Что такое пластид в биологии? Три вида пластид в клетках растений
Пластиды растительной клетки: общие сведения
Пластиды растительной клетки: общие сведения
Пластида (plastid): самореплицирующаяся цитоплазматическая органелла клеток растений, содержащая собственную ДНК и рибосомы.
Это бесцветные или окрашенные тельца в протоплазме растительных клеток, представляющие собой сложную систему внутренних мембран (мембранные органеллы) и выполняющие различные функции. Бесцветные пластиды называют лейкопластами , различно окрашенные (желтого, оранжевого или красного цвета) - хромопластами , зеленые - хлоропластами . В клетке высших растений содержится около 40 хлоропластов в которых происходит фотосинтез. Они, как уже было сказано, способны к автономному размножению, не зависящему от деления клетки. Размеры и форма митохондрий и хлоропластов, наличие в их матриксе кольцевых двухцепочных ДНК и собственных рибосом делают эти органеллы похожими на бактериальные клетки. Существует теория симбиотического происхождения эукариотической клетки , согласно которой предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.
Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.
Предшественниками пластид являются пропластиды , мелкие, обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов . Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами . Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды . В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид (см. выше) - хлоропласты, хромопласты и лейкопласты. Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.
Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласты - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.
Хлоропласты встречаются во всех зеленых органах растений, лейкопласты весьма обычны в клетках органов, скрытых от солнечного света, - корнях, корневищах, клубнях, а также в ситовидных элементах некоторых покрытосеменных. Хромопласты содержатся в клетках лепестков многих растений, зрелых окрашенных плодах (томаты, шиповник, рябина), иногда - в корнеплодах (морковь).
Строение пластид может быть рассмотрено на примере хлоропластов ( рис. 10 ). Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдается в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму. Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, отграничивающих особые плоские мешки, называемые тилакоидами, или ламеллами . Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными. Эти тилакоиды образуют стопки (наподобие стопки монет), или граны . Тилакоиды стромы объединяют граны между собой. В мембранах тилакоидов сосредоточен главнейший пигмент зеленых растений - хлорофилл и вспомогательные пигменты - каротиноиды . Внутренняя структура хромопластов и лейкопластов проще. Граны в них отсутствуют.
В строме хлоропластов содержатся ферменты и рибосомы , отличающиеся от рибосом цитоплазмы меньшими размерами. Часто имеются один или несколько небольших зерен первичного ассимиляционного крахмала . Генетический аппарат хлоропластов автономен, они содержат свою собственную ДНК .
Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу , точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах , темновые - в строме хлоропласта . И хлоропласты , и митохондрии способны синтезировать собственные белковые молекулы, так как обладают собственной ДНК .
Помимо фотосинтеза, в хлоропластах осуществляется синтез АТФ и АДФ (фосфорилирование), синтез и гидролиз липидов , ассимиляционного крахмала и белков , откладывающихся в строме.
В лейкопластах пигменты отсутствуют, но здесь может осуществляться синтез и накопление запасных питательных веществ, в первую очередь крахмала , иногда белков , редко жиров . Очень часто в лейкопластах формируются зерна вторичного запасного крахмала .
Красноватая или оранжевая окраска хромопластов связана с присутствием в них каротиноидов . Считается, что хромопласты - конечный этап в развитии пластид, иначе говоря, это стареющие хлоропласты и лейкопласты . Наличие хромопластов отчасти определяет яркую окраску многих цветков, плодов и осенних листьев.
Ссылки:
medbiol.ru
Что такое пластид в биологии?
Чем отличаются растительные клетки от животных? Ответ кроется в окрасе растений: их расцветка зависит от содержания пигмента в клетках. Эти пигменты накапливаются в специальных органеллах, которые называются пластидами.
Отличием растительных клеток от животных является наличие хлоропластов, лейкопластов и хромопластов. Эти органеллы отвечают за ряд функций, среди которых явно доминирует процесс фотосинтеза. Именно пигмент, содержащийся в пластидах растений, отвечает за их окрас.
В клетке любого эукариотического организма выделяют немембранные, одномембранные и двухмембранные органеллы. Пластиды и митохондрии относятся к последнему типу клеточных структур, т. к. они окружены двумя слоями ЦПМ.
Что такое пластиды клетки? Виды пластид
- Хлоропласты. Основные двухмембранные органеллы растительных клеток, отвечающие за процессы фотосинтеза. Они состоят из тилакоидов, на которых располагаются фотосинтезирующие комплексы. Функция тилакоидов – увеличение активной поверхности органеллы. Что такое зеленые пластиды? Это хлоропласты, которые содержат пигменты зеленого цвета – хлорофиллы. Выделяют несколько групп этих молекул, каждая из которых отвечает за свои специфические функции. У высших растений наиболее распространен хлорофилл а, который является главным акцептором солнечной энергии при фотосинтезе.
- Лейкопласты. Бесцветные пластиды, которые выполняют запасающую функцию в клетках растений. Они могут иметь неправильную форму, начиная от шаровидной и заканчивая веретеновидной. Лейкопласты часто скапливаются вокруг ядра клетки, а в микроскопе их можно обнаружить только в случае большого количества гранул. В зависимости от природы запасаемого вещества различают три типа лейкопластов. Амилопласты служат вместилищем для углеводов, которые растение хочет сохранить до определенного момента. Протеопласты запасают различные белки. Олеопласты скапливают масла и жиры, которые являются источником липидов. Вот что такое пластид, который выполняет функцию запасания.
- Хромопласты. Последний тип пластид, который имеет характерный желтый, оранжевый или даже красный цвет. Хромопласты – это конечная стадия развития хлоропластов, когда хлорофилл разрушается, и в пластидах остаются только жирорастворимые каротиноиды. Хромопласты содержатся в лепестках цветов, зрелых плодах и даже в стволах растений. Точное значение этих органелл точно неизвестно, однако предполагают, что они являются вместилищем для каротиноидов, а также придают растениям специфическую окраску. Эта окраска привлекает насекомых-опылителей, что способствует размножению растений.
Лейкопласты и хромопласты не способны к фотосинтезу. Хлорофилл в этих органеллах редуцировался или исчез, поэтому их функция координально поменялась.
Роль хлоропластов в передаче генетической информации
Что такое пластид? Это не только энергетическая станция клетки, но и хранилище части наследственной информации клетки. Она представлена в виде кольцевой молекулы ДНК, что напоминает строение нуклеоида прокариот. Это обстоятельство дает возможность предполагать симбионтное происхождение пластид, когда бактериальные клетки поглощаются клетками растений, теряя свою автономию, однако оставляя некоторые гены.
ДНК хлоропластов относится к цитоплазматической наследственности клетки. Она передается только с помощью половых клеток, детерминирующих женский пол. Спермии не могут передать мужскую ДНК пластид.
Та как хлоропласты – это полуавтономные органеллы, многие белки синтезируются именно в них. Также при делении эти пластиды самостоятельно реплицируются. Однако большая часть белков хлоропластов синтезируются, используя информацию с ДНК ядра. Вот что такое пластид с точки зрения генетики и молекулярной биологии.
Хлоропласт – энергетическая станция клетки
В процессе фотосинтеза на тилакоидах хлоропластов протекает множество биохимических реакций. Их основная задача – это синтез глюкозы, а также молекул АТФ. Последние несут в своих химических связях большое количество энергии, которая жизненно необходима клетке.
Что такое пластид? Это источник энергии наряду с митохондриями. Процесс фотосинтеза делится на световую и темновую стадии. В процессе световой стадии фотосинтеза происходит присоединение фосфорных остатков к молекулам АДФ, и на выходе клетка получает АТФ.
fb.ru
Строение и функция лейкопластов в клетке :: SYL.ru
Характеристика и функции лейкопластов в клетке, их роль среди хлоропластов и хромопластов, краткий обзор всех пластид - ключевые пункты, которые будут рассмотрены в данной статье.
Пластиды
Пластидами (греч. plastos - "вылепленный") называют органоиды мембран, присущие эукариотам-автотрофам, питающимся с помощью фотосинтеза - "зеленым" одноклеточным, низшим водорослям (у них пластиды именуются хроматрофами), высшим растениям. Они, как и митохондрии, окружены парой мембран, имеют свои ДНК и РНК. Их основное предназначение - жизнеобеспечение растительной клетки энергией путем синтеза органических веществ.
Все разновидности пластидов, по сути, - это жизненный путь одного органоида. Полным их набором могут похвастаться высшие зеленые растения, однако в одной клетке не может быть больше одного вида этих органелл.
Типы пластид
Существует три типа пластид: лейкопласты, хлоропласты и хромопласты. Как уже говорилось, они "превращаются" одна в другую. Трансформация лейкопластов в хлоропласты знаменуется окраской организма в зеленый цвет, а хлоропластов в хромопласты - пожелтением. Далее мы подробно остановимся на описании лейкопластов, а здесь кратко охарактеризуем остальные пластиды:
- Хлоропласты - пластиды, содержащие хлорофилл. Это пигмент зеленого цвета, поэтому растения, его содержащие, имеют такую же окраску. Хлоропласт - это округлая органелла размером 4-10 мкм. Она наполовину состоит из белка, на 35 % из жиров, на 7 % из пигмента, остальное приходится на РНК и ДНК.
- Хромопласты. Эти органоиды могут быть и игольчатыми, и округлыми, и многоугольными. Тельца содержат желтые, красные, оранжевые пигменты - каротиноиды. Именно они - причина окраски осенних листьев, цветов, зрелых фруктов.
Кроме этих основных единиц, также выделяют:
- Пропластиды - предшественники пластид мельчайших размеров (0,2-1 мкм). Иногда содержат фитоферритин - белок, сохраняющий ионы железа.
- Амилопласты - имеют некоторое сходство с пропластидами, однако отличаются от них содержанием частиц крахмала. Их функция - запас питательных веществ (например, в клубнях картофеля). Так же, как и лейкопласты, могут обращаться в хлоропласты и хромопласты.
- Протеинопласты - их предназначением является хранение белков.
- Этиопласты - образуются из пропластид в темновой фазе, при свете трансформируются в хлоропласты.
- Элайопласты запасают в организме растения жиры.
Происхождение
История возникновения пластид, опять же, схожа с историей митохондрии. Считается, что они появились в результате "взятия в плен" предком клетки-эукариота цианобактерии. Внешняя мембрана лейкопластов и прочих пластид схожа с мембраной "захватчика", внутренняя мембрана и строма - с цитоплазмой и мембраной цианобактерии.
Размножение лейкопластов и прочих пластид
Пластиды "рождаются" путем деления. Чаще всего размножаются пропластиды, хлоропласты и этиопласты. Подобная функция лейкопластов развита слабо. Путь их размножения схож с делением прокариотов. Сначала они сжимаются в центре, потом проявляется перетяжка между дочерними пластидами, которая прогрессирует до полного разделения.
Интересно, что наследование пластид не у всех растений происходит одинаково:
- по "отцовской" линии: некоторые голосемянные - саговники, гинкго;
- по "материнской" линии: подавляющая часть цветковых;
- наследование от обоих "родителей": ослинник, свинчатка, герань.
Строение лейкопластов
Перед тем как разобрать, какую функцию выполняют лейкопласты, подробно остановимся на их строении.
Эти органоиды - бесцветные пластиды относительно небольших размеров, не имеющие в своем составе пигментов. Присутствуют в живых клетках растений - в запасающих тканях. Форма их бывает самой разной: округлая, слегка продолговатая, амебоидная, эллипсоидная, шаровидная, гантелевидная. В процессе изготовления препаратов лейкопласты легко теряют свою форму при незначительном повреждении, расплываются. Их бывает трудно отличить от пропластид и от митохондрий, т. к. они не имеют ярко выраженных особенностей строения.
Если разглядывать лейкопласт под электронным микроскопом, нельзя не заметить, что он покрыт двумя слоями мембраны, а в строме заметно несколько выростов. Внешняя часть мембраны гладкая, а внутренняя покрыта незначительным количеством тилакоидов. Все остальное пространство органеллы заполнено органическими веществами. От веществ, которые "хранятся" в строме, зависит тип и функция лейкопластов: элеопласты, протеинопласты, амилопласты. Обычно строма содержит рибосомы типа 70-S, кольцевую ДНК, ферменты гидролиза и синтеза веществ.
Также лейкопласты, в отличие от хлоропластов, не имеют ламеллярной системы. Но при этом на свету способны образовывать нормальные тилакоидные структуры, тем самым обретая зеленый окрас и "обращаясь" в хлоропласты. В темноте же они накапливают различные питательные элементы в проламеллярных образованиях и гранулы крахмала в строме. В клубнях и корневищах, эндосперме злаковых лейкопласты выполняют функцию амилопластов, заполнив целиком строму "запасными" крахмальными зернами.
Какую функцию выполняют лейкопласты?
Лейкопласты (греч. "белый" + "вылепленный") имеют в своем составе ферменты, позволяющие из глюкозы, полученной в результате фотосинтеза, получить крахмал. Основная функция лейкопластов напрямую связана с этой их особенностью - они синтезируют и накапливают в себе питательные вещества. А чаще всего образуют крахмал из поступающей к ним глюкозы. Затем это вещество откладывается в их строме. Крахмал, содержащийся в лейкопластах, именуют вторичным. Первичный содержится в хлоропластах, образуясь в процессе фотосинтеза.
Кроме накопления крахмала, функция лейкопластов может состоять и в накоплении других веществ - белков, жиров, масел. Как уже говорилось, она влияет на то, как эти органеллы будут называться - амилопластами, протеинопластами или элайопластами. Важно отметить, что в клетке растения могут одновременно содержаться лейкопласты всех этих типов.
Вот и все, что мы хотели рассказать про лейкопласты, строение и функции этих органелл, а также про их общие с иными пластидами (хлоропластами, хромопластами, пропластидами и др.) качества.
www.syl.ru