции. Некоторые гормоны гипоталамуса поступают в заднюю долю гипофиза уже в «готовом виде», а затем уже из гипофиза поступают в кровь.
Таким образом, единство нервной и гуморальной регуляции осуществляется на уровне не только нервных окончаний, но и на более высоком уровне - гипоталамо-гипофизарной системы.
Итак, регуляция всех жизненных процессов осуществляется единой нейрогуморальной системой, в которой ведущее значение играет центральная нервная система и ее высший отдел - кора больших полушарий.
На более простых уровнях организации живой материи - молекулярном, внутриклеточном, тканевом - большую роль играет химическая регуляция. Чем сложнее биологическая система, тем большее значение приобретает нервная регуляция, которая объединяет органы и ткани в различные системы и осуществляет функционирование организма во внешней среде как единого целого.
^ 9.4. Основные принципы регуляции физиологических функций
При изменении состояния организма, отличающегося от нормы, или приближающегося к предельным границам гомеостаза, развивается деятельность, возвращающая организм в обычный режим. Такой механизм называется отрицательной обратной связью. Например, при колебаниях уровня глюкозы в крови выше или ниже нормы изменяется работа почек, кишечника, желез внутренней секреции, что приводит к сглаживанию этих колебаний и сохранению постоянного содержания глюкозы в крови.
По принципу отрицательной обратной связи регулируется температура тела, артериальное давление, секреция многих эндокринных желез и другие функции организма.
Наряду с отрицательной обратной связью возможна и положительная. В этом случае процесс, уже начавшийся в организме, сам себя усиливает. Так, после приема пищи начинается выделение желчи в просвет кишечника. В составе желчи имеются желчные кислоты. Они синтезируются только в печени, и больше нигде. Попав в кишечник, желчные кислоты объединяются с жирными кислотами, всасываются в кровь и освобождаются от них. Но, оказавшись в крови, желчные кислоты усиливают синтез и выделение желчи в кишечник. Таким образом, сама желчь является желчегонным средством.
Обратная связь - и положительная, и отрицательная - улавливают и компенсируют те отклонения, которые уже возникли в организме, или произошло рассогласование между физиологическими параметрами, свойственными данному организму и фактическими их значениями. Пользуясь терминами кибернетики - науки об управлении и автоматическом регулировании систем - обратная связь функционирует на выходе системы, это - восстановление измененных свойств организма.
Между тем в организме имеются регуляторные механизмы, способные предотвратить какие-либо нежелательные отклонения. Но для этого следует уловить сигнал «тревоги», раздражения, превышающий допустимое значение. Что делает собака, лизнув горчицу (так отучают иногда собак брать корм из чужих рук)? Она выплевывает предмет, у нее усиливается слюноотделение, она пытается очистить рот лапой. В этом случае вкусовые рецепторы вовремя отреагировали на поступившую информацию и осуществился ряд реакций, не допустивших попадание несвойственной собаке пищи (горчицы) в желудок. Такой принцип регуляции называется регуляцией «на входе» системы, или регуляцией «по возмущению» сигнала.
Оба принципа регуляции - на входе и на выходе - обычно проявляются во взаимодействии и имеют либо защитный, либо компенсаторный характер.
В качестве примера рассмотрим с точки зрения управления механизмы теплорегуляции. В зимнее время, в самые лютые морозы температура крови и внутренних органов у животных остается такой же, как летом - около 38 - 40°С. Перепад же температур с окружающим воздухом оказывается почти 100°С. Каким образом достигается температурный гомеостаз?
Вначале реагируют на низкую температуру наружного воздуха кожные рецепторы (терморецепторы) и запускают компенсаторные реакции, которые увеличивают образование тепла в организме и ограничивают рассеивание тепла в пространство. Это - регуляция «по возмущению», то есть на входе системы. Если эти механизмы не удерживают температуры тела в нормальных границах, и температура крови начнет снижаться, то терморегуляция будет осуществляться по принципу отрицательной обратной связи: снижение температуры крови приведет к возбуждению терморецепторы кровеносных сосудов и это вызовет дополнительные реакции, также направленные на сохранение постоянной температуры тела (усиление обмена веществ, мышечная дрожь, ограничение теплоотдачи).
Итак, для любой регуляторной реакции необходимо:
1. Наличие в тканях и органах «датчиков», реагирующих либо на внешние сигналы (из окружающей среды), либо на изменения гомеостатических параметров организма. Такими датчиками являются рецепторы - чувствительные нервные окончания.
Под рецепторами также понимают особые молекулы, встроенные в биологические мембраны, которые обладают избирательной чувствительностью к определенным химическим веществам - например, к медиаторам или гормонам. Клеточные рецепторы передают информацию внутрь клеток.
2. Наличие механизма «сличения», или сопоставления полученной от рецепторов информации и тех гомеостатических показателей, которые свойственны, запрограммированы данному организму. Эти процессы - центральной нервной системы.
3. Наличие механизмов, предотвращающих изменения гомеостаза или возвращающих их в физиологические границы. Это - функция различных систем организма - пищеварения, кровообращения, дыхания, выделения, движения и т.п.
Вопросы для самоконтроля и проверки:
1. В чем заключается феномен гомеостаза?
2. Объясните механизм нервной и гуморальной регуляции функций.
3. Какие биологически активные вещества участвуют в гуморальной регуляции?
4. В чем заключается единство нервной и гуморальной регуляции?
5. Перечислите основные принципы регуляции физиологических функций.
^ 10. НЕЙРО-ГУМОРАЛЬНЫЕ МЕХАНИЗМЫ
В РЕГУЛЯЦИИ ПИЩЕВОГО ПОВЕДЕНИЯ.
10.1. Системные механизмы голода, аппетита и насыщения
Человек ежедневно испытывает чувство голода и после сильной пищевой эмоции, связанной с приемом пищи, - чувство насыщения.
На протяжении жизни человек обращается к эмоционально переживаемым состояниям голода и насыщения более 75 тысяч раз, что указывает на чрезвычайную важность этих ощущений.
Чувство голода - одно из ярких эмоциональных ощущений, с которым человек появляется на свет. Много забот и беспокойства доставляет ребенок своей матери уже в самом начале жизни, сильным криком и движениями, привлекая ее внимание к испытываемому им чувству голода.
«Каждый день,- писал И.П. Павлов (1916) - мы стремимся к известному веществу, необходимому нам как материал для совершения нашего жизненного химического процесса, вводим его в себя, временно успокаиваемся, чтобы через несколько часов, или завтра снова стремиться захватить новую порцию этого материала - пищи».
Ощущения голода всегда эмоционально неприятны. Это - ощущения тяжести в эпигастральной области, чувство боли в области желудка («голодные боли»), тошнота, головная боль и др. Наоборот, прием пищи сопровождается положительными эмоциональными ощущениями удовольствия или даже наслаждения. У отдельных людей это ощущение достигает высших форм гедонического чувства (от греч. hedone - удовольствие), что нередко делает их жизнь направленной только на получение приятных ощущений, связанных с приемом пищи.
^ 10.2. Биологическое значение ощущений голода и насыщения
Чувства голода и насыщения в процессе эволюционного развития живых существ не только не были элиминированы, но, наоборот, достигли у человека широкого развитии. Это, прежде всего, связано с тем, что голод и насыщение находятся на страже процессов метаболизма как основных процессов жизни. Эмоциональное ощущение голода является своеобразным сигналом, свидетельствующим о потребности организма в пище.
Эмоциональная оценка голода. Эмоциональный сигнал голода, будучи во всех случаях неприятным ощущением, позволяет быстро и надежно, без детализации, оценивать возникающие потребности в отдельных веществах и осуществлять их поиск и потребление. Отрицательная эмоция голода, кроме того, стимулирует субъектов к действию по удовлетворению этой основной метаболической потребности. В то же время живые существа, и в том числе человек, стимулируемые к приему пищи общим эмоциональным сигналом голода, принимают избыточное количество питательных веществ, которые порой и не требуются для метаболических нужд и создают лишь неоправданную дополнительную нагрузку на пищеварительный аппарат.
Эмоциональное ощущение голода субъективно весьма специфично. Никто не спутает чувство голода, например, с чувством жажды, страха, полового возбуждения и др.
Эмоциональный сигнал насыщения. Эмоция насыщения выступает в качестве сигнала принимаемой пищи, главным образом сигнала, прекращавшего ее прием. Эмоциональное ощущение насыщения позволяет довольно быстро оценить ее количество и качество и быстро завершить прием пищи
Предупредительная роль ощущений голода и насыщения. Основное биологическое назначение эмоций голода и насыщения заключается в том, чтобы своевременно информировать организм о возникшей пищевой потребности, быстро построить необходимое пищедобывательное поведение и быстро осуществить прием пищи. В этой быстроте оценки пищевой поведения и ее удовлетворения заложен большой эволюционный приспособительный смысл. Поиск пищи у млекопитающих формируется заблаговременно, за много часов и даже дней до того момента, как будут израсходованы все запасы питательных веществ в организме. Включение эмоционального ощущения между моментом приема пищи и истинным удовлетворением питательных нужд организма, пластической и энергетической утилизацией вновь принятых питательных веществ позволяет живым существам использовать этот довольно значительный интервал деятельности на другие формы приспособительного поведения.
Таким образом, эмоции голода и насыщения - ключевые позиции в ряду физиологических процессов, связанных с формированием пищевой потребности и ее удовлетворением.
^ 10.3. Функциональная система питания
Состояние голода, пищевого аппетита, пищедобывательное поведение и пищевое насыщение определяются деятельностью единой функциональной системы, которая в собирательном смысле может быть названа функциональной системой питания, включающей несколько подсистем. Конечным приспособительным результатом функциональной системы питания является уровень питательных веществ в организме, обеспечивающий нормальное течение метаболических процессов. Этот показатель поддерживается деятельностью как внутреннего, так и внешнего звеньев саморегуляции функциональной системы питания. Внутреннее звено - это вегетативные процессы; внешнее звено включает формирование пищевой мотивации, пищевой аппетит и пищедобывательное поведение, направленное на прием пищи.
В функциональной системе питания имеется еще одно звено, деятельность которого направлена на формирование и удаление каловых масс из организма.
Процессы питания у человека в значительной степени определяются социальными факторами, привычками, воспитанием, нормами поведения и др. Однако во всех случаях даже поэтического описания процесса питания его побудительная сила заключается в пищевой потребности и ее удовлетворении.
Пищевая потребность. Пищевая потребность - физиологический, материальный процесс. Это обусловленное процессами метаболизма снижение уровня питательных веществ в организме.
Пока еще в физиологии не существует методов точного измерения истинной потребности организма в питательных веществах, хотя уже имеются приборы, позволяющие определять уровень глюкозы в крови. Однако можно думать, что в будущем пищевая потребность будет точно количественно измеряться с помощью соответствующих приборов.
Пищевая потребность - мультипараметрический показатель. В каждом случае это определенное соотношение основных питательных веществ в организме: белков, жиров и углеводов. Пищевая потребность может быть обусловлена дефицитом одного какого-либо вещества либо снижением уровня всех или нескольких веществ.
Предконечный результат системы питания. Как правило, деятельность функциональной системы питания направлена на поддержание оптимального для метаболизма уровня питательных веществ в крови и других жидких средах организма. В этом проявляется каскадный приспособительный принцип обеспечения устойчивости конечного метаболического результата функциональной системы за счет поддержания в крови на оптимальном уровне предконечного результата, тесно связанного с конечным.
Поддержанием предконечного результата на оптимальном уровне в крови обеспечивается устойчивое течение метаболических процессов в тканях.
Поддержание в крови оптимального уровня питательных веществ - пример пластичной константы организма. Организм человека может нормально существовать при снижении уровня питательных веществ в крови при свободном доступе к воде до 20 и даже 30 суток.
geum.ru
Гуморальная регуляция
Первая древнейшая форма взаимодействия между клетками многоклеточных организмов — это химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами обмена веществ, или метаболитами, служат продукты распада белков, углекислота и др. Это гуморальная передача влияний, гуморальный механизм корреляции или связи между органами.
Гуморальная связь характеризуется следующими особенностями. Во-первых, отсутствием точного адреса, по которому направляется химическое вещество, поступающее в кровь или другие жидкости тела. Химическое вещество может, следовательно, действовать на все органы и ткани. Его действие не локализовано, не ограничено определенным местом. Во-вторых, химическое вещество распространяется относительно медленно. И, наконец, в-третьих, оно действует в ничтожных количествах и обычно быстро разрушается или выводится из организма. Гуморальные связи являются общими и для мира животных и мира растений.
Нервная и гуморальная регуляция
На определенной ступени развития мира животных в связи с появлением нервной системы образуется новая, нервная форма связей и регуляций. Чем выше по своему развитию организм животного, тем большую роль играет взаимодействие органов через нервную систему, которое обозначается как рефлекторное. У высших животных организмов нервная система регулирует гуморальные связи. В отличие от гуморальной связи нервная связь, во-первых, имеет точную направленность к определенному органу и даже группе клеток и, во-вторых, через нервную систему связь осуществляется с несравненно большей скоростью, в сотни раз превышающей скорость распространения химических веществ. Переход от гуморальной связи к нервной у высокоорганизованных существ сопровождался не уничтожением гуморальной связи между клетками тела и заменой ее нервной связью, а подчинением гуморальных связей нервным, возникновением нервно-гуморального взаимодействия. Установлено, что и в окончаниях нервных волокон, которые соприкасаются или с клетками органа, или с другими нервными клетками, выделяются особые посредники связи, специальные химические вещества, или медиаторы, которые поступают в жидкости тела и действуют непосредственно на нервную систему и на специализированные нервные окончания (см. статью «Химические связи«).
На следующем этапе развития живых существ появляются специальные органы — железы, в которых вырабатываются гуморально действующие вещества — гормоны, образующиеся из поступающих в организм пищевых веществ. Так, например, гормон адреналин образуется в надпочечниках из аминокислоты — тирозина. Это гормональная регуляция.
Основная функция нервной системы заключается в регуляции взаимодействия организма как единого целого с окружающей его внешней средой и в регуляции деятельности отдельных органов и связи между органами.
Нервная система усиливает или тормозит деятельность всех органов не только волнами возбуждения или нервными импульсами, но и посредством поступления в кровь, лимфу, спинномозговую и тканевую жидкости медиаторов, гормонов и метаболитов, или продуктов обмена веществ. Эти химические вещества действуют на органы и на нервную систему. Таким образом, в естественных условиях не существует исключительно нервная регуляция деятельности органов, а нервно-гуморальная.
Возбуждение нервной системы имеет биохимическую природу. По ней волнообразно распространяется сдвиг обмена веществ, при котором ионы избирательно проходят через мембраны, в результате чего образуется разность потенциалов между участками, находящимися в состоянии относительного покоя и возбужденными, и возникают электрические токи. Эти токи, называются биотоками, или биопотенциалами, распространяются по нервной системе и вызывают возбуждение в последующих ее участках.
www.polnaja-jenciklopedija.ru
5. Гуморальная регуляция
5.1. Общие вопросы гуморальной регуляции в организме; 5.2. Гормоны желёз внутренней секреции.
5.1. Общие вопросы гуморальной регуляции в организме
Гуморальный (humoralis) - влага, жидкость. Гуморальная регуляция организма – регуляция жизнедеятельности органов и систем, осуществляемая биологически активными веществами, растворенными в жидких средах организма.
Отсюда: гуморальные факторы – образующиеся в различных тканях и органах биологически активные вещества (БАВ), действие которых на организм опосредовано через его жидкие среды.
Аутокринная форма управления – изменение функции клетки химическими субстратами, выделяемыми в межклеточную среду самой клеткой.
Паракриная форма управления – выделение клетками химических средств управления в межклеточную жидкость. Химические субстраты, распространяясь по межтканевым пространствам, могут управлять функцией клеток, расположенных на некотором удалении от источника управляющих воздействий.
Гуморальная форма управления реализуется при выделении БАВ в кровь, посредством которой они достигают всех органов и тканей.
Секрет – продукт метаболизма клетки.
Выведение секрета из клетки через ее базолатеральную мембрану в интерстициальную жидкость, откуда он попадает в кровь и лимфу, называется внутренней секрецией, эндосекрецией, инкрецией. (Внешняя, или экдосекреция – вывод секрета через апикальную мембрану в просвет ацинусов, протоки желез, полость ЖКТ.)
Гормоны – специфические регуляторы, которые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени. Способны вызывать специфические изменения обмена веществ, функций и структуры органов и тканей.
Свойства гормонов железы внутренней секреции:
1. Каждый гормон действует на определенные органы и функции.
2. Высокая биологическая активность, концентрация 10 –11, 10-8 м.
3. Дистантные действия – действуют на органы и ткани, расположенные вдали от
эндокринных желез.
4. Имеют малые размеры молекул (способность к проникновению)
5. Быстро разрушаются тканями.
6. Не имеют видовой специфичности (применение препаратов свиных желёз).
В противопоставлении с нейромедиаторами:
1. Гормон активирует всю популяцию клеток, имеющих рецепторы этого гормона.
2. Гормон проходит путь от места выделения до места рецепции в миллион раз больший,
чем нейромедиатор.
3. Количество гормона разбавляется кровью и поэтому концентрация составляет всего
10-11- 10-8 м.
4. Гормональные рецепторы, которых в тканях содержится мало, чаще не
сконцентрированы в определенном месте, а распределены равномерно.
5. От момента секреции до связывания с рецептором проходят минуты или десятки минут.
6. Гашение гормонального сигнала происходит медленно, т.к. гормоны растворены во
всем объеме крови и для понижения их концентрации необходимо, чтобы прошло
большое количество крови через ткани-мишени, печень или почки, где происходит
разрушение гормонов.
Функциональная активность эндокринной железы может регулироваться «субстратом», на который направлено действие гормона, по принципу «отрицательной обратной связи».
Примеры:
1) Глюкоза стимулирует секрецию инсулина из b-клеток островков Лангерганса, а инсулин понижает концентрацию глюкозы в крови, активируя её транспорт в мышцы и печень.
2) Паратгормон и кальцитонин влияют на концентрацию кальция и фосфатов в крови. Паратгормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в результате увеличивается концентрация Са2+ в плазме крови. Кальцитонин, наоборот, стимулирует поступление Са2+ и фосфатов в костную ткань, в результате чего концентрация минеральных веществ снижается. При высокой концентрации Са2+ в крови подавляется секреция паратгормона и стимулируется секреция кальцитонина. При снижении Са2+ - наоборот.
Такая регуляция постоянства внутренней среды организма, происходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако она не может обеспечивать все адаптационные задачи организма.
Чтобы эндокринная система могла «отвечать» на самые разнообразные раздражители, реагировать на эмоции и т.д. должна существовать связь между эндокринными железами и нервной системой.
Основные связи между нервной и эндокринной системой регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза.
Нервные импульсы, приходящие в гипоталамус, активируют секрецию рилизинг-факторов (либерины и статины). Мишенью для либеринов и статинов является гипофиз.
Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов и гормонов: тиреолиберин – тиреотропина (ТТГ), соматолиберин – соматотропина (СТГ), пролактолиберин – пролактина, гонадолиберин – фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ) гормонов, кортиколиберин – адренокортикотропного гормона (АКТГ).
Тропные гормоны (тропины) гипофиза регулируют деятельность подчинённых желёз внутренней секреции и выполняют ряд самостоятельных эндокринных функций.
Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.
ТТГ влияет на щитовидную железу, ФСГ и ЛГ на половые железы, АКТГ на кору надпочечников.
СТГ оказывает гормональное влияние на печень, пролактин на молочную железу.
Статины оказывают на гипофиз противоположное влияние - подавляют секрецию тропинов: соматостатин – ТТГ и СТГ; пролактостатин - пролактина.
Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих «сверху вниз», осуществляется гормонами исполнительных желез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответствующего тропного гормона; наоборот, при гиперфункции железы секреция соответствующего тропина подавляется.
Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировки гипоталамуса в онтогенезе.
Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим гонадолиберин. Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично.
Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, то гипоталамус будет дифференцироваться по женскому типу.
Вместе с тем, в железах внутренней секреции, как правило, иннервированы только сосуды. Изменение биосинтетической и секреторной активности эндокринных клеток регулируется главным образом действием метаболитов и гормонов, причем не только гипофизарных.
Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса. Благодаря этому в организме образуется единая нейроэндокринная регуляторная система.
Нейроны ЦНС, как и другие клетки организма, находятся под влиянием гуморальной системы регуляции. Например, формирование полового инстинкта, невозможно без андрогенов и эстрогенов.
НС, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти 2 регуляторные системы дополняют друг друга, образуя единый механизм нейрогуморальной регуляции.
Механизмы действия гормонов на клетку.
Есть три варианта влияния гормона на клетку-мишень:
1. Изменение распределения веществ в клетке.
2. Химическая модификация клеточных белков.
3. Индукция или репрессия процессов белкового синтеза.
Эти первичные эффекты приводят к изменению количества и активности регуляторных белков клетки, скорости ферментативных процессов.
Один из основных механизмов гормонального влияния на распределение (компартментализацию) веществ в клетке – изменение ионной проницаемости клеточных мембран.
Регуляторное влияние белково-липидных гормонов, катехоламинов и других, опосредовано через систему вторичных посредников (цАМФ, цГМФ, ионы Са2+ и т.д.).
Образование этих посредников приводит к выходу ионов Са2+ из эндоплазматической сети и стимуляции протеинкиназы С.
В каждой клетке функционирует система, регулирующая чувствительность рецепторов к гормону.
Обычно уровень гормонов, действующих через активацию рецепторов, повышается на несколько минут. Этого достаточно, чтобы произошло образование нужного количества вторичных посредников.
Если же уровень гормона останется повышенным в течение десятков минут или часов, то развивается десенсибилизация соответствующего рецептора. (Фосфорилирование рецептора протеинкиназой, активированной вторичными посредниками).
Если механизмы десенсибилизации не устраняют регуляторный сигнал, то происходит интернализация гормон-рецепторных комплексов, они переходят с поверхности внутрь клетки. При снижении концентрации гормона в крови эти рецепторы вновь встраиваются в плазматическую мембрану.
Наиболее медленная, но и наиболее мощная система эндокринной регуляции, действует через стероидные и тиреоидные гормоны. Эти липофильные молекулы поникают через липидный бислой и связываются со своими рецепторами в цитоплазме или ядре. Затем гормон-рецепторный комплекс связывается с ДНК и белками хроматина. Эффект действия этих гормонов на содержание того или иного белка в клетке реализуется за счет включения-выключения новых генов.
гормоны | ||
Белково-пептидные | Производные аминокислот | Стероидные |
Гормоны ЖКТ, все тропные гормоны | Тиреоидные, гормоны эпифиза, катехоламины, мелатонин, серотонин, гистамин | Глюкокортикоиды, минералокортикоиды, половые гормоны |
Белково-пептидные гормоны образуются из белковых предшественников, называемых прогормонами ( Прегормон → Прогормон → Гормон). Синтез прогормона осуществляется на мембранах гранулярной эндоплазмической сети эндокринной клетки. Везикулы с образующимся прогормоном переносятся в комплекс Гольджи. Там, под действием мембранной протеиназы, от молекул прогомона отщепляется определенная часть аминокислотной цепи (образуется гормон). Везикулы с гормоном сливаются с плазматической мембраной и высвобождаются во внеклеточное пространство. Концентрация белково-пептидных гормонов в крови обычно составляет 10- 9 - 10 -10 моль. При стимуляции ЭНС концентрация возрастает в 2 – 5 раз. Период полураспада этих гормонов в крови 10 – 20 минут. Они разрушаются протеиназами клеток-мишеней, крови, печени, почек.
Гормоны производные аминокислот: из тирозина образуются катехоламины, тиреоидные гормоны; из триптофана мелатонин, серотонин; из гистидина гистамин.
Гистамин образуется из аминокислоты гистидин. Концентрируется в тучных клетках за счет фермента гистидин-декарбоксилазы. Хранятся в специальных гранулах. Из тучных клеток может попадать в кровь. Расширяет артериолы и капилляры. Повышает проницаемость капиллярных сосудов. Является стимулятором секреции слюны и желудочного сока. Участвует в аллергических реакциях. Существуют специальные блокаторы гистаминовой рецепции: Н 1 – блокаторы: димидрол, супрастин. Н 2 – блокаторы: циметидин.
Стероидные гормоны образуются из холестерина в корковом веществе надпочечников, а также в половых железах (кортикостероиды, глюкокортикоиды (кортизол), минералокортикоиды (альдостерон), тестостерон, эстрадиол, эстрон, прогестерон). Свободный холестерин поступает в митохондрии, где превращается в прогненолон (под действием ферментов), прогненолон поступает в эндоплазмическую сеть и после этого в цитоплазму.
В корковом веществе надпочечников синтез стероидных гомонов стимулируется кортикотропином, в половых железах – лютеинизирующим гормоном. Эти гормоны ускоряют транспорт эфиров холестерина в эндокринных клетках и активируют митохондриальные ферменты. Тропные гормоны также активируют процессы окисления сахаров и жирных кислот в эндокринных клетках, обеспечивая стероидогенез энергией и пластическим материалом.
Стероидные гормоны легко проникают в клеточную мембрану, поэтому их секреция происходит параллельно синтезу.
Содержание стероидов в крови определяется соотношением скоростей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гормоны стимулируют этот синтез. Устранение влияния тропных гормонов приводит к торможению синтеза. Действующие концентрации стероидных гормонов: 10 – 11 – 10 – 9. Период их полураспада: ½ - 1 ½ ч.
Гормоноподобные вещества. Эйкозаноиды. Оказывают местное действие, сохраняются в крови в течение нескольких секунд. Образуются во всех органах и тканях практически всеми типами клеток. Период полураспада 1 – 20 с. Синтез начинается с отщепления арахидоновой кислоты от мембранного фосфолипида в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему на мембранах эндоплазмической сети. Ферменты, инактивирующие эйкозаноиды, имеются практически во всех тканях, наибольшее количество - в легких.
Гормоны, имеющие гидрофильную природу (белково-петидные, катехоламины и др.) синтезируются «впрок» и выделяются в кровь определенными порциями за счет опустошения везикул.
Стероидные, тиреоидные гормоны, и эйкозаноиды не накапливаются в специальных структурах. Благодаря липофильности они свободно проходят через плазматическую мембрану и попадают в кровь.
Их содержание регулируется скоростью синтеза.
Поступая в кровь, гормоны связываются с белками плазмы. Обычно 5 –10 % гормонов находятся в крови в свободном состоянии, может взаимодействовать с рецепторами.
studfiles.net
Гуморальная регуляция
Сердечно-сосудистая система регулируется не только нервным, но и гуморальным путем – теми веществами, которые выделяются в кровь, лимфу и тканевую жидкость из различных органов и тканей. Гуморальные агенты подкрепляют и удлиняют нервные воздействия на сердце и сосуды. На гемодинамику влияют медиаторы, истинные гормоны и гормоноиды, плазмакинины и неспецифические метаболиты.
Объектом действия этих веществ является сердечная мышца и гладкая мускуклатура стенок сосудов, которые под влиянием гуморальных агентов либо снижают , либо увеличивают свою активность, что в конечном итоге приводит к стимуляции или угнетению гемодинамики.
Гуморальные агенты по действию на кровяное давление делят на прессорные и депрессорные (стимулирующие и тормозящие гемодинамику). Вещества первой группы приводят к повышению АД, а второй – к его снижению.
Прессорные агенты
Адреналин– гормон мозгового слоя надпочечников. Действует и на сердце, и на сосуды. Оказывает такие же эффекты, как и симпатический отдел ВНС. Сердце – 5 положительных эффектов. Сосуды – повышение тонуса, а следовательно увеличение ОПСС.
Адреналин взаимодействует с альфа-адренорецепторами, вызывает деполяризацию мембраны гладких мышц. При внутривенном введении адреналина – его действие кратковременно,т.к. он быстро разрушается ферментом моноаминоксидазой.
Вазопрессин(АДГ) в физиологических условиях он регулирует процессы мочеобразования и не влияет на гемодинамику. При введении его в виде лекарственного препарата в больших дозах он вызывает прессорный эффект, который продолжается до 30 мин. Его действие обусловлено увеличением тонуса микроциркуляторных сосудов, преимущественно капилляров, поэтому вазопрессин считают особенно важным для поддержания их тонуса. Действие вазопрессина менее резкое, чем адреналина.
Гормоны коры надпочечниковтакже обладают способностью поддерживать тонус сердца и сосудов. После удаления надпочечников давление понижается. Так, например, альдостерон повышает чувствительность адренорецепторов к адреналину и норадреналину.
Ангиотензин – 2особый полипептид крови, который образуется из альфа-глобулина плазмы. Его образование начинается с выброса ренина из ЮГА почек. Выброс данного вещества ускоряется при уменьшении кровоснабжения почек (при ишемии). Ренин связывается с альфа-глобулином плазмы, образуется ангиотензин-1, затем в легких происходит его превращение в ангиотензин-2, который резко суживает сосуды. Поэтому очень часто при нарушении кровоснабжения почек наблюдается почечная гипертензия.
Серотонин является медиаторов в ряде нервных центров, а также вырабатывается клетками ж.к.т. и адсорбируется тромбоцитами. Свою активность серотонин проявляет лишь после разрушения тромбоцитов. Серотонин освобождается и вызывает спазм сосудов. Серотонин – агент местного действия. Повышает проницаемость для ионов натрия и кальция.
Ионы кальция
Неспецифические метаболиты(углекислый газ, молочная кислота и др.) рефлекторно стимулируют гемодинамику. Они действуют на хеморецепторы и сам сосудо-двигательный центр, что усиливает сокращения сердца и вызывает спазм сосудов.
Депрессорные агенты
Неспецифические метаболитынакапливаясь в определенном органе вызывают вазодилатацию сосудов данного органа, т.е. местно. Возникает так называемая “рабочая гиперемия”.Это облегчает снабжение рабочего органа кислородом и питательными веществами. В работающих органах возникает “вазомоторная автономия” за счет преобладания гуморальных влияний и сосуды работающего органа перестают подчиняться вазоконстрикторным приказам нервного центра.
Плазмакинины влияют местно, где образуются (брадикинин, каллидин – образуются под влиянием калликреина и плазмина).
Брадикинин образуется в плазме, подчелюстной и поджелудочной железах. Является полипептидом. Расширяет сосуды кожи, скелетных мышц, мозга и коронарных сосудов.
Гистаминвырабатывается тучными клетками соединительной ткани. Особенно много в ж.к.т., коже, подкожно-жировой клетчатке, мышцах. В клетках находится в неактивной форме, но легко освобождается и активируется при травмах, ожогах, действии солнечных лучей, укусе насекомых и т.д. При этом возникает местная гиперемия и отек в результате расширения сосудов. Объектом действия гистамина являются капилляры. Если гистамин выбрасываетс я в больших количествах может возникнуть гистаминовый шок (у кошки- 1-2 мг в/в). Вся кровь скапливается в капиллярах, сердце начинает работать “вхолостую”. При выбросе небольшого количества гистамина он быстро разрушается ферментом – гистаминазой.
Ацетилхолинмедиатор соматической и парасимпатической систем. Быстро разрушается холинэстеразой еще в синапсах. Большинство сосудов не имеют парасимпатической иннервации. Поэтому он оказывает свое действие только на сосуды слюнных желез, языка, полового члена, клитора.
Простагландиныпредставляют собой ненасыщенные жирные кислоты, вырабатываются в различных органах. Действуют местно, улучшая кровоснабжение.
Ионы калияснижают тонус сосудов.
АТФ– повышает проницаемость мембраны для ионов К.
Ряд гормонов ЖКТ: глюкагон, ХК-ПК, секретинтакже обладают способностью понижать тонус сосудов.
Таким образом, регуляция гемодинамики очень сложный процесс, который обеспечивается многими механизмами. В нервной и эндокринной регуляции выделяют механизмы кратковременного, промежуточного и длительного действия.
Механизмы кратковременного действия осуществляются мгновенно (сек): барорецептивные, хеморецептивные, рефлексы на ишемию.
Промежуточные – изменение транскапиллярного обмена, расслабление стенки сосуда, активация ренин-ангиотензинной системы (мин).
Длительные – изменение соотношения между внутрисосудистым объемом крови и емкостью сосудов (почечная регуляция, выработка вазопрессина и альдостерона).
ЛИМФАТИЧЕСКАЯ СИСТЕМА
Система лимфатических сосудов это дренажная система. По ней в кровеносное русло из тканей возвращается вода, коллоидные растворы белков, эмульсии липидов, минеральные вещества, продукты распада.
Функции: 1. поддержание объема и состава тканевой жидкости,
2. гуморальная связь между тканями, жидкостью всех органов, тканями и кровью,
3. всасывание и перенос питательных веществ из ЖКТ в кровеносную систему.
4. участие в иммунных реакциях,
5. перенос в костный мозг и к месту повреждения из лимфатических органов лимфоцитов.
Строение: лимфатические сосуды, лимфатические узлы и лимфатический проток.
Все ткани, кроме костной, нервной и поверхностных слоев кожи, пронизывают лимфатические капилляры.
Они начинаются петлями или слепыми выростами и характеризуются наличием лакун в местах слияний. Диаметр капилляров колеблется от 10 до 100 мкм. Стенки легко растягиваются. Просвет может увеличиваться в 2-3 раза. При слиянии нескольких капилляров образуются лимфатические сосуды. Здесь же находится и 1 клапан. В дальнейшем так же имеются клапаны. Они препятствуют обратному току лимфы. Лимфатические сосуды
studfiles.net