Азот значение для растений. Роль азота в питании растений. Превращение азота в растении

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Роль азота в питании растений и земледелии (стр. 1 из 5). Азот значение для растений


Влияние Азота (N) на растения | Fermery UA

 

Азот (N) – один из самых распространенных химических элементов на Земле. И один из самых важных элементов для жизнедеятельности живых организмов и растений. Азот входит в состав биологических молекул и органических соединений, в процентном содержании колеблясь от 15 до 19%. Это важнейший микроэлемент, участвующий в синтезе новых клеток и вегетативном периоде роста растений.

 

Во время грозы расщепляются молекулы азотаклубеньковым бактериям на корнях

 

В каком состоянии бывает азот

 

Огромные запасы азота в виде инертного газа содержатся в атмосфере, составляя основную часть ее массы (свыше 78%, или 4 квадриллиона тонн).  

 

В элементарной форме азот содержится как минеральное вещество, находясь в составе различных растворимых в воде соединений. В сухой массе растительных тканей, несмотря на важнейшую роль, его содержится не более 1-3%. Поэтому растениям для хорошей вегетации постоянно требуется определенное количество минерального азота.

 

Как растения получают нужное количество азота

Растения не могут усваивать молекулярный азот, находящийся в воздухе. Исключением являются только бобовые культуры, которые получают необходимое количество азота, благодаря клубеньковым бактериям на корнях. Подобный природный симбиоз сегодня очень интересует ученых, потому что считается очень эффективным и самым экологическим для человека способом подкормки растений. Ученые уже научились активизировать эти бактерии на корнях некоторых не бобовых культур (например, томата).

 

Клубеньковые бактерии на корнях

 

Основная же часть растений получает азот в составе химических соединений в виде аммониевых и нитратных форм. Чтобы образовать подобный почвенный азот сначала необходимо разрушить очень устойчивую молекулярную структуру азота воздуха. Этот процесс всегда требует много энергии. В природе подобную функцию способны выполнять молнии во время грозы. В результате мощных электрических разрядов вместе с каплями дождя в почву попадают оксиды азота.

 

 

Продажа удобрений - оптом и в розницу

 

 

Следует также кое-что отметить про аммониевую и нитратную формы азота. Аммиачное соединение – это восстановительная форма азота, которая способствует более быстрому синтезу аминокислот и белков. А значит и более быстрому росту растений. Но при высокой концентрации повреждает ткани и убивает растения. Синтез же из нитратов требует большего затрат энергии растений. Но считается более безопасным соединением.

 

Откройте спойлер для просмотра полезного видео о влиянии азота

 

 

Очень много азота содержится в органических веществах растительного и животного происхождения. В одной тонне гумуса его содержится 30-60 грамм. Но, чтобы получить из них нитратный и аммониевый азот, требуется органическое разложение, которое невозможно без участия микроорганизмов.

 

 

Какое влияние оказывает азот на растения

 

Азот оказывает наибольшее влияние на рост и урожайность растительных культур. Он необходим в течение всего жизненного цикла растений, так как является строительным материалом для новых клеток. Но каждое растение требует свое количество почвенного азота. Это зависит от многих факторов:

 

  • Типа почвы. Плотность почвы влияет на развитие корней, тем самым усложняя впитывания азота растениями. В дерново-подзолистых грунтах накопление азота колеблется от 1,5 до 6 т/га; в черноземе 6-15 т/га; песчанике и супесчаных грунтах 0,9-2 т/га; в торфяной почве 16-20 т/га.
  • Запасов содержания азота в почве. Запасов может быть много, но в виде гумуса, которому нужно пройти еще процесс разложения.
  • Время года и климатических условий местности. Например, в сухих условиях растения попросту не впитывают азот и другие питательные вещества, так как потребляют его исключительно в растворенном виде. С другой стороны, обильные дожди могут вымывать его из почвы.

 

Поэтому, прежде чем купить азотное удобрение тщательно изучайте инструкции и консультируйтесь со специалистами относительно норм и количества внесения азота в грунты вашей местности.

 

Азот карбомид

 

 

Что происходит, если не хватает азота

Существенно замедляется рост растений их вегетационный период. Семена созревают раньше срока. Злаковые культуры плохо формируются, ослабляется интенсивность цветения плодово-ягодных культур.

 

Листья становятся мелкими, бледно-зеленого, желтого или красного окраса. Это вызвано ослаблением хлорофилла и оттоком растворимых соединений азота к более молодым побегам. При сильном выраженном азотном дефиците возможно отмирание и гибель различных участков растений. Но главная проблема – это низкая урожайность и уменьшение размеров плода, колосьев.

 

Что происходит если не хватает азота - примеры

 

Что происходит, если азота слишком много

Обычно сопровождается изменением окраса листьев в ярко выраженный темно-зеленый цвет, так как азот является неотъемлемой частью хлорофилла – зеленого пигмента растений. В клеточном соке начинают накапливаться нитраты, вредные для человеческого организма. Растение становиться более восприимчивым к различным заболеваниям и сухости воздуха.

 

Что происходит если не хватает азота

fermery.com.ua

Азот как экологический фактор растений

Значение азота для растений определяется тем, что он входит в состав важнейших веществ живых клеток — белков и нуклеиновых кислот (а так же АТФ, алкалоидов, липидов и др.), участвует в формировании хлорофилла, ферментов, витаминов, ростовых веществ и др. Цитоплазма в значительной степени состоит из азотсодержащих соединений. [0].

Если животные, получая растительную или животную пищу, усваивают органические соединения азота, то растения усваивают азот в виде неорганических соединений, которые в растительном организме служат материалом для построения сложных органических азотсодержащих соединений. Таким образом, можно сказать, что растения не только «автотрофны по углероду» (по отношению к неорганическим соединениям углерода), но и «автотрофны по азоту». [1].

В состав атмосферы входит 79% азота, что составляет лишь 2% от всего планетарного азота. Остальные 98% все еще находятся в составе горных пород. Земная кора содержит не более 0,03% азота, но его количество увеличивается в верхних слоях почвы до 0,1-0,4% от сухой массы. Почти весь азот наземных биогеоценозов находится не в фитомассе, а в почве. 98% азота почвы связаны с органическими веществами (белок, нуклеиновые кислоты, гуминовые вещества и т. д.), а в минеральной форме его не более 2%. [2].

Содержание азота в почвах (N) колеблется от 0,07% до 0:5%. Почвенный азот находится, в основном, в недоступной для растений органической форме. На долю минерального азота приходится только 1-2% его общего количества. Под влиянием микробиологических процессов органические формы азота переводятся в доступные для растений минеральные формы. [3].

Огромное влияние на растительный покров, на экологию и биологию растений оказывают соединения азота, содержащиеся в почве. Считают, что азот атмосферы первоначально находился в твердом веществе Земли в виде соединений аммония и нитридов, т. е. соединений азота с металлами и другими элементами. По мере разогревания Земли азот выделялся в атмосферу в составе аммиака. А когда атмосфера обогатилась кислородом за счет развивающегося фотосинтеза, аммиак стал окисляться до элементарного азота. [4].

Свободный азот воздуха растениям недоступен. Они потребляют азот из почвы в виде нитратов и солей аммония. Источники азота для растений - прежде всего органические остатки и органическое вещество почвы, разлагаемые почвенными микроорганизмами в процессе аммонификации и нитрификации; таким образом, осуществляется минерализация соединений азота, т. е. перевод их в доступную растениям форму (ионы NО3- и Nh5+). Другой источник азота - связывание свободного азота воздуха азотфиксирующими микроорганизмами, которые обитают в почвах и водоемах. Наиболее известные азотфиксаторы - бактерии из рода Rhizobium, образующие клубеньки на корнях бобовых; актиномицеты, обитающие в корнях ольхи, лоха, облепихи. Они выделяют вещества, вызывающие усиленное деление клеток в паренхиме корня и образование клубеньков. Азотфиксирующие бактерии живут также в узелках, образующихся в тканях листьев некоторых тропических растений. Среди азотфиксаторов есть свободноживущие микроорганизмы - бактерии Clostridium pasteurianum, Azoto-bacler chroococcum, некоторые актиномицеты, дрожжи, многие сине-зеленые водоросли (Nostoc, Anabaena и др.), а также микроорганизмы, находящиеся в симбиозе с другими растениями. Есть еще один естественный источник азота для растений - поступление из атмосферы с осадками солей азотной кислоты, которая в небольших количествах образуется при атмосферных электрических разрядах, и аммиака, который содержится в воздухе как продукт наземных процессов гниения. Но этот источник неизмеримо мал по сравнению с предыдущими. [5].

Правда, вблизи промышленных городов такая прибавка за год может составлять до 20 кг N на 1 га, но обычно она бывает не более 2-10 кг, что, возможно, имеет некоторое значение для сфагновых болот, крайне бедных доступным азотом. [6].

Дополнительный источник азота для культивируемых растений - внесение в почву азотсодержащих минеральных удобрений, при производстве которых используется техническая фиксация азота воздуха.

Несмотря на то, что растения «купаются в азоте» (содержание которого в атмосфере 78%), этот элемент часто бывает в дефиците. Естественными причинами служат неблагоприятные условия для деятельности почвенных микроорганизмов и поглощения солей азота корнями: высокая кислотность почвенного раствора, низкие и слишком высокие температуры, плохая аэрация почвы и т. д. Так, весьма бедны доступными формами азота почвы заболоченные, торфянистые, подстилаемые вечной мерзлотой. Азотное голодание иногда наблюдается ранней весной, когда микроорганизмы недеятельны из-за низкой температуры почвы (ниже 5°С нитрификация не идет).

Антропогенные причины обеднения почв азотом заключаются в ежегодном удалении больших количеств азота из биогеохимических циклов при сборе урожая, сенокошении, рубках леса. Возникающий дефицит азота (характерный для всех стран с интенсивным земледелием) приходится восполнять азотными удобрениями. По выражению агрохимиков, азот является фактором «в первом минимуме». [7].

При недостатке азота в почве у растений появляются черты внешнего облика и анатомического строения, которые получили название «голодного склероза», или пейноморфоза. Отчасти, они напоминают ксероморфоз (мелкие листья, мелкоклеточные ткани, утолщение клеточных стенок). К явлениям пейноморфоза, очевидно, можно отнести многие ксероморфные черты в облике арктических и болотных растений. [8].

Отсутствие в почве азота резко сказывается, прежде всего, на зеленой окраске листьев. Это связано с тем, что азот входит в состав хлорофилла, поэтому при его отсутствии хлорофилл не образуется. Согласно Келлеру и Коху, бедные азотом листья тополя, содержащие 1,8 процента азота, имеют лишь 55 процентов хлорофилла (100 процентов имеют листья, обладающие высоким уровнем содержания азота - 3,4 процента).

Длительное азотное голодание сопровождается переходом бледно-зеленой окраски в жёлтую, оранжевую, красную в зависимости от вида растения. Пожелтевшие листья часто отмирают.

Недостаток азота ведет к уменьшению интенсивности фотосинтеза и резкому торможению роста растений. Рост растений подавляется, главным образом, по той причине, что без азота не могут синтезироваться белки, составляющие основу сухой массы цитоплазмы. У растений формируются мелкие, с низким содержанием белка, плоды. [9].

При обилии азота в почве изменяется морфология, анатомия растений, их химический состав. Увеличиваются надземная биомасса, количество и размеры листьев, содержание в них хлорофилла и воды. Меняется соотношение подземной и надземной биомассы: масса надземных органов возрастает больше, чем подземных. У некоторых видов при обилии азота увеличение вегетативной массы сочетается с задержкой цветения и плодоношения.

Улучшение обеспеченности азотом способствует не только увеличению общей продуктивности растений, но и более экономному расходованию воды. При этом снижается потребление воды на единицу урожая для всего сообщества, включая расход на транспирацию и испарение. Азот может также служить акцептором электронов при дыхании корней (нитратное дыхание) в обстановке нехватки кислорода в почве. Внесение азотных удобрений на заболоченные луга и верховые болота приводит к мезофитизации растительности (уменьшению черт гигроморфизма, увеличению доли мезофитов) и повышению урожайности.

Под влиянием улучшения обеспечения азотом изменяется отношение растений-мезофитов к теплообеспеченности, повышается теневыносливость растений, что частично связано с увеличением содержания хлорофилла. Таким образом, лучшее снабжение азотом расширяет экологический ареал растений в отношении обеспечения их теплом, водой, светом и др. [10].

В ряде случаев наличие некоторых растений (клевера темноцветного, дрока красильного) говорит о недостатке в почве азотсодержащих веществ в усвояемой форме. Обильное разрастание некоторых растений, напротив, свидетельствует о повышенном содержании азота в почвах нечерноземной зоны (малина, гравилат речной, лебеда татарская, хмель, крапива двудомная и жгучая, недотрога, кипрей, паслен сладко-горький, мускусница, смородина черная). [11].

Разные виды растений неодинаково относятся к содержанию доступного азота в почве. Растения, особенно требовательные к повышенному содержанию азота в почве, называют нитрофилами. Обычно они поселяются там, где есть дополнительные источники органических отходов, а, следовательно, и азотного питания. [12]

Таковы растения вырубок (малина Rubus idaeus, бузина красная Sambucus racemosa, хмель вьющийся Hamulus lupulus), многие так называемые рудеральные, или мусорные, виды - спутники жилья человека (чистотел Chelidonium majus, белена Hyoscyamus niger, крапива Urtica dioica, щирица Amaranthus retroflexus и др.). Нитрофильны многие зонтичные, поселяющиеся на опушке леса.

В массе нитрофилы поселяются там, где почва (или заменяющий ее субстрат) постоянно обогащается азотом через экскременты животных. Например, в лесостепных дубравах под деревьями, на которых размещаются колонии серой цапли, весьма обильны заросли крапивы; на пастбищах, в местах скопления навоза, пятнами разрастаются нитрофильные травы; нитрофильные лишайники покрывают скалы на островах с «птичьими базарами», а в городах они встречаются на перилах мостов, стенах, карнизах - в местах массовых поселений голубей.

Интересно, что в опытах прорастание семян нитрофилов заметно стимулируется при добавлении больших доз нитратов (0,05— 0,1 М/л KN03), в то время, как у менее требовательных к азоту видов такие дозы действуют угнетающе как на прорастание семян, так и на рост растений.

Растений-нитрофобов, пожалуй, нельзя назвать, однако чрезмерные дозы азота в почве вредны для растений: так, на пастбищах, в местах слишком концентрированного удобрения аммонийным азотом, наблюдается «выгорание» травостоя. [13]. Список литературы к статье смотрите здесь.



biofile.ru

Роль азота в питании растений и земледелии

Содержание.

Глава 1. Введение.

Глава 2. Азотные удобрения.

Глава 3. Содержание азота в растениях.

Глава 4. Круговорот азота в земледелии.

Глава 5. Азотные удобрения подразделяются на четыре группы:

1. Нитратные удобрения.

2. Аммонийные и аммиачные удобрения.

3. Аммонийно-нитратные удобрения.

4. Мочевина.

Глава 6. Заключение.

Глава 7. Список используемой литературы.

Глава 1. Введение.

Азот – один из основных элементов, необходимых для жизнедеятельности растений. Он входит в состав белков, ферментов, нуклеиновых кислот, хлорофилла, витаминов, алкалоидов и других соединений. Уровень азотного питания определяет размеры и интенсивность синтеза белков, которые существенно влияют на процессы роста.Основной источник азота для растений – соли азотной кислоты и аммония. Поглощение его из почвы происходит в виде анионов NO3- и катионов Nh5+, а также некоторых простейших органических соединений. Нитратный азот в результате окисления углеводов превращается в аммиак. Для самих растений нитраты безвредны и могут накапливаться в их тканях в значительных количествах. Однако чрезмерное количество нитратов вредно для теплокровных, поскольку препятствует образованию гемоглобина, нарушает снабжение организма кислородом и обуславливает образование канцерогенных соединений.Нормальное азотное питание повышает продуктивность растений. При этом листья имеют темно-зеленую окраску, растения хорошо кустятся, формируют крупные листья и полноценные репродуктивные органы, в которых ускоряется синтез белка, и они длительное время сохраняют жизнедеятельность. Это определяет возраст растения и его органов, уровень снабжения углеводами, перемещения продуктов синтеза, обеспечения фосфором, серой, калием, кальцием и микроэлементами. При усиленном азотном питании улучшается качество урожая кормовых культур и увеличивается содержание белка в зерне. В корнеплодах сахарной свеклы, клубнях картофеля – наоборот: при чрезмерном количестве азота в конце вегетации накапливаются аминокислоты и другие азотистые вещества, которые уменьшают выход сахара и снижают содержание крахмала. У льна и зерновых избыток азота может спровоцировать вылегание посевов.Характерными признаками азотного голодания являются замедленный рост вегетативных органов растений и появление бледно-зеленой и даже желто-зеленой окраски листьев вследствие нарушения процессов образования хлорофилла.Поскольку соединения азота имеют свойство повторно использоваться растением (процесс реутилизации), признаки его недостатка проявляются на нижних листьях. Пожелтение начинается с жилок листа и распространяется к краям листовой пластинки. В случае значительного и длительного азотного голодания бледно-зеленая окраска постепенно переходит в желтую, оранжевую и красную, после чего листья усыхают и отмирают.У злаковых культур при недостатке азота ослабляется формирование колосков; они формируются короткими и с меньшим количеством зерен.

Глава 2. Азотные удобрения.

Значение азота для растений, содержание и превращение его в почве. Азоту принадлежит ведущая роль в повышении урожая сельскохозяйственных культур. Д. Н. Прянишников подчеркивал, что главным условием, определяющим среднюю высоту урожая, была степень обеспеченности сельскохозяйственных растений азотом.

Огромное значение азотных удобрений в увеличении урожайности сельскохозяйственных культур обусловливается исключительно важной ролью азота в жизни растений. Азот входит в состав белков, являющихся главной составной частью цитоплазмы и ядра клеток, в состав нуклеиновых кислот, хлорофилла, ферментов, фосфатидов, большинства витаминов и других органических азотистых соединений, которые играют важную роль в процессах обмена веществ в растении.

Основным источником азота для растений являются соли азотной кислоты (нитраты) и соли аммония. В естественных условиях питание растений азотом происходит путем потребления ими аниона N03- и катиона Nh5+, находящихся в почвенном растворе и в обменно-поглощенном почвенными коллоидами состоянии. Поступившие в растения минеральные формы азота проходят сложный цикл превращения, в конечном итоге включаясь в состав органических азотистых соединений - аминокислот, амидов и, наконец, белка. Синтез органических азотистых соединений происходит через аммиак, образованием его завершается и их распад. Аммиак, по выражению Д. Н. Прянишникова, "...есть альфа и омега в обмене азотистых веществ у растений".

Нитратный азот не может непосредственно использоваться растениями для синтеза аминокислот. Нитраты в растениях подвергаются сначала ступенчатому - через нитрит, гипонитрит и гидроксиламин - ферментативному восстановлению до аммиака:

Нитрит нитрат гипонитрат гидроксиламин аммиак.

Восстановление нитратов происходит с участием ферментов, содержащих микроэлементы - молибден, медь, железо и марганец,- и требует затрат энергии, аккумулируемой в растениях при фотосинтезе и окислении углеводов. Восстановление нитратов в растениях осуществляется по мере использования образующегося аммиака на синтез органических азотистых соединений. Нитраты безвредны для растений и могут накапливаться в их тканях в значительных количествах. Однако содержание нитратов в сельскохозяйственной продукции (кормах и овощах) выше определенного предела может оказывать токсическое действие на организм животных и человека.

Основной путь образования аминокислот, находящихся в растениях частично в свободном состоянии и главным образом в составе белка, - аминирование органических кетокислот - продуктов неполного окисления углеводов.

Аммиачный азот, поступивший в растение и образовавшийся при восстановлении нитратов, в первую очередь присоединяется к кетокислоте (щавелево-уксусной, кетоглутаровой или фумаровой), образуя аспарагиновую и глутаминовую аминокислоты.

Широкий набор аминокислот, входящих в состав белка, синтезируется переаминированием аспарагиновой и глутаминовой кислот и их амидов - аспарагина и глутамина, а также в результате ряда других специфических реакций. В процессе переаминирования под воздействием соответствующих ферментов аминогруппы указанных соединений переносятся на другие органические кетокислоты.

СООН-R-CHNh3COOH + R-СОСООН® аспарагиновая или глутаминовая кислоты кетокислота ®СООН-R-СОСООН-R-CHNh3COOH щавелево-уксусная или кетоглутаровая кислота аминокислота

Важную роль в метаболизме азота и углеводном обмене растений играют реакции дезаминирования аминокислот, т. е. отщепление аминогруппы от аминокислот с образованием аммиака и соответствующей кетокислоты. Аммиак вновь используется для аминирования кетокислот, а высвободившаяся кетокислота включается в цикл превращения углеводов.

Особое значение в азотном обмене растений принадлежит амидам - аспарагину и глутамину, образующимся при присоединении еще одной молекулы аммиака к аспарагиновой и глутаминовой кислотам.

Классическими исследованиями Д. Н. Прянишникова установлено, что в результате образования амидов происходит обезвреживание аммиака, который может накапливаться в растениях при дезаминировании аминокислот или обильном аммиачном питании при недостатке углеводов.

При недостатке углеводов и, следовательно, органических кетокислот (особенно при прорастании семян, имеющих малый запас углеводов, например сахарной свеклы) избыточное поступление аммиачного азота в растения может оказать отрицательное действие. В этом случае аммиачный азот не успевает использоваться на синтез аминокислот и накапливается в тканях, вызывая "аммиачное отравление" растений Те растения, в посевном материале которых содержится много углеводов (например, крахмала у картофеля), быстро усваивают поступающий аммиачный азот и хорошо отзываются на внесение аммиачных удобрений.

Биосинтез белка, состоящего из аминокислот, соединенных между собой пептидными связями, происходит с участием нуклеиновых кислот, являющихся матрицей, на которой фиксируются и соединяются аминокислоты с образованием разнообразных белковых молекул.

В процессе роста и развития в растениях постоянно синтезируется огромное количество разнообразных белков. Они различаются по молекулярной массе, составу аминокислот и их последовательности в полипептидных цепях, по функциональным свойствам. Белки, синтезируемые на различных фазах развития растений, как и белки отдельных органов и клеток, имеют качественные отличия. Для биосинтеза белков, как и других сложных органических соединений, требуется затрата большого количества энергии. Основные источники ее в растениях - фотосинтез и дыхание (окислительное фосфорилирование), поэтому существует тесная связь между синтезом белка и интенсивностью дыхания и фотосинтеза.

Наряду с синтезом в растениях происходит распад белков на аминокислоты с отщеплением аммиака под действием протеолитических ферментов. В молодых растущих органах и растениях синтез белков превышает распад, по мере старения процессы расщепления активизируются и начинают преобладать над синтезом. В разные фазы роста и развития растений ход процессов обмена азотистых веществ неодинаков. При прорастании семян происходит расщепление запасных белков эндосперма или семядолей, и продукты гидролиза используются для построения белков. После формирования фотосинтезирующего листового аппарата и корневой системы питание растений и синтез белка осуществляются за счет минерального азота, поглощаемого из почвы. Наиболее интенсивно поглощение и усвоение растениями азота из окружающей среды происходят в период максимального роста и образования вегетативных органов - стеблей и листьев. Из стареющих частей растений, в которых преобладают процессы распада белка, продукты его гидролиза передвигаются в молодые, интенсивно растущие органы. При формировании семян белковые вещества вегетативных частей растения подвергаются гидролизу, и образующиеся продукты оттекают в репродуктивные органы, где снова используются на синтез белка. В это время потребление растениями азота из почвы ограничивается или практически заканчивается.

mirznanii.com

Азот | справочник Пестициды.ru

Многие известные научные открытия были сделаны двумя учеными, которые работали независимо друг от друга, и такие случаи довольно многочисленны. Однако в том, что касается открытия элемента азота, приоритет пришлось отдавать одному из трех известных химиков. Все они выделили азот из воздуха, используя немного различающиеся методики получения, и сделали это практически в одно и то же время, в конце XVIII века.

Англичанин Генри Кавендиш пропускал воздух над раскаленным углем, сжигая кислород, а затем фильтровал его через раствор щелочи, чтобы избавиться от примеси углекислого газа. В итоге он получил газ, не поддерживающий дыхание и горение, и названный им «мефитическим воздухом». Джозеф Пристли поместил в закрытый сосуд горящую свечу и описал образование аналогичного газа, который назвал «флогистированным воздухом». Однако их соотечественник Даниэль Резерфорд оказался более предприимчивым и менее медлительным: получив свой «удушливый воздух», он тут же опубликовал открытие и описал методику получения вещества. В результате все современные школьники знают, что азот был открыт Резерфордом, а заслуги талантливых химиков Кавендиша и Пристли, увы, оказались частично преданы забвению.

Что же касается названия элемента, то его предложил француз Антуан Лоран Лавуазье, и этот термин в полной мере отражает суть наблюдений всех трех ученых, которые впервые изучали его свойства. Слово состоит из двух частей: приставки «а», означающей отрицание, и корня слова «зое», которое переводится с греческого как «жизнь». Безжизненный, не дающий жизнь – вот что «азот» значит в смысловом переводе.

Известный ученый и был прав, и ошибался одновременно. Пусть газообразный азот и не поддерживает дыхания, однако он образует множество органических веществ, из которых построены компоненты живых клеток, в первую очередь, молекулы белка. Это определяет абсолютную незаменимость азота для жизни на Земле и делает его одним из главных макроэлементов живой клетки, наряду с кислородом, водородом и углеродом.[7]

Азот - Азот Азот

Азот

Азот - Азот

Использовано изображение:[10]

Физические и химические свойства

Азот – химический элемент V группы системы Менделеева. Атомный номер – 7, атомная масса – 14,0067. Природный азот составлен из двух стабильных изотопов.[6]

Азот – бесцветный газ, не имеющий запаха.

  • Температура кипения – 195,80 °С,
  • Температура плавления – 210,00 °С.

В воде малорастворим, легче воздуха. Молекулярный азот химически малоактивен. При комнатной температуре взаимодействует только с литием. При нагревании реагирует с кальцием, магнием, титаном. Реакция взаимодействия с водородом проходит под воздействием высоких температур, высокого давления и в присутствии катализатора, с кислородом – при температуре 3000–4000°С.

Наибольшее значение из соединений с водородом имеет аммиак – газ без цвета с характерным запахом нашатырного спирта.

С кислородом азот образует ряд оксидов: закись азота N2O, окись азота NO, диоксид азота NO2, азотистый ангидрид N2O3.[3]

Содержание в природе

Общее содержание азота в литосфере 1 х 10-2 % по массе. Наибольшая часть данного химического элемента находится в атмосфере в свободном состоянии. Он является главной составной частью воздуха. В атмосфере земли азот составляет 75,6 % по массе и 78,09 % по объему.

В связанном состоянии азот встречается повсеместно: в воздухе, водах рек, океанов и морей. В земной коре образует три основных типа минералов, отличающихся входящими в их состав ионами, – CN-, NO3- и Nh5+.

Крупные залежи натриевой селитры NaNO3 находятся в Чили на берегу Тихого океана. Это единственное в мире крупное месторождение, содержащее неорганическое соединение азота.

Элемент входит в состав всех живых организмов. Его содержание обнаруживается в каменном угле (1,0–2,5 %), нефти (0,2–1,7 %). Азот не поддерживает дыхание и горение, однако значение азота в жизнедеятельности растений и животных огромно. В белках его содержится до 17 %. Более того, без азотной составляющей белки не существуют.[3]

Азот - Круговорот азота в природе Круговорот азота в природе

Круговорот азота в природе

Азот - Круговорот азота в природе

Содержание азота в различных типах почв

На долю органических соединений – белков, аминов, амидов, аминокислот и прочих – приходится 93–95 % почвенного азота. Однако органический азот практически недоступен растениям и становится усваиваемым ими только после минерализации.

Минеральный азот, входящий в состав нитратных и аммиачных форм, накапливается в почве в результате процессов аммонификации и нитрификации, которые осуществляют различные группы микроорганизмов.

Разложение азотистых органических соединений в различных типах почв проходит по единой схеме:

белки → гуминовые вещества → аминокислоты → амиды → аммиак → нитриты → нитраты

Скорость минерализации основного запасного фонда азота – органических веществ почвы – зависит от многих факторов: влажности почвы, температурного режима, кислотности, характера органического вещества. Поэтому количество образующихся минеральных форм азота постоянно пребывает в динамичном состоянии. Максимальное количество накапливается в весенний период, наиболее благоприятный по режиму температуры и влажности для нитрификации. Однако нитраты – подвижные соединения, и они могут вымываться из почвы или подвергаться биологической денитрификации (образованию газообразных форм). В результате почва теряет часть азота.

Валовое содержание азота в почве сильно варьирует и зависит от типа почвы, гранулометрического состава, запасов органики, режима увлажнения и степени окультуренности почвы.

Содержание общего азота тем больше, чем больше содержание гумуса. Кроме того, содержание доступного элемента значительно возрастает при окультуривании почвы.

содержат 0,1–0,16 % азота. Количество минеральных соединений (обменно-поглощенного аммония и нитратов) мало – оно не превышает 1–3 % общего содержания данного элемента.

Содержание и запасы азота в метровом слое данных почв суглинистого состава в 2–2,5 раза больше, чем в песчаных. Кроме того, содержание азота снижается в нижележащих горизонтах.

Содержание и запасы азота в дерново-подзолистых почвах, согласно данным:[2]

Глубина взятия образца,

см

Гумус,

%

Общий азот,

%

Запасы общего азота,

т/га

Фиксированный аммоний

мг/кг                % от общ. N

Среднесуглинистая почва на моренном суглинке

4 - 20

2,45

0,179

6,4

51,2

2,9

30 - 40

0,69

0,064

1,4

41,4

6,5

55 - 68

0,32

0,054

2,8

44,0

8,2

90 - 100

0,20

0,031

3,5

33,8

10,9

165 - 175

0,07

0,025

2,3

40,4

16,2

Легкосуглинистая на лессовидном суглинке

2 - 18

1,69

0,119

3,1

46,0

3,9

30 - 40

0,81

0,091

3,7

42,5

4,7

55 - 65

0,51

0,056

3,8

44,0

7,9

102 - 114

0,28

0,320

1,7

37,3

11,7

140 - 150

0,22

0,036

4,7

43,0

11,9

Связнопесчаная, подстилаемая моренным суглинком

5 - 15

1,30

0,070

2,2

14,5

2,1

25 - 35

0,48

0,039

1,2

11,8

3,0

50 - 65

0,14

0,014

0,6

1,7

1,2

80 - 100

0,14

0,021

1,6

18,4

8,8

140 - 150

0,07

0,013

1,1

24,5

18,9

отличаются повышенным содержанием азота. С увеличением гидроморфности его содержание возрастает. Запасы валовых форм азота в метровом слое временно избыточно увлажняемых почв больше, чем в аморфных: в суглинистых – на 27 %, супесчаных – на 14 %, песчаных – на 11 %. Характерно, что с возрастанием степени гидроморфности почв доля минерального азота снижается, а трудногидролизуемого и легкогидролизуемого – возрастает.[1]. Общий запас азота в пахотном слое может достигать до 15 тонн на гектар.[2] наиболее богаты по содержанию азота – 2,5–5,2 %. Например, в пахотном горизонте (0–25 см) торфяно-болотных почв Беларуси содержание общего азота составляет 16–20 т/га, в верхнем горизонте может накапливаться до 300–500 кг/га минерального азота. Мелиорация торфяно-болотных почв способствует активизации процессов минерализации азота и уплотнения торфа.[1] Азот - Азотофиксирующие клубеньки бобовых Азотофиксирующие клубеньки бобовых

Азотофиксирующие клубеньки бобовых

Азот - Азотофиксирующие клубеньки бобовых

1 – корни сои с клубеньками; 2 – схематичное изображение клубеньков

Использованы изображения:[13][9]

Биохимические функции

Химические соединения – источники азота

– основной источник азота для растений. Кроме того, растения способны усваивать и некоторые из растворимых в воде органических соединений азота: аминокислоты, мочевину, аспарагин.

В тканях растения азотистые соединения подвергаются сложным превращениям, результатом которых становиться образование аминокислот, а затем белков.

– единственное соединение азота, поглощаемое из почвы, которое непосредственно используется для синтеза аминокислот. Аммиак в свободном виде может содержаться в тканях растений, но в незначительном количестве.

Значительное накопление аммиака при недостатке углеводов (источника кетокислот), приводит к аммиачному отравлению растений. Однако растения обладают способностью связывать избыток свободного аммиака. Большая его часть вступает во взаимодействие с ранее синтезированными аспарагиновой и глутаминовой аминокислотами с образованием амидов – аспарагина и глутамина (играют важную роль в синтезе белков). Этот процесс позволяет растениям не только защититься от аммиачного отравления, но и создавать резерв аммиака, который будет использоваться в дальнейшем по мере необходимости.

Симптомы недостатка азота, согласно данным:[5]

Культура

Симптомы недостатка

Общие симптомы

Изменение окраски листа с зеленой до бурой, уменьшение размера листьев, ослаблено ветвление и плодоношение

Злаковые

Ослаблено кущение

Картофель

Рост стеблей и листьев ослабляется, боковые побеги не образуются или мелкие,

Стебли тонкие, прямостоячие, 

Листья нижнего яруса бледно-зеленые, постепенно желтеют и засыхают,

Молодые листья мелкие, светло-зеленые с засохшими и завернутыми краями, 

Клубни интенсивно поглощают хлор и становятся токсичными

Капуста белокочанная и цветная

Цвет листьев нижнего яруса: сначала желтовато – зеленые, затем розовые, оранжевые или пурпурные,

Раннее усыхание листьев,

Кочан мелкий

Томаты

Листья мелкие, зелено-желтые,

Жилки и стебли голубовато-красные,

Плоды мелкие деревянистые, бледно-зеленые, при созревании ярко окрашены

Лук

Рост задерживается, листья короткие, диаметр небольшой, цвет – бледно-зеленый,

Начиная от вершин, краснеют

Огурцы

Новые листья замедляют рост,

Цвет нижних листьев - от бледно-зеленой  до зеленовато-желтой и ярко-желтой окраски,

Стебли тонкие, волокнистые, твердые,

Плоды мелкие, плохого качества

Свекла

Листья удлиненные, мелкие, вертикально расположенные, бледно-зеленые и желтовато-зеленые,

Образование новых листьев

Земляника

Рост листьев останавливается,

Цвет – от светло-зеленого до желтого,

На старых листьях  краснеющие зубчики,

По мере старения зубчики желтеют,

Часть пластины листа отмирает.

Черная смородина

Короткие и тонкие побеги,

Цветение и образование ягод слабое.

Яблоня

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены,

Плоды твердые, грубые, нетипичного вкуса и окраски,

Отличаются хорошей лежкостью

Груша

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

Вишня

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано,

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

Слива

Листья мельчают, становятся бледно-зелеными, более старые – оранжевыми, красными или пурпурными, опадают рано.

Рост побегов ослабевает,

Побеги твердые, тонкие, листья мелкие,

Верхушечные почки формируются рано,

Плодовых почек и цветков мало,

Плоды сильно окрашены

– вовлекаются в синтез аминокислот только после восстановления в тканях растения. Редукция нитратов до аммиака проходит уже в корнях. Этот процесс осуществляется с помощью флавиновых металлоферментов, с сопровождением изменения валентности атомов азота. При поступлении нитратного азота в растения в избытке часть его в неизменном состоянии доходит до листьев, где происходит восстановление нитратов.

Нитратный азот растения могут накапливать в значительных количествах, без особого вреда для собственной жизнедеятельности.

Биосинтез аминокислот (аминирование)

(биосинтез аминокислот) осуществляется в результате взаимодействия аммиака с кетокислотами (пировиноградной, щавеллевоуксусной, кетоглуаровой и др.). Данные кислоты образуются в процессе дыхания при окислении углеводородов. Аминирование проходит с помощью ферментов.

В аминокислотах азот присутствует в виде аминогруппы – Nh3. Образование аминокислот может происходить как в подземной (корнях), так и в наземных частях растений.

Установлено, что уже через несколько минут после подкормки растений аммиачными удобрениями в их тканях обнаруживаются аминокислоты, синтезированные с использованием внесенного в подкормку аммиака. Первой аминокислотой, образующейся в растении, является аланин, затем синтезируются аспарагиновая и глутаминовая кислоты.

Переаминирование аминокислот

Реакция переаминирования аминокислот заключается в переносе аминогруппы с аминокислоты на кетокислоту. При этом образуются другие амино- и кетокислоты. Эта реакция катализируется ферментами аминоферазами и трансаминазами.

Путем переаминирования синтезируется значительное число аминокислот. Наиболее легко в этот процесс вовлекаются глутаминовая и аспарагиновая кислоты.

Разнообразие белковых и небелковых азотистых соединений

Как указывалось ранее, аминокислоты представляют собой основные структурные единицы белков и полипептидов, поскольку белки образуются из синтезированных в полипептидные цепи аминокислот. Различный набор и пространственное расположение аминокислот в полипептидных цепях способствуют синтезу огромного разнообразия белков. Известно свыше 90 аминокислот. Значительная их часть (около 70) присутствует в растительных тканях в свободном состоянии и не входит в состав белковых молекул.

В состав белков растений входят незаменимые для жизнедеятельности человека и животных белки: лизин, фенилаланин, триптофан, валин, треонин, метионин и другие. В организме млекопитающих и других высших животных данные белки синтезироваться не могут.

Растения содержат 20 – 26% небелкового органического азота от общего количества. В неблагоприятных условиях (дефицит калия, недостаток освещенности) количество небелковых азотистых соединений в растениях повышается.

Дезаминирование аминокислот

Белки и небелковые азотистые соединения находятся в тканях растений в подвижном равновесии. Наряду с синтезом аминокислот и белковых соединений, постоянно проходят процессы их распада.

заключается в отщеплении аминогруппы от аминокислоты с образованием кетокислоты и аммиака. Освободившаяся кетокислота идет на биосинтез углеводов, жиров и прочих веществ. Аммиак вступает в реакцию аминирования других кетокислот, образуя соответствующие аминокислоты. При избытке аммиака образуются аспарагин и глутамин.

Весь сложнейший цикл трансформации и превращения азотистых соединений в растении начинается с аммиака и завершается аммиаком.

Обмен азотистых веществ в различные периоды развития растения

За время роста растения синтезируют большое количество разнообразных белков, и в разные периоды роста процесс обмена азотистых веществ протекает по-разному.

При прорастании семенного материала наблюдается распад ранее запасенных белков. Продукты распада идут на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы.

По мере образования листового аппарата и корневой системы синтез белков проходит за счет минерального азота, поглощенного из почвы.

В органах молодых растений преобладает синтез белков. В процессе старения распад белковых веществ начинает преобладать над синтезом. Из стареющих органов продукты распада движутся в молодые, интенсивно растущие, где и находят применение для синтеза белка в точках роста.

При созревании и формировании репродуктивных органов растения происходит распад веществ в вегетативных частях растений и передвижение их в репродуктивные органы, где они используются в процессах синтеза запасных белков. В это время потребление азота из почвы значительно ограничивается или совсем прекращается.[8]

Недостаток (дефицит) азота в растениях

Азот плохо усваивается растениями при холодной погоде, на кислых неизвесткованных почвах, на почвах, содержащих большое количество небобовых культур и опилок.

Первый признак азотного голодания – изменение окраски листовой пластинки с зеленой на бледно-зеленую, а затем желтоватую и бурую из-за недостаточного образования хлорофилла.

При дальнейшем усилении дефицита азота размер листьев уменьшается. Они становятся узкими, мелкими, располагаются под острым углом к стеблю или ветви. Ветвление у растений ослабляется, уменьшается число плодов, зерен или семян.[5]

Азот - Нарушение содержания азота в растениях Нарушение содержания азота в растениях

Нарушение содержания азота в растениях

Азот - Нарушение содержания азота в растениях

1 – недостаток: хлороз, ослабление кущения, отставание в росте у пшеницы;

2 – избыток: увеличение вегетативной массы, яркая окраска листьев у табака.

Использованы изображения:[11][12]

Избыток азота

Избыток азота в молодом возрасте подавляет рост растений. В более взрослом наблюдается бурное развитие вегетативной массы в ущерб запасающим и репродуктивным органам. Снижается урожай, вкусовые качества и лежкость овощей и плодов.

Избыток азота во второй половине лета затягивает рост и созревание, вызывает полегание знаков, ухудшает качество зерна, корнеплодов, фруктов. Понижается устойчивость растений к грибковым заболеваниям. Повышается концентрация в растениях биологически несвязанного азота в виде нитратов и нитритов.

Избыток азота приводит к некрозу тканей растений: хлороз развивается сначала на краях листьев, потом распространяется между жилками, появляется некроз с коричневым окрасом, концы листовых пластинок свертываются, листья опадают.[5]

Содержание азота в удобрениях, согласно данным:[1][4]

 Удобрение

Содержание азота

Нитратные удобрения

Натриевая селитра (нитрат натрия, чилийская селитра), NaNO3

16%

Кальциевая селитра, Са(NО3)2

13 - 15%

Аммонийные азотные удобрения

Сульфат аммония, или сернокислый аммоний, (Nh5)2SО4

20,5 - 21%

Хлористый аммоний, NН4Сl

24 – 26%

Аммонийно-нитратные удобрения

Аммиачная селитра

34,6%

Аммиачные удобрения

Безводный аммиак (Nh4)

82,3%

Аммиачная вода (Nh5OH + Nh4)

20,5 и 18%

Амидные удобрения
Карбамид (мочевина) — СО(NН2)2

46%

КАС (карбамид - аммиачная селитра)

28; 30 или 32%

Медленнодействующие азотные удобрения

Карбамид с гумат содержащими добавками

46%

Сульфат аммония с защитным покрытием

20%

Карбамид с полимерным покрытием

не менее 42%

Сульфат аммония с полимерным покрытием

20%

Комплексные азотно-фосфорно-калийные удобрения

Для яровых зерновых культур и картофеля

N:Р2О5:К2О = 16:12:20

Для озимых зерновых культур

N:Р2О5:К2О = 5:16:3

Органические удобрения
Свежий навоз на соломенной подстилке

0,45 – 0,83

Полуперепревший подстилочный навоз

0,50 – 0,86

Торф

0,8 –  3,3

Навозная жижа

 0,26 – 0,39

Птичий помет

0,5 – 1,6

Подстилочный помет

1,6 – 2,22

Содержание азота в различных соединениях

Производство азотных удобрений основывается на получении аммиака из молекулярного азота воздуха и водорода. Источником последнего могут служить природный газ, коксовые или нефтяные газы.

Азотные удобрения подразделяют на шесть групп:

Источником азота для растений служат органические удобрения:

может содержать общего азота 0,45 – 0,83 %, белкового азота 0,28 – 0,35 %, аммиачного азота 0,14 – 0,20 %. В полуперепревшем подстилочном навозе содержится общего азота 0,50 – 0,86 %, аммиачного азота – 0,07 – 0,15%.

Торф также богат азотом. Его содержание колеблется от 0,8 – 1,2% в верховом до 1,0 – 2,3 % в переходном и 2,3 – 3,3 % в низинном торфе. Однако органические соединения азота, присутствующие во всех видах торфа, плохо усваиваются растениями. В связи с эти его применение в чистом виде неэффективно, и расходы на добычу и применение чистого торфа редко окупаются прибавкой урожая.

– наиболее ценное азотно-калийное удобрение. Относится к быстродействующим. В среднем содержит от 0,26 до 0,39 % азота.

Птичий помет, содержит большое количество азота. В зависимости от вида птиц и скармливаемых им кормов, процентный состав азота в птичьем помете колеблется от 0,5 до 1,6 %. Еще богаче азотом подстилочный птичий помет. В зависимости от вида подстилки, он включает в себя от 1,6 до 2,22 % азота.[4]

Способы применения азотных удобрений

Нитратные удобрения

Натриевая селитра (нитрат натрия, чилийская селитра) используется повсеместно на разных почвах и под все сельскохозяйственные культуры для основного и предпосевного внесения – как поверхностного, так и на подкормку.[8]

Кальциевая селитра для большинства растений равноценна натриевой селитре. Исключение – сахарная свекла и корнеплоды. В данном случае удобрение менее эффективно.[8]

удобрения (сульфат аммония, хлористый аммоний) – эффективность использования зависит от степени кислотности и буферности почв и биологических особенностей удобряемых культур. Применяется для основного и предпосевного внесения – как поверхностного, так и на подкормку.[8] – универсальное удобрение. Можно применять под любые культуры, на всех почвах перед посевом, как припосевное удобрение и на подкормку. Наиболее целесообразно использовать для подкормок озимых зерновых культур, пастбищ и сенокосов.[1]применяют как основное допосевное удобрение под все сельскохозяйственные культуры. Вносятся как весной, перед посевом, так и осенью.[1]предпочтительно вносить одновременно с немедленной заделкой в почву под предпосевную обработку, под яровые зерновые культуры, кукурузу. Не рекомендуется вносить в холодную погоду, ранней весной.[1]применяют для основного внесения и подкормок.[8]вносятся в высоких дозах один раз в два-три года. Обеспечивают питание азотом первой и последующих культур.[8]

www.pesticidy.ru

Азотные удобрения

Огромное значение азотных удобрений в увеличении урожайности сельскохозяйственных культур обусловливается исключительно важной ролью азота в жизни растений. Азот входит в состав белков, являющихся главной составной частью цитоплазмы и ядра клеток, в состав нуклеиновых кислот, хлорофилла, ферментов, фосфатидов, большинства витаминов и других органических азотистых соединений, которые играют важную роль в процессах обмена веществ в растении.

Основным источником азота для растений являются соли азотной кислоты (нитраты) и соли аммония. В естественных условиях питание растений азотом происходит путем потребления ими аниона NO3- и катиона Nh5+, находящихся в почвенном растворе и в обменно-поглощенном почвенными коллоидами состоянии. Поступившие в растения минеральные формы азота проходят сложный цикл превращения, в конечном итоге включаясь в состав органических азотистых соединений — аминокислот, амидов и, наконец, белка. Синтез органических азотистых соединений происходит через аммиак, образованием его завершается и их распад. Аммиак, по выражению Д. Н. Прянишникова, «...есть альфа и омега в обмене азотистых веществ у растений».

К азотным удобрениям относятся удобрения, в состав которых входит один из основных элементов питания – азот. Азот в минеральных удобрениях содержится в разных видах: аммиачном (соединение азота с четырьмя частицами водорода), нитратном (соединение азота с кислородом) и амидном (соединение азота с двумя частицами водорода). К амидным удобрениям относится мочевина и цианамид кальция.

Амидный азот мочевины при теплой погоде очень быстро переходит в аммиачный, поэтому мочевина, внесенная в почву, по своим свойствам мало отличается от аммиачных удобрений. Аммиачный азот в почве под влиянием некоторых бактерий превращается в нитратный. Скорость превращения аммиака в нитраты зависит от температуры почвы, ее влажности и аэрации (рыхлости). В зависимости от формы азота изменяются и агрономические свойства удобрений.

Почвы для применения удобрений

На тех почвах, где подвижного (растворимого в воде) азота мало. Меньше всего его в подзолистых (особенно в песчаных) почвах, несколько больше в серых лесных почвах и еще больше в черноземах. Однако нет почв, которые содержали бы такое количество растворимого азота, чтобы растения могли без внесения азотного удобрения давать высокий урожай в течение ряда лет. Поэтому на всех почвах прежде всего надо вносить азотные удобрения, но в разных дозах в зависимости от содержания в почве растворимого азота.

Улучшить азотное питание растений можно, прежде всего, обработкой почвы. При содержании почвы в чистом от сорняков и рыхлом состоянии, при хорошей (но не избыточной) влажности имеющееся в почве органическое вещество (гумус) разлагается, и содержащийся в нем нерастворимый в воде, а потому и недоступный для растения азот частично переходит в усвояемое состояние. Поэтому на хорошо обрабатываемых почвах можно вносить азотные удобрения в меньших дозах.

Количество растворимого азота в почве увеличивается при внесении органических удобрений и заделке зеленого удобрения, особенно бобовых растений (люпина, гороха, пелюшки, вики и др.).

Минеральные азотные удобрения, азот которых находится в нитратной форме, так называемые нитратные удобрения, почвой не закрепляются. Они все время находятся в почвенном растворе.

В засушливую погоду вода из верхних слоев почвы испаряется (особенно при наличии почвенной корки), а на ее место поднимается вода из нижних горизонтов. Вместе с ней поднимается и нитратный азот до самой поверхности почвы. Это явление неблагоприятное, так как в верхнем слое почвы корней нет или очень мало. В дождливую погоду происходит обратное явление: вода проникает вниз вместе с растворенными в ней азотными удобрениями. Иногда после небольшого дождя, неглубоко увлажнившего почву, заметно улучшается состояние растений. Это происходит оттого, что нитратный азот из верхнего слоя почвы вмылся в более глубокие, где находится основная масса корней, и азотное питание растений улучшилось. При длительных дождях, когда вода проникает в очень глубокие слои почвы, нитратные азотные удобрения могут быть вмыты очень глубоко в те слои почвы, где уже нет корней, в этом случае азот теряется для растений. Такое явление наблюдается преимущественно в осенний период.

Аммиачный азот почвой поглощается. Поэтому аммиачные азотные удобрения и цианамид кальция можно вносить и осенью без боязни потерять азот. Аммиачные азотные легче поглощаются растениями на почвах слабокислых (при рН выше 6,0), тогда как нитратные удобрения лучше используются на кислых почвах. Аммиачные удобрения слегка подкисляют почву, нитратные подщелачивают. Аммиачная селитра, выпускаемая в виде порошка, в результате гигроскопичности быстро слеживается (превращается в глыбу). Перед внесением в почву ее приходится размельчать, на что тратится немало времени. Гранулированная селитра не слеживается, в этом ее преимущество.

Время внесения и количество удобрений

Минеральные азотные удобрения вносят в качестве основного ранней весной или поздно осенью. Осенью, под урожай следующего года, на глинистых почвах (но не на песчаных) можно вносить только аммиачные удобрения. Они не вымываются. Нитратные удобрения вносить нельзя. Весной вносят все азотные удобрения (аммиачные, нитратные и мочевину).

Летом для подкормок надо использовать в первую очередь нитратные удобрения (селитры), но если их нет, необходимо дать аммиачные и мочевину.

Способ внесения основного азотного удобрения и осенью и весной один и тот же: удобрения равномерно рассеивают по участку и почву перекапывают.

Недостаток усвояемого азота в почве угнетает развитие растений и приводит к снижению урожая. Избыток же его скорее, чем избыток других удобрений, оказывает вредное влияние на растения. Наиболее вредны высокие дозы азотного удобрения в период приживаемости посаженных растений и позднелетний период (уменьшается зимостойкость, плоды становятся менее сладкими, слабо окрашены и хуже хранятся). Избыток минерального азота может задержать время вступления молодых деревьев в пору плодоношения.

Наиболее распространённые азотные удобрения:

Карбамид (мочевина). Это азотное удобрение содержит 46% азота — это достаточно много. В пакетах с ней вы можете обнаружить белые легкорастворимые гранулы или порошок. Следует знать, что это азотное удобрение делает почву более кислой, так что для не переносящих это растений мочевину надо нейтрализовывать молотым известняком в соотношении 10:8 соответственно.

Аммиачная селитра. В ней 35% азота. Белые гранулы легко растворяются в воде, и азот из удобрения хорошо усваивается растениями. Однако его нельзя смешивать с органическими удобрениями и веществами, а также нагревать, иначе оно может воспламениться или взорваться (при нагревании).

Сульфат аммония (сернокислый аммоний). Это азотное удобрение содержит 21% азота и также представляет из себя белый или сероватый легкорастворимый порошок. Азот из него очень хорошо усваивается комнатными растениями, однако оно закисляет почву сильнее предыдущих удобрений, поэтому его для некоторых растений приходится нейтрализовывать тем же известняком (на 10 частей сульфата аммония — 12 частей известняка). Это азотное удобрение несовместимо (нельзя смешивать) с золой, гашёной известью и томасшлаком.

Сульфат аммония-натрия. Данное азотное удобрение очень похоже на предыдущее, но содержит меньше азота — 17%. Натрия в нём до 10%. Кальциевая селитра. В ней азота содержится 17,5%. Белые гранулы (или чешуйки) хорошо растворимы в воде. Комнатные растения замечательно усваивают из этой селитры азот, однако она делает почву несколько более щелочной. Несовместима с простым суперфосфатом.

Натриевая селитра. В пакете с этим азотным удобрением вы можете увидеть белые кристаллы, которые хорошо растворимы в воде. Удобрение подщелачивает почву, но используется во многих случаях для подкормок. Удобрение нельзя держать в сырости.



biofile.ru

Роль азота в питании растений. Превращение азота в растении

 

Как химический элемент азот был открыт Резерфордом в 1722 г., но название ему дал А. Лавузье в 1777 г. Название происходит от греческого α – отрицательная частица – и zoo – жизнь – «не поддерживающий жизни», так как азот не поддерживает дыхания и горения. Позже было установлено, что азот – один из основных элементов, необходимых растениям. Он входит в состав аминокислот, всех простых и сложных белков, нуклеиновых кислот, играющих исключительно важную роль в обмене веществ в растениях, и передаче наследственных свойств. Азот содержится в хлорофилле, фосфатидах, алкалоидах, ферментах и во многих других органических веществах растительных клеток. Без азота рост и развитие растений невозможны.

Основными источниками азота для растений являются органические и минеральные удобрения, биологический азот, накапливаемый клубеньковыми бактериями и свободноживущими микроорганизмами, а также азот, поступающий с атмосферными осадками и семенами. Главные химические соединения, из которых растения усваивают азот – соли азотной кислоты (нитраты) и соли аммония. В естественных условиях растения потребляют нитрат-ион и катион аммония, находящиеся в почвенном растворе и в обменно-поглощенном почвенном коллоидами состоянии. Поступившие в растения минеральные формы азота проходят сложный цикл превращений, в конечном итоге включаясь в состав органических азотистых соединений – аминокислот, амидов и, наконец, белков.

Нитраты и нитриты (азотнокислые и азотистокислые соли и эфиры) не способны вступать в реакцию с кетогруппами органических карбоновых кислот, поэтому для образования аминокислот они восстанавливаются в тканях растений до аммиака. Если растения содержат достаточное количество углеводов, то нитраты восстанавливаются до аммиака еще в корнях. Процесс ферментативного восстановления нитратов, происходящий в растениях благодаря окислению углеводов, идет через ряд промежуточных соединений и катализируется несколькими ферментами:

HNО3 → HNО2 → (HNO)2 → NН2ОН → NН3.

нитрат нитрит гипонитрит гидроксиламин аммиак

На первой стадии процесса нитраты под действием фермента нитратредуктазы восстанавливаются до нитритов:

 

HNО3 +h3 → HNО2 + h3О.

 

Далее при участии фермента нитритредуктазы нитрит восстанавливается до гипонитрита:

 

2HNО2 +2h3 → (HNO)2 + 2h3О.

 

Затем под действием фермента гипонитритредуктазы присоединяются еще два атома водорода и образуется гидроксиламин:

 

(HNO)2 + 2h3 → 2Nh3OH.

 

Последующее восстановление гидроксиламина при участии фермента гидроксиламинредуктазы приводит к образованию аммиака:

 

Nh3OH +h3 → Nh4 +h3O.

 

Ферменты, под влиянием которых нитраты восстанавливаются до аммиака, представляют собой металлофлавопротеиды. Для фермента, участвующего в восстановлении нитратов до нитритов, необходим молибден; для превращения нитрита в гипонитрит и гипонитрита в гидроксиламин – медь, железо и магний, а для перехода последнего в аммиак – марганец и магний. Из всех названных элементов особую роль в усилении процессов восстановления нитратов играет молибден.

Нитраты в растениях восстанавливаются по мере использования аммиака на синтез органических азотистых соединений. Нитратный азот способен накапливаться в растениях, не причиняя им вреда, в значительных количествах. Однако содержание нитратов в кормах, овощах и других продуктах растительного происхождения выше определенного уровня вредно для животных и человека.

В свободном виде аммиак содержится в высших растениях в незначительных количествах, чрезмерное его накопление, особенно при дефиците углеводов, ведет к отравлению растений.

Если же углеводов достаточно, аммиачный азот, поступивший в растения из почвы или образовавшийся при восстановлении нитратов, присоединяется к органическим кетокислотам – продуктам неполного окисления углеводов (щавелевоуксусной и кетоглутаровой или фумаровой), образуя первичные аминокислоты – аспарагиновую и глутаминовую:

 

+Nh4

СООН ∙ СО ∙ СН2 ∙ СООН → СООН ∙ Ch3 ∙ CHNh3 ∙ СООН

щавелевоуксусная кислота -Н2О acпapaгиновая кислота

+Nh4

СООН ∙ СО ∙ СН2 ∙ СН2 ∙ СООН → СООН ∙ СН2 ∙ Ch3 ∙ CHNh3 ∙ СООН

кетоглутаровая кислота -Н2О глутаминовая кислота

 

Этот процесс называется прямым аминированием и является основным способом образования аминокислот. Он указывает на тесную связь углеводного и белкового обменов. Все другие аминокислоты, входящие в состав белка (более 20), синтезируются переаминированием аспарагиновой и глутаминовой кислот и их амидов – аспарагина и глутамина, а также в результате других специфических реакций. В процессе переаминирования под воздействием соответствующих ферментов происходит перенос аминогрупп указанных и других аминокислот на другие кетокислоты.

Например, пировиноградная кислота, присоединяя аминную группу от аспарагиновой или глутаминовой кислоты, дает аланин. Глутаминовая и щавелевоуксусная кислоты в реакции переаминирования образуют аспарагиновую и α-кетоглутаровую кислоты.

 

1. СООН ∙ СН2 ∙ CHNh3 ∙ СООН + СН3 ∙ СО ∙ СООН

аспарагиновая кислота пировиноградная кислота

 

→ СН3 ∙ CHNh3 ∙ СООН + СООН ∙ СН2 ∙ СО ∙ СООН

аланин щавелевоуксусная кислота

 

 

аминотрансфераза

2. СООН ∙ СН2 ∙ СН2 ∙ CHNh3∙ СООН+ СООН ∙ СН2 ∙ СО2 ∙ СООН

глутаминовая кислота щавелевоуксусная кислота

 

СООН ∙ СО ∙ СН2 ∙ СН2 ∙ СООН + СООН ∙ СН2 ∙CHNh3 ∙ СООН

α-кетоглутаровая кислота аспарагиновая кислота

 

Переаминирование имеет большое значение для синтеза белков, а также для дезаминирования аминокислот. Дезаминирование – отщепление аминогруппы от аминокислоты, в результате чего образуется аммиак и кетокис-лота. Последняя перерабатывается растением в углеводы, жиры и другие вещества, а аммиак вновь используется для синтеза аминокислот.

Большое значение в азотном обмене принадлежит амидам – аспарагину и глутамину, которые образуются присоединением к аспарагиновой и глутаминовой кислотам еще по одной молекуле аммиака:

 

СООН ∙ СН2 ∙ CHNh3 ∙ СООН + NН3 =

аспарагиновая кислота

= CОNh3 ∙ СН2 ∙CHNh3 ∙ СООН + Н2О

амид аспарагиновой кислоты (аспарагин)

Как показали исследования Д. Н. Прянишникова, благодаря образованию амидов обеззараживается аммиак, накопившийся в растениях при обильном аммиачном питании и недостатке в растениях углеводов. При недостатке углеводов и, следовательно, органических кислот (особенно при прорастании семян, имеющих малый запас углеводов, например сахарной свеклы) аммиачный азот не успевает использоваться на синтез аминокислот и накапливается в тканях, вызывая их «аммиачное отравление». Растения, репродуктивные органы которых содержат большое количество углеводов (например, картофель), быстро усваивают аммиачный азот и хорошо отзываются на внесение аммиачных удобрений.

Синтез белков, состоящих из аминокислот, соединенных между собой пептидными связями, происходит с участием нуклеиновых кислот, являющихся матрицей, на которой фиксируются и соединяются аминокислоты в определенной последовательности с образованием разнообразных белковых молекул. Одновременно с синтезом в растениях происходит распад белков на аминокислоты (отщепление аммиака под действием протеолитических ферментов). В молодых растущих органах и растениях белков синтезируется больше, чем распадается; по мере старения, наоборот, расщепление идет быстрее, чем синтез. Таким образом, синтез органических веществ начинается с аммиака, а распад завершается его образованием. Как сказал Д. Н. Прянишников, «аммиак есть альфа и омега в обмене азотистых веществ в растениях».

Растения поглощают азот и синтезируют белки и другие органические азотистые вещества в течение всей вегетации, но интенсивность этих процессов в разные фазы роста и развития неодинакова.

При прорастании семян расщепляются запасные белки эндосперма или семядолей и продукты гидролиза используются для построения белков других органов растения. По мере формирования фотосинтезирующего листового аппарата и корневой системы питание растений и синтез белка происходят за счет минерального азота, поглощаемого из почвы. Наиболее интенсивно азот поглощается растениями при максимальном росте вегетативных органов – стеблей и листьев. Из стареющих частей растений, где преобладает распад белка, продукты гидролиза передвигаются в молодые растущие органы. При образовании репродуктивных органов белковые вещества вегетативных частей растения распадаются и продукты распада поступают в репродуктивные органы, где из них вновь синтезируются белки. Постепенно поглощение азота из почвы уменьшается, пока не прекращается вовсе.

Содержание азота сильно варьирует в разных растениях и органах одного и того же растения. Семена содержат больше азота, чем листья и стебли в конце вегетации. До 90 % азота входит в состав белков. Бобовые растения во всех органах содержат больше азота, чем злаковые.

При недостатке азота рост и развитие растений резко ухудшаются. Прежде и сильнее других органов страдают листья: они растут мелкие, светло-зеленого цвета, преждевременно желтеют, стебли становятся тонкими и слабо ветвятся. Ухудшается формирование репродуктивных органов и налив зерна. При нормальном азотном питании растения образуют мощные листья и стебли с интенсивной зеленой окраской, хорошо растут и кустятся, нормально формируют репродуктивные органы. В условиях избыточного азотного питания, особенно во второй половине вегетации, задерживается созревание растений, они формируют большую вегетативную массу, но мало зерна, клубней и корнеплодов. Увеличение содержания в них азотистых веществ отрицательно сказывается на хозяйственной ценности урожая. Например, при избыточном азотном питании в конце вегетации в корнях сахарной свеклы накапливается много небелковых азотных соединений, из-за чего снижается содержание сахара. Как отмечалось, при избыточном азотном питании в растениях накапливаются опасные для людей и животных количества нитратов.

Качество растениеводческой продукции зависит и от вида азотных соединений, усваиваемых растениями. При аммиачном (Nh5+) питании повышается восстановительная способность растительной клетки, больше образуется восстановленных органических соединений, при нитратном (NO3-) питании, наоборот, преобладает окислительная способность клеточного сока, больше образуется органических кислот. Д. Н. Прянишников и его ученики доказали, что аммиачный и нитратный азот при определенном сочетании внешних и внутренних условий могут быть равноценными источниками питания растений.

Усвоение растениями аммиачного и нитратного азота зависит от реакции среды, концентрации в почве сопутствующих катионов, анионов и зольных элементов (фосфора, серы, калия, микроэлементов), концентрации в почвенном растворе кальция, магния, аммонийных и нитратных солей, обеспеченности растений углеводами и биологических особенностей культуры. При нейтральной реакции аммиачные соли усваиваются растениями лучше, а при кислой – хуже, чем нитратные. При аммиачном питании положительно влияет на урожай повышенная концентрация в питательном субстрате кальция, магния и калия, а при нитратном питании важное значение имеет достаточное обеспечение растений фосфором и молибденом.

Отрицательное влияние избыточной концентрации аммиачного азота в растворе наиболее вероятно при внесении азотных удобрений в рядки при посеве. Поэтому для внесения одновременно с севом лучше использовать нитратные, а не аммиачные формы удобрений и вносить их небольшими дозами.

 

Содержание и форма соединений азота в почве и их превращение

 

Основная часть азота (94 – 95 %) находится в почве в виде сложных органических соединений. В пахотном слое (25 см) почв разных типов количество его колеблется в широких пределах – от 0,05 до 0,5 % и зависит от содержания в них органических веществ: больше азота в мощных черноземах, меньше – в бедных гумусом дерново-подзолистых почвах.

В пределах одной почвенной зоны количество азота в почвах также сильно различается в зависимости от их гранулометрического состава. В дерново-подзолистых песчаных почвах содержится в среднем 0,07–0,1 % азота, супесчаных – 0,08 – 0,13, суглинистых – 0,1– 0,16, глинистых – 0,1– 0,23, в торфяных – 2,5 – 5 %. Общие запасы азота в пахотном слое 1 га могут колебаться от 1,5 т (супесчаная дерново-подзолистая) до 4 т (суглинистая почва) и зависят от степени обеспеченности почв гумусом (табл. 5.1). Запасы азота в пахотном слое торфяных почв могут достигать 16 – 20 т/га.

 

5.1. Градация почв Беларуси по содержанию и запасам гумуса

 

Группы почв по содержанию гумуса Содержание гумуса, % Запасы гумуса в перегнойном горизонте, т/га
1. Очень низкое < 1,0 < 30
2. Низкое 1,01 – 1,50 31 – 50
3. Недостаточное 1,51 – 2,00 51 – 70
4. Среднее 2,01 – 3,00 71 – 90
5. Повышенное 2,51 – 3,00 91 – 110
6. Высокое > 3,00 > 110

 

Среди органических соединений азота его легкогидролизуемая фракция (амиды, часть аминов, часть необменного аммония) является в агрономическом отношении наиболее ценной, так как она является ближайшим резервом в питании растений. Запасы легкогидролизуемых соединений азота в пахотных почвах с повышением окультуренности повышаются. При окультуривании легких почв интенсивность аккумуляции фракции легкогидролизуемого азота опережает интенсивность накопления общего азота.

В суглинистых почвах содержание трудногидролизуемого азота (часть аминов, амиды, необменный аммоний, часть гуминов) значительно преобладает над содержанием легкогидролизуемого, а в песчаных почвах, наоборот.

Негидролизуемый азот (большая часть аминов, гумины, меланины, битумы, остаток необменного аммония) – фракция представленная более стойкими к гидролизу и микробиологическому разложению органическими азотсодержащими соединениями – составляет большую часть валовых запасов азота дерново-подзолистых почв (80 – 82 % в слое 0 – 40 см в суглинистых и супесчаных почвах и 70 – 75 % в песчаных). Закономерности распределения в почвенном профиле негидролизуемых соединений азота в целом совпадают с распределением общего азота.

Имеются определенные различия азотного фонда в дерново-подзолис-тых избыточно увлажняемых почвах, которых в Беларуси насчитывается более 1,8 млн. га. С увеличением гидроморфности почв содержание азота в них возрастает. Запасы общего азота в метровом слое временно избыточно увлажняемых почв возрастают по сравнению с автоморфными: в суглинистых – на 27, супесчаных – на 14, песчаных – на 11 %; в глееватых соответственно – на 111, 53 и 29 %. При этом с возрастанием степени гидроморфности почв доля минерального азота снижается, а легкогидролизуемого и трудногидролизуемого возрастает. Избыточно увлажняемые почвы в отличие от автоморфных содержат больше влаги и имеют более короткий благоприятный период для процессов нитрификации.

Однако снабжение сельскохозяйственных растений азотом зависит не от общего его количества в почве, а от содержания усваиваемых растениями минеральных соединений. Но только около 1 % азота почвы находится в легкоусвояемых минеральных формах (нитратной и обменного аммония).

Наряду с обменным аммонием в почве присутствует фиксированный аммоний, который не извлекается из почвы 1 М раствором КС1. В пахотном горизонте дерново-подзолистых почв его содержится от 20 до 60 мг в 1 кг почвы (в пересчете на N), т.е. на фиксированный аммоний приходится 2–5 % общего азота почвы. В почвах связного гранулометрического состава в нижних горизонтах почвенного профиля содержание фиксированного аммония составляет уже 12–20 % общего. Фиксация ионов Nh5+ обуславливается вхождением их в межпакетные промежутки кристаллической решетки почвенных глинистых минералов (вермикулита и др.) с последующим проникновением в гексагональные пустоты в сетке кислородных атомов тетраэдрических слоев. Часть фиксированного аммония может быть доступна растениям: та его фракция, которая не является структурным элементом решетки.

Таким образом, так как только 1 % азота содержится в легкоусвояемых формах, а остальная часть минерального азота (3–5 % общего) находится в фиксированной (недоступной) форме, то нормальное снабжение растений азотом зависит от скорости минерализации азотистых органических веществ. В общем виде разложение последних происходит так: белки, гуминовые вещества → аминокислоты, амиды → аммиак → нитриты → нитраты → молекулярный азот.

Процесс разложения органических азотсодержащих веществ почвы до аммиака называется аммонификацией. Он осуществляется многочисленными аэробными и анаэробными почвенными микроорганизмами, бактериями, ак-тиномицетами и плесневыми грибами. Они выделяют протеолитические ферменты, под воздействием которых белковые вещества распадаются до аминокислот. Последние легко усваиваются микроорганизмами и под действием ферментов микробных клеток (дезаминаз и дезамидаз) подвергаются дезаминированию и дезамидированию: от амино- и амидосоединений отщепляется аммиак и образуются различные органические кислоты, которые в свою очередь разлагаются до простейших соединений – СО2, Н2О, Н2, СН4. Выделившийся аммиак (Nh4) образует соли с соответствующими органическими и минеральными кислотами (угольной, азотной, муравьиной, уксусной и др.), которые также получаются при минерализации органического вещества почвы:

2Nh4 + Н2СО3 = (Nh5)2CО3,

 

Nh4 + HNO3 = Nh5NO3.

 

Аммоний поглощается почвенными коллоидами:

 

ППК) + (Nh5)2CO3= ППК) + CaCO3 .

Са

Аммонификация происходит во всех почвах, при разной реакции среды, в присутствии воздуха и без него, но в анаэробных условиях при сильных кислой и щелочной реакциях резко замедляется. На скорость аммонификации влияют также температура и влажность почвы, другие факторы. В анаэробных (безкислородных) условиях азотистые органические вещества разлагаются до аммиака. В аэробных условиях соли аммония окисляются до нитратов.

Процесс нитрификации выполняется группой специфических аэробных бактерий, для которых окисление аммиака является источником энергии. С. В. Виноградским установлено, что в окислении аммиачных солей до азотистой кислоты (первая фаза) принимают участие бактерии рода Nitrosomonos, Nitrosocystis и Nitrosospira, а до азотной кислоты (вторая фаза) – бактерии рода Nitrobacter. Нитрификацию можно описать следующими уравнениями:

 

2Nh4 + О2 = 2HNО2 + 2h3O (первая фаза)

 

2HNO2 + О2 = 2HNO3 (вторая фаза).

 

Нитратная форма азота при соответствующих условиях может хорошо поглощаться растениями. Образовавшаяся в почве в результате нитрификации азотная кислота нейтрализуется бикарбонатом кальция или магния или поглощенными основаниями почвы:

 

2HNО3 + Са(НСО3)2 = Ca(NO3)2 + 2Н2СО3

 

2HNО3 + ППК) = ППК) + Ca(NО3)2.

Са

Нитрификация протекает интенсивно при хорошем доступе воздуха, 60–70% -ной влажности почвы, температуре 25–32 оС и рН КС1 6,2–8,2. Ранней весной из-за низких температур и переувлажнения почвы эти процессы протекают медленно. По мере прогревания почвы количество нитратов увеличивается, летом оно бывает максимальным, а осенью снова убывает. Известкование кислых почв, систематическое внесение органических и минеральных удобрений способствуют активизации деятельности микроорганизмов и тем самым большей минерализации органического вещества с образованием усвояемых соединений азота.

Однако образующиеся в процессе нитрификации нитраты, будучи подвижными соединениями, могут вымываться из почвы, а также подвергаться денитрификации – образованию газообразных форм азота (NO, N2O и N2), в результате чего также теряется азот почвы. В денитрификации участвует обширная группа бактерий-денитрификаторов (Bact. denitrificas, Bact. stutzer, Bact. fluorescens и др.). Этот процесс идет особенно интенсивно, если почва имеет щелочную реакцию, содержит мало воздуха, но большое количество органического вещества с большим содержанием клетчатки. В восстановлении нитратов до нитритов участвует фермент нитратредуктаза, а в дальнейшем восстановлении нитритов – нитритредуктаза. Восстановление нитратов денитрифицирующими бактериями идет через ряд промежуточных этапов.

 

HNО3 → HNО2 → (HNO)2 → N2О → N2.

нитрат нитрит гипонитрит закись азота молекулярный азот

 

Основными газообразными продуктами биологической денитрификации являются молекулярный азот и закись азота, улетучивающиеся из почвы. Кроме того, потери азота происходят из-за косвенной денитрификации или хемоденитрификации, т.е. из-за химического восстановления нитратов, образующихся в ходе нитрификации. В хемоденитрификации участие микроорганизмов ограничено разложением органического азотистого вещества до аминокислот, аммиака и азотистой кислоты. Вступая между собой в реакцию, эти соединения восстанавливают свой азот до молекулярного. Последний образуется также при химическом взаимодействии таких промежуточных продуктов окисления в процессе нитрификации, как гидроксиламин и азотистая кислота:

 

3Nh3OH + HNО2 → 5h3О + 2N2.

 

Восстановление нитратов до NO, N2O и N2 возможно и при реакции их с почвенным органическим веществом, сохраняющим фенольные и хинонные группы, и при взаимодействии с ионами некоторых тяжелых металлов (Мn2+, Fe2+). Кроме того, азотистая кислота, будучи очень нестойкой, в кислых почвах (рН КС1 < 5) легко разлагается с образованием азотной кислоты и окиси азота (NO), а последняя улетучивается из почвы:

 

3HNO2 → 2NO + HNО3 + Н2О.

 

Всего в результате денитрификации теряется от 15 до 30% азота, вносимого с удобрениями.

Как показали последние исследования, азот в газообразной форме теряется также при аммонификации и нитрификации.

Одновременно с минерализацией органического вещества, нитрификацией и денитрификацией в почве происходят обратные процессы – из минеральных вновь образуются органические соединения азота, неусваиваемые растениями. Микроорганизмы углеводы и азот переводят в белок плазмы своих тел. Схема трансформации азота в почве приведена на рис. 5.1. При отмирании и разложении микроорганизмов белковый азот частично снова переходит в минеральную форму (Nh4), а часть его в процессе гумификации микробного белка включается в состав образующихся в почве гумусовых веществ. Процессы мобилизации и иммобилизации азота протекают в почве одновременно. Их интенсивность и соотношение между ними в значительной степени определяют азотный режим почвы и условия азотного питания растений.

Рис. 5.1. Схема трансформации азота минеральных удобрений в почве.

 

studopedya.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта