Виды питания для растений. Питание растений минеральное: основные элементы и функции различных элементов для растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

2.2.Особенности питания растений. Виды питания для растений


Питание растений

В растениях обнаружено более 70 химических элементов, при этом достоверно  установлено, что 17 из них абсолютно необходимы  для нормального роста, развития и  плодоношения. Первые три элемента:  водород (H), кислород (O), углерод (C), растения берут из воздуха и воды. Другие 14 элементов: азот (N), фосфор (P), калий (K), кальций (Ca), хлор (Cl), магний (Mg), сера (S), железо (Fe), марганец (Mn), цинк (Zn), медь (Cu), бор(B), молибден (Mo), кобальт (Co) растения берут из почвы.

Химические элементы, находящиеся в почве принято разделять на две группы  обусловленные количеством потребления их растениями.

  • Макроэлементы: азот (N), фосфор (P), калий (K), кальций (Ca), магний (Mg) и сера (S).
  • Микроэлементы: железо (Fe), хлор (Cl), марганец (Mn), цинк (Zn), медь (Cu), бор(B), молибден (Mo), кобальт (Co).

Железо и хлор по количествам, поглощаемым растениями, занимают промежуточное положение между макро- и микроэлементами, однако их чаще относят к микроэлементам.

Микроэлементы потребляются растениями в количествах несколько тысяч раз меньших, чем макроэлементы, отсюда и их название.

Кальций (Ca)

Кальций (Ca) – необходимый элемент питания, который поглощается растениями в количестве, часто превосходящем количество фосфора, но меньше чем азота или калия. Он участвует в создании важного соединения пектата, межклеточного вещества которое скрепляет клетки между собой и способствует их удержанию вместе. Кальций улучшает растворимость многих соединений, в почве делая их доступными для растений, стимулирует активность клубеньковых бактерий, которые фиксируют свободный азот из воздуха. Принято считать, что кальций имеет прямое отношение к развитию корневой системы, так как корни не способны расти в поисках кальция, а должны с ним иметь непосредственный контакт.

Бор (B)

Бор (B) в растениях воздействует на процессы цветения и плодоношения, прорастания пыльцы и деления клеток, на азотный обмен, на углеводный обмен, на активное поглощение солей, передвижение и деятельность гормонов, метаболизм пектиновых веществ, на водный обмен и на функции воды в растениях. Бор малоподвижен в растениях и практически не переходит из старых тканей во вновь образующиеся ткани. Если бор хорошо доступен, многие виды растений будут поглощать его гораздо в больших количествах, чем необходимо. Как правило, растения хорошо выносят широкий диапазон концентраций многих элементов питания, но это не относится к бору. Грань между недостатком и избытком бора очень узкая, и любой избыток бора токсичен.

Как видно из описания функций химических элементов ни один из них не встраивается в структуру растения, а лишь является строительным материалом, который растения берут из почвы или воздуха. Последние проявляют определённую избирательность, потребляя элементы по мере надобности, даже если все элементы находятся в почве с некоторым избытком.

Следует понимать, что ни один из выше перечисленных элементов не может быть заменён каким-либо другим. Это означает, что растение не сможет существовать при полном отсутствии либо острой нехватке хотя бы одного из семнадцати абсолютно необходимых элементов.

Иногда овощеводы концентрируют своё внимание исключительно на основных элементах питания, подкармливая растения мочевиной, суперфосфатом, хлористым калием, или комплексными удобрениями. Так поступая, они закладывают проблему, которая через годы обязательно проявится в виде дефицита нескольких  абсолютно необходимых элементов питания. Что приведёт к отрицательным последствиям. В первые годы такой практики урожаи будут высокими. Однако почва уже начнёт постепенно истощаться по остальным питательным элементам, баланс питательных веществ нарушается, овощи обогащаются нитратами, и наконец, вслед за резким ухудшением качества, начинается снижение урожаев.

Именно такая практика использования только основных элементов и её отрицательные последствия отвращают многих от минеральных удобрений, хотя очевидно, что проблема заложена не в удобрениях, а в способах  их применения.     Правильное питание растений – основное условие получения высокого и качественного урожая.

 

 

www.rusagroweb.ru

основные элементы и функции различных элементов для растений

Любое растение – это настоящий живой организм, и для того, чтобы его развитие шло полноценно, требуются жизненно важные условия: свет, воздух, влага и питание. Все они равнозначны и недостаток одного пагубно сказывается на общем состоянии. В этой статье мы поговорим о такой важной составляющей в жизни растений, как минеральное питание.

Особенности процесса питания

Являющаяся основным источником энергии, без которой угасают все жизненные процессы, пища необходима каждому организму. Следовательно, питание – не просто важное, а одно из основных условий для качественного роста растения, и они добывают пищу, пуская в ход все надземные части и корневую систему. Посредством корней они извлекают из грунта воду и нужные минеральные соли, пополняющие необходимый запас веществ, осуществляя почвенное или минеральное питание растений.

Существенная роль в этом процессе отведена корневым волоскам, поэтому подобное питание носит еще одно название – корневое. С помощью этих нитевидных волосков растение вытягивает из земли водные растворы самых разных химических элементов.

Работают они по принципу насоса и располагаются на корне в зоне всасывания. Растворы солей, поступающие в ткани волоска, перемещаются в проводящие клетки — трахеиды и сосуды. По ним вещества попадают в проводные зоны корня, далее по стеблям распространяются по всем надземным частям.

Элементы минерального питания растений

Итак, пищей для представителей растительного царства служат вещества, получаемые из почвы. Питание растений минеральное или почвенное – это единство разных процессов: от поглощения и продвижения до усвоения элементов, находящихся в почве в виде минеральных солей. Исследования золы, оставшейся от растений, показали, как много в ней остается химических элементов и количество их в разных частях и разных представителях флоры не одинаково. Это является свидетельством того, что химические элементы поглощаются и скапливаются в растениях. Подобные опыты привели к следующим выводам: жизненно важными признаны элементы, находящиеся во всех растениях – фосфор, кальций, калий, сера, железо, магний, а также микроэлементы, представленные цинком, медью, бором, марганцем и др.

Несмотря на разное количество этих веществ, имеются они в любом растении, и замена одним элементом другого невозможна ни при каких условиях. Уровень наличия минеральных веществ в почве очень важен, поскольку от этого зависит урожайность сельскохозяйственных культур и декоративность цветущих. В разных почвах различна и степень насыщенности почвы нужными веществами. К примеру, в умеренных широтах России отмечается существенная нехватка азота и фосфора, иногда калия, поэтому обязательным является внесение удобрений – азотных и калийно-фосфорных. Каждому элементу отведена своя роль в жизни растительного организма.

Правильное питание растений (минеральное) стимулирует качественное развитие, которое осуществляется лишь тогда, когда все необходимые вещества в нужном количестве имеются в почве. Если наблюдается нехватка или излишек некоторых из них, растения реагируют изменением окраски листвы. Поэтому одним из важных условий агротехники сельскохозяйственных культур являются разработанные нормы внесения подкормок и удобрений. Отметим, что многие растения лучше недокормить, чем перекормить. Например, для всех ягодных садовых культур и их дикорастущих форм губителен именно избыток питания. Узнаем, как разные вещества взаимодействуют с тканями растения, и на что каждое из них влияет.

Азот

Один из самых необходимых для роста растения элементов – азот. Он присутствует в составе белков и аминокислот. Дефицит азота проявляется в изменении окраски листьев: на первых порах лист мельчает и краснеет. Существенная нехватка вызывает нездоровый желто-зеленый цвет или бронзово-красный налет. Первыми поражаются более старые листья снизу на побегах, затем по всему стеблю. При продолжающемся дефиците прекращается рост ветвей и завязывание плодов.

Излишнее удобрение азотными соединениями ведет к повышенному содержанию азота в почве. При этом наблюдают бурный рост побегов и интенсивное наращивание зеленой массы, что не дает возможности растению заложить цветковые почки. В результате продуктивность растения заметно снижается. Вот почему так важно сбалансированное минеральное почвенное питание растений.

Фосфор

Не менее важен в растительной жизнедеятельности и этот элемент. Он является составляющей частью нуклеиновых кислот, соединение которых с белками образуют нуклеопротеиды, входящие в состав ядра клетки. Фосфор концентрируется в тканях растений, их цветках и семенах. Во многом способность деревьев противостоять природным катаклизмам зависит от наличия фосфора. Он отвечает за морозоустойчивость и комфортное проведение зимовки. Дефицит элемента проявляется в замедлении деления клеток, прекращении роста растения и развития корневой системы, листва приобретает лилово-красный оттенок. Усугубление ситуации грозит растению гибелью.

Калий

В минеральные вещества для питания растений входит калий. Он необходим в наибольших количествах, поскольку стимулирует процесс всасывания, биосинтеза и транспортировки жизненно важных элементов во все части растения. Нормальное обеспечение калием повышает сопротивляемость растительного организма, стимулирует защитные механизмы, засухо- и холодоустойчивость. Цветение и плодообразование с достаточным обеспечением калием более эффективно: цветы и плоды значительно крупнее и ярче окрашены.

При нехватке элемента рост существенно замедляется, а сильный дефицит приводит к истончению и ломкости стеблей, изменению окраски листьев на лилово-бронзовую. Затем листья сохнут и разрушаются.

Кальций

Нормальное почвенное питание растений (минеральное) невозможно без кальция, который присутствует практически во всех клетках растительного организма, стабилизируя их функциональность. Особенно значим этот элемент для качественного роста и работы корневой системы. Недостаток кальция сопровождается задержкой роста корней и неэффективным формированием корневой системы. Проявляется недостаток кальция в покраснении кромки верхних листьев на молодых побегах. Усиливающийся дефицит добавит пурпурной окраски на всей площади листа. Если кальций так и не поступит в растение, то листья у побегов текущего года засыхают вместе с верхушками.

Магний

Процесс минерального питания растений при нормальном развитии невозможен без магния. Входя в состав хлорофилла, он является обязательным элементом процесса фотосинтеза. Активизируя ферменты, принимающие участие в обмене веществ, магний стимулирует закладку ростовых почек, прорастание семян и другую репродуктивную деятельность.

Признаки нехватки магния – появление красноватого оттенка в основании листьев, распространяющегося вдоль центрального проводника и занимающего до двух третей листовой пластины. Сильный дефицит магния приводит к омертвению листа, снижению продуктивности растения и его декоративности.

Железо

Отвечающий за нормальное дыхание растений, этот элемент незаменим в окислительно-восстановительных процессах, поскольку именно он является акцептором молекул кислорода и синтезирует вещества-предшественники хлорофилла. При дефиците железа растение поражает хлороз: листья светлеют и истончаются, приобретая желтовато-зеленую, а затем ярко-желтую окраску с темными ржавыми пятнами. Нарушение дыхание провоцирует замедление роста растений, значительное снижение урожайности.

Марганец

Ничуть не преувеличивая значения необходимых микроэлементов, вспомним о том, как реагируют на них растения и почва. Минеральное питание растений дополняется марганцем, обязательным для продуктивного течения процессов фотосинтеза, а также синтеза белков и др. Нехватка марганца проявляется в слабой молодой поросли, а сильный дефицит делает ее нежизнеспособной – листья на стеблях желтеют, верхушки побегов засыхают.

Цинк

Этот микроэлемент – активный участник в процессе образования ауксина и катализатор роста растения. Являясь обязательным компонентом хлоропластов, цинк присутствует при фотохимическом расщеплении воды. Он необходим при оплодотворении и развитии яйцеклетки. Дефицит цинка становится заметным в конце периода вегетации и во время отдыха – листья приобретают лимонный оттенок.

Медь

Питание растений минеральное или корневое будет неполным без этого микроэлемента. Входящая в состав целого ряда ферментов, медь активизирует такие важные процессы, как дыхание растения, белковый и углеводный обмены. Производные меди – обязательные компоненты фотосинтеза. Недостаток этого элемента проявляется засыханием верхушечных побегов.

Бор

Стимулирующий синтез аминокислот, углеводов и белков, бор присутствует во многих ферментах, регулирующих обмен. Признаком острой нехватки бора является появление пестрых пятен на молодых стеблях и проявляющийся синеватый оттенок листьев у основания побегов. Дальнейший дефицит элемента приводит к разрушению листвы и гибели молодой поросли. Цветение получается слабое и непродуктивное – плоды не завязываются.

Мы перечислили основные химические элементы, необходимые для нормального развития, качественного цветения и плодоношения. Все они, правильно сбалансированные, составляют качественное минеральное питание растений. И значение воды также переоценить сложно, ведь все вещества из почвы поступают в растворенном виде.

fb.ru

Питание растений

Следить за питанием растений особенно важно, так как для их здорового развития и быстрейшего роста  нужны «стройматериалы». У растений, как и любого живого организма, они свои.

Растение получает питание 2 способами, с воздуха и с земли.

С воздуха растение получает питание листьями, как известно со школьной программы, листьями растение поглощает углекислый газ и свет.

Корнями растение поглощает воду и растворенные в ней химические элементы, соединения и микроэлементы.

Основными элементами, в которых нуждается растение, являются - азот, фосфор и калий. Вспомогательные элементы - это магний, кальций, сера и др. Еще растению для полноценного развития нужны микроэлементы, такие как марганец, цинк, молибден, бор, медь и кобальт и др.

Так как все основное питание получает растение с почвы, то ее нужно удобрять, пополняя запас питательных веществ. Растения, живущие в открытом грунте, получают их в большем объеме, так как площадь роста корней не ограниченна, а в закрытом грунте их надо вносить чаще.

Большинство элементов играют в развитии растения определенные функции для размножения молекул, т.е для роста растения.

Азот

Основное его предназначение в растениях, участвовать в образовании зеленого пигмента, другими словами хлорофилла и в размножении молекул основной зеленной массы. Азот как бы отвечает за более интенсивное развитие побегов, листьев и стволов.

Так что, если хотите нарастить в растении зеленую массу, добавляйте удобрение с большим содержанием азота. Но учтите, что азот может отодвинуть функцию цветения, что не желательно для красивоцветущих растений.

Более известные азотные удобрения это мочевина, аммиачная селитра, сульфат аммония и др. Из органических удобрений наиболее популярный навоз, перегной и др.

Фосфор

Его функция в жизни клеток растения это переносить энергию в клетке АТФ, и накапливать ее. Фосфор способствует стабильному соединению жиров и белков в мембранах клетки. Он способствует корнеобразование и цветению.

Растение его усваивает в форме солей ортофосфорной кислоты. Причем лучше усваивается фосфор при удобрении по листу, а не в грунт.

Из минеральных фосфорных удобрений, можно назвать суперфосфат, фосфорная мука, томасшлак. К органическим фосфорным удобрениям можно отнести костную муку, мука из рыбьих костей.

Калий

В почве его содержится больше других элементов. Но для растений самым доступным является калий в форме солей. Калий влияет на скорость биохимических реакций. Помогает воде поступать к клеткам растения, играет важную роль в фотосинтезе растения. Калий увеличивает скорость образования крахмала и его передвижению по клеткам. С помощью калия повышается иммунитет растения и помощь в сопротивлении его болезням. Калий также влияет на образование количества цветков и плодов.

Из более распространенных минеральных удобрений можно выделить, калиевую селитру и хлористый калий, калимагнезию, сульфат калия, а из органических удобрений это зола и др.

Кальций – основной элемент для образования прочных стеблей и так сказать «скелета растения», также кальций основной элемент для образования корней и корневых волосков. Он сдерживает рассаду от вытягивания. Кальций отвечает в организме растения за функцию равномерного распределения расхода влаги.

В грунте благодаря кальцию вредные кислоты связываются между собой и становятся недоступными для поглощения растением. При известковании обычно восполняется содержание кальция в почве.

Магний играет важную роль в ходе фотосинтеза, так как является одним из основополагающим элементом в молекуле хлорофилла. Он помогает созданию зеленой ткани в растении. И стимулирует активность корней в процессе поглощения питательных веществ. Отвечает и за цветение. К нехватке магния может привести и избыточное содержание кальция. Так как он понижает усвоение растением магния.

Сера является составной частью энзима витамина В1, аминокислот и белка. Она играет основную роль в обмене веществ растения, так как и основные элементы.

Железо важнейший компонент в процессе хлорофилла, помогает переносу кислорода в ткани растения, его усвоению и окислению.

Медь катализатор окислительных реакций происходящих внутри клеток растения. Медь способствует дыханию растения, помогает в белковом и углеводным обменам. Благодаря меди замедляется процесс старения клеток растения и активизируется деятельность вит. В.

Бор – отвечает за всхожесть семян и развития пыльцы. Повышает иммунитет растения.

Цинк способствует в растении регулировке роста и развития зеленой части и образования хлорофилла.

Кремний отвечает за образование больших корней, оболочки семян,  и выступает как строй. материал для древесных растений.

Алюминий особо важен в обеспечении яркости окраски цветов, длительности цветения и стойкости при срезке.

Молибден важен для дыхательной функции растения.

Марганец важен для циркуляции азота по растению и необходим для процесса фотосинтеза.

Но помните, что каждый элемент нужен растению в определенной мере, его избыток или недостаток может привести к нарушению обмена веществ в растении.

belboh.com

Питание растений

bse.sci-lib.com

Навигация:Библиотека DJVUPhotogalleryБСЭ Статистика:

Значение слова "Питание растений" в Большой Советской Энциклопедии

Питание растений, процесс поглощения и усвоения растениями из окружающей среды химических элементов, необходимых для их жизни; заключается в перемещении веществ
Рис. 2. Круговорот веществ в растении.
из среды в цитоплазму растительных клеток и их химическом превращении в соединения, свойственные данному виду растений. Поглощение и усвоение питательных веществ (анаболизм) вместе с их распадом и выделением (катаболизм) составляют обмен веществ (метаболизм) - основу жизнедеятельности организма.

  В составе растений обнаружены почти все существующие на Земле химические элементы. Однако для Питание растений необходимы лишь следующие: углерод (С), кислород (О), водород (Н), азот (N), фосфор (Р), сера (S), калий (К), кальций (Ca), магний (Mg), железо (Fe) и микроэлементы: бор (В), марганец (Mn), цинк (Pb), медь (Cu), молибден (Mo) и др. Элементы питания поглощаются из воздуха - в форме углекислого газа (CO2) и из почвы - в форме воды (h3O) и ионов минеральных солей. У высших наземных растений различают воздушное, или листовое, питание (см. Фотосинтез) и почвенное, или корневое, питание (см. Минеральное питание растений). Низшие растения (бактерии, грибы, водоросли) поглощают CO2, h3O и соли всей поверхностью тела.

  Потребность растительного организма в различных элементах неодинакова; наибольшая - в кислороде и водороде. Это объясняется тем, что живое растение на 80-90% состоит из воды, т. е. из кислорода и водорода в отношении 8: 1. Кроме того, растение расходует за свою жизнь в процессе транспирации в сотни раз больше воды, чем его собственная масса (для предотвращения перегрева). Основу сухого вещества растения наряду с углеродом (45%) составляют также кислород (42%) и водород (6-7%). На долю элементов минерального питания, среди которых преобладают азот и калий, приходится всего 5-7% сухого вещества растения. Ни один элемент питания не может быть заменен другим (так называемый принцип незаменимости питательных элементов). Отсутствие или большой недостаток любого из них неизбежно приводит к прекращению роста и к гибели растения. Каждый из элементов выполняет в растительных тканях свою уникальную функцию, неразрывно связанную со всеми др. отправлениями организма. Так, углерод вместе с водородом и кислородом составляет основу всех молекул органических соединений (см. Биогенные элементы). Вещества, состоящие только из этих трёх элементов (углеводы),- главный субстрат дыхания. Из полимерных углеводов состоят также оболочки растительных клеток. Каждый вид и даже сорт растений поглощает преимущественно те элементы, которые в наибольших количествах нужны для свойственного ему обмена веществ. Поэтому, например, содержание калия в растениях обычно в десятки раз превышает содержание натрия, хотя в почвах отношение между этими элементами обратное. Некоторые виды растений способны накапливать в своих тканях редкие элементы (например, лантан), чем пользуются при геологической разведке (см. Индикаторные растения).

  Типы питания. В зависимости от источника поглощаемого углерода различают несколько типов Питание растений Часть низших растений (все грибы и большая часть бактерий) может использовать углерод только из органических соединений, в которых он содержится в восстановленной форме. При окислении таких соединений в процессе дыхания освобождается запасённая в них химическая энергия, которая затем может расходоваться на различные эндергонические (т. е. требующие затрат энергии) процессы: синтез более сложных соединений, передвижение веществ в растении и др. Питание этого типа называется гетеротрофным, а растения, потребляющие органические источники углерода,- гетеротрофными (см. Гетеротрофные организмы); питание за счёт мёртвых органических остатков называется сапрофитным, а растения, питающиеся мёртвыми органическими остатками,- сапрофитами. Этот тип питания свойствен всем гнилостным грибам и бактериям. Гетеротрофы, живущие за счёт органических соединений др. живых организмов, называются паразитами. К ним относятся все грибы и бактерии - возбудители болезней животных и растений, а также некоторые высшие растения, например заразиха, высасывающая с помощью специальных присосок соки др. растений. Паразитическое Питание растений отличается от симбиоза, при котором происходит постоянный обмен продуктами жизнедеятельности, полезный для обоих партнёров. Симбиотический Питание растений наблюдается, например, у азотфиксирующих бактерий, поселяющихся в клубеньках на корнях бобовых растений (см. Азотфиксация), у шляпочных грибов, гифы которых проникают в корневые ткани древесных растений (см. Микориза), а также у лишайников, представляющих собой группу грибов, находящихся в постоянном сожительстве с водорослями. Большая часть растений способна усваивать углерод из углекислого газа, восстанавливая его до органических соединений. Этот тип питания называется автотрофным (см. Автотрофные организмы). Он свойствен всем высшим зелёным растениям, а также водорослям, некоторым бактериям. Восстановление CO2 до органических соединений требует затрат энергии либо за счёт поглощаемого солнечного света (фотосинтетики), либо за счёт окисления восстановленных соединений, поглощаемых из внешней среды (хемосинтетики).

  Благодаря Питание растений осуществляется большой биогеохимический круговорот веществ в природе (рис. 1). Автотрофные (главным образом зелёные, или фотосинтезирующие) растения дают начало этому круговороту, удаляя из атмосферы CO2 и создавая богатые химической энергией органические вещества. Гетеротрофные растения (главным образом сапрофиты) замыкают этот круговорот, разлагая мёртвые органические остатки до исходных минеральных веществ.

  В процессе фотосинтеза растения не только поглощают вещества, но и накапливают энергию. Один из первичных продуктов фотосинтеза - сахара. При соединении 6 грамм-молекул CO2 и такого же количества h3O образуется 1 грамм-молекула глюкозы (180 г). Этот процесс происходит с поглощением 674 ккал (1 ккал = 4,19 кдж) энергии солнечного света, которая и запасается в химических связях сахара. Вместе с молекулами сахара эта запасённая химическая энергия может затем переместиться в другие, нефотосинтезирующие части растений, например в корень. Здесь в процессе дыхания она может освобождаться для синтеза более сложных соединений и для др. процессов жизнедеятельности растительных клеток. Хотя в фотосинтезе непосредственно участвуют только CO2 и h3O, для его осуществления и в особенности для последующих превращений его первичных продуктов необходимы все др. элементы Питание растений, в каких бы ничтожных количествах они не содержались в растении.

  Превращения питательных веществ происходят в различных органах и тканях и связаны друг с другом в непрерывный круговорот веществ в растительном организме (рис. 2). В листьях в процессе фотосинтеза из CO2 воздуха и поступающей из корня h3O образуются первичные органические продукты (ассимиляты). Один из них - сахароза - универсальная форма транспортировки углевода. Из фотосинтезирующих клеток листа сахароза поступает в специальную транспортную систему - ситовидные трубки флоэмы, обеспечивающие нисходящее перемещение веществ сначала по листовым жилкам, а затем по проводящим пучкам стебля в корень. Здесь ассимиляты покидают ситовидные трубки и распространяются по тканям корня. Навстречу притекающим из листьев ассимилятам движутся вода и ионы минеральных солей, которые сначала связываются поверхностью корневых клеток, а затем через клеточную мембрану проникают внутрь клеток. При этом одни элементы (калий, натрий, в значительной степени кальций, магний и др.) поступают в пасоку и подаются в надземные органы в неизменном состоянии. Другие (например, азот), встречаясь с центробежным потоком ассимилятов, вступают с ним во взаимодействие, включаясь в состав органических соединений (аминокислот и амидов), и в таком измененном виде поступают в пасоку. Наконец, третьи (такие, как фосфор), проходя через ткани корня, также включаются в органические соединения (нуклеотиды, фосфорные эфиры сахаров), но затем, снова отщепляясь, поступают в пасоку главным образом в виде свободных ионов. Так или иначе элементы корневого Питание растений вместе с водой поступают в сосуды ксилемы - вторую транспортную систему растения, обеспечивающую восходящее перемещение веществ в надземные органы. Движение воды и растворённых в ней веществ по сосудам происходит за счёт корневого давления и транспирации. В листе эти вещества из сосудов проникают в фотосинтезирующие клетки, где происходит их вторичное взаимодействие с ассимилятами. При этом образуются разнообразнейшие органические и органо-минеральные соединения, из которых после ряда усложнений развиваются новые органы растения.

  Роль питания. Питание растений обеспечивает веществами и энергией следующие процессы: поддержание жизнедеятельности (возмещение убыли питательных веществ при дыхании и выделении в наружную среду), рост органов, отложение веществ в запас и, наконец, воспроизведение потомства (образование плодов и семян). При недостаточном Питание растений питательными веществами обеспечиваются в первую очередь процессы, связанные с жизнедеятельностью и воспроизведением потомства. При умеренном недостатке Питание растений рост молодых частей растения (верхних листьев, корневых окончаний) ещё продолжается за счёт реутилизации, т. е. повторного использования питательных элементов путём их оттока из более старых листьев. При резком недостатке Питание растений рост прекращается, и все питательные ресурсы направляются на главную функцию растительного организма - воспроизведение потомства. В этих условиях ячмень, например, имеет высоту всего 4-5 см, но образует 2-3 вполне нормальные зерновки. Избыток тех или иных элементов Питание растений так же вреден, как и их недостаток.

  Создание наилучших условий почвенного Питание растений путём орошения и внесения удобрений - наиболее эффективное средство управления урожаем с.-х. растений. В закрытом грунте (парники, теплицы) можно регулировать также воздушное Питание растений- путём изменения содержания CO2 в воздухе и дополнительного освещения (см. Светокультура растений). Создание оптимального комплекса условий для Питание растений- главная задача растениеводства. На решение этой задачи направлены мероприятия по мелиорации засоленных почв (удаление вредного для Питание растений избытка солей), агротехнические приёмы обработки почвы (создание условий плотности и аэрации, облегчающих Питание растений), борьба с сорняками (конкурирующими с культурными растениями за элементы Питание растений) и др.

 

  Лит.: Тимирязев К. А., Жизнь растений, Избр. соч., т. 3, М., 1949; Сабинин Д. А.. Физиологические основы питания растений, М., 1965; Максимов Н. А., Как живёт растение, 4 изд., [М., 1966].

  Д. Б. Вахмистров.

 

 

Рис. 2. Круговорот веществ в растении.

Рис. 1. Биогеохимический круговорот веществ в природе.

Статья про слово "Питание растений" в Большой Советской Энциклопедии была прочитана 9081 раз

Интересное

2.2.Особенности питания растений

Питание растений — это процесс поглощения и усвоения ими питательных элементов. Благодаря питанию растений происходит круговорот веществ и энергии, который связывает мир минеральной, неживой природы с миром живых организмов. Д. Н. Прянишников писал: “Поглощение ионов и солей, включение их в метаболизм и круговорот обмена веществ составляет сущность питания растений”. Знание закономерностей и особенностей питания растений позволяет правильно выбирать виды и формы удобрений, рассчитывать дозы их внесения, разрабатывать системы удобрения культур, природоохранные мероприятия.

В живой природе различают два типа питания – гетеротрофный и автотрофный. При гетеротрофном типе питания, характерном для животных организмов, грибов и микробов, используются белки, жиры, углеводы, иные сложные органические соединения, выра­ботанные другими организмами. Автотрофы – зеленые растения и некоторые микроорганизмы— способны пи­таться исключительно неорганическими (минеральными) веществами. Они в отличие от других орга­низмов, используя энергию солнечного света, могут строить свое тело, создавая из низкомолекулярных соединений (С02, Н20) и минеральных солей сложные органические соединения. Все необходимые для питания элементы растения получают через листья и корни – из воздуха и почвы. Поэтому различают воздушное и корневое питание растений.

Воздушное питание состоит в усвоении зеленым растением, главным образом листьями, углекислого газа с помощью световой энергии. В процессе фотосинтеза растения усваивают углекислый газ (СО2) и образуют органические соединения (углеводы, белки, жиры), содержащие восстановленный углерод. Для восстановления углерода они используют водород воды, при этом выделяя в атмосферу свободный (молекулярный) кислород. Источником энергии при фотосинтезе служит солнечный свет, поглощаемый хлорофиллом, который не рассеивается в виде тепла, а преобразуется в химическую энергию. Таким образом, в процессе фотосинтеза из углекислоты воздуха и воды почвы при участии солнечных лучей образуются безазотистые органические вещества (углеводы).

6СО2 + 12Н2О+2874 КДж =С6Н12О6+ 6О2.

Простые углеводы используются растением для синтеза сложных: сахарозы, крахмала и клетчатки (Ch3O)6n, а также белков, жиров, органических кислот и т. д.

Одновременно с образованием органических веществ в растениях происходит их распад в процессе дыхания. Сущность дыхания состоит в окислении углеводов кислородом. Этот процесс противоположен фотосинтезу. Если фотосинтез сопровождается поглощением энергии, то при дыхании происходит освобождение энергии. При дыхании расходуется примерно 20 % органического вещества, созданного во время фотосинтеза. Дыхание проходит по следующей схеме:

СбН1206+602=6С02+6Н20+686 ГДж.

Выделяющаяся при дыхании энергия используется в растениях на синтез более сложных органических веществ, на поглощение корнями питательных элементов и воды из почвы и передвижение их к листьям, а от них—к растущим частям: точкам роста, цветкам, семенам, клубням и т. д. В образовании органи­ческих соединений как источник энергии участвует аденозинтрифосфорная кислота (АТФ).

В обычных условиях растения используют не больше 2—3 % солнечной энергии. Поэтому одной из задач земледелия является увеличение фотосинтетической деятельности возделываемых культур. Этому способствуют увеличение листовой поверхности и удлинение периода ее жизнедеятельности, оптимизация питания растений, выведение более продуктивных сортов и раз­работка новых технологий возделывания.

Из воздуха растения поглощают не только углекислый газ, но и азот (бобовые культуры), а также легкорастворимые соли. Эта их способность используется при внекорневых подкормках, а также обработке средствами защиты растений.

При корневом питании растения поглощают корнями минеральные элементы и включают их в обмен веществ между растением и внешней средой. Поступле­ние элементов через корни, их передвижение и усвоение тесно связаны с фотосинтезом, дыханием, другими биохимическими процессами и требуют затрат энергии. При этом растения обладают избирательной способностью поглощения элементов питания.

Корнями растения усваивают ионы (катионы и ани­оны) из почвенного раствора, а также из почвенных коллоидов. При этом азот поглощается в виде анионов NO3- и катионов Nh5+ (бобовые способны усваивать из атмосферы и молекулярный азот). Фосфор и сера поглощаются в форме анионов НРО4-2, РО4-3, Н2РО4-, SO4-2; калий, кальций, магний, натрий, железо – в виде катионов К+, Са2+, Mg2+, Na+, Fe3+, микроэлементы – в виде анионов и катионов. Кроме этих элементов корни растений способны поглощать из почвы СО2 (до 5 % от общего его потребления), а также аминокислоты, витамины, ферменты и некоторые другие растворимые органические вещества.

Корневые системы растений существенно различаются по строению, форме, распределению в почве и поглотительной способности. Так, по данным Н. А. Качинского, масса корней в условиях нечерноземной зоны достигала у овса 28 % от надземной массы, красного клевера – 69, на западно-предкавказском черноземе у кукурузы – 16, озимой пшеницы – 70, люцерны – 166 % веса надземной части растения.

У большинства культурных растений корни проникают на глубину до 2 м, но их основная масса располагается в слое почвы на глубине 30–50 см. Интенсивность развития корневой системы в значительной степени зависит от обеспеченности почвы питательными элементами. В бедных почвах развивается более мощная корневая система в ущерб урожаю.

По форме корневые системы растений могут быть стержневыми или мочковатыми. Поверхность корней, поглощающая элементы питания, достигает больших размеров. Например, у ячменя общая поглощающая поверхность корней и корневых волосков на одном гектаре достигает площади 200–300 га. Корень состоит из корневого чехлика, зоны деления, зоны растяжения, зоны корневых волосков. Наибольшей способностью к поглощению обладают корневые волоски молодых корней. На 1 мм2 корня может располагаться 300–400 корневых волосков. У зерновых они бывают длиной 4–5 мм, у мятлика лугового 10–12 мм.

Корневые волоски обычно живут несколько суток и по мере старения отмирают. Корни не только поглощают питательные элементы из почвы, в них происходит также синтез органических соединений (аминокислот, белков), которые используются самой корневой системой и частично поступают в надземную часть растения.

Движение питательных элементов можно разделить на три этапа: переход ионов из твердой части почвы в почвенный раствор и передвижение их к поверхности корней; проникновение ионов через цитоплазматическую мембрану в клетку корня и передвижение их по корням в надземные органы, растений.

Скорость передвижения питательных элементов в почве зависит от свойств почвы и поглощаемых ионов. К корням растений ионы питательных элементов поступают либо с потоком воды, либо диффузионно, т. е. благодаря проникновению молекул одного вещества в другое при непосредственном соприкосновении (или через пористую перегородку), обусловленному тепловым движением молекул. Установлено, что при высокой концентрации ионов в почвенном растворе они поступают к корням с потоком раствора, при низкой насыщенности почвенного раствора ионами и высокой потребности в них растений ионы передвигаются к корням диффузией. Фосфор и кальций доставляются к растениям в основном диффузией, а кальций и магний – с током почвенного раствора. Нитраты передвигаются в почве быстрее, чем фосфаты, и поглощаются интенсивнее: если фосфаты поглощаются в радиусе 0,1 см от корня, то нитраты – в радиусе 1 см.

В соответствии с современными представлениями питательные элементы в растительную клетку по ступают через цитоплазматическую мембрану, или плазмалемму. Цитоплазматическая мембрана состоит из двух слоев фосфолипидов, которые имеют полярные «головки» – гидрофильные группы и неполярные «хвосты» – гидрофобные группы. В определенных участках плазмалеммы встроены белки-переносчики. Из белков построены поры и каналы в мембране. Часть белков представлена ферментами. У различных организмов строение и состав мембраны, или плазмалеммы, неодинаковы. Даже в одной клетке мембраны бывают различные: цитоплазматические, вакулярные, хлоропластные и др.

Мембрана очень динамична – она может изгибаться, разрываться и снова соединяться; на поверхности она несет заряды, которые могут изменяться, что обеспечивает проникновение в клетку катионов и анионов; через поры, каналы (плазмодесмы) мембраны проникают вода и ионы; проницаемость мембраны зависит от генетических свойств клетки и внешних условий. Изменение зарядов на цитоплазме клетки происходит благодаря белковым веществам, которые по своей природе амфотерны. Растения предпочитают брать пищу из почвенного раствора слабой концентрации. Для нормального их развития достаточно, если в 1 л содержится по 20–30 мг азота и калия, 10–15 мг фосфора, 1–2 мг бора и 5–7 мг марганца.

Положительно заряженные участки мембраны имеют группы Н+, а отрицательно – ОН-, которые способны обмениваться на анионы и катионы почвенного раствора. Обмен связан не только с амфотерными свойствами белков цитоплазмы, но и с процессами дыхания. Выделяемая при этом корнями Н2СОз распадается на Н+ и НСО3-. Обменным фондом служат также органические кислоты, образующиеся в растениях и выделяемые на поверхность клетки. Наконец, процессы обмена катионов и анионов между корнями и почвенными коллоидами происходят при физико-химическом обмене (поглощении).

studfiles.net


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта