Жароустойчивые растения. Пути повышения жароустойчивости растений.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Жароустойчивость растений. Жароустойчивые растения


Жароустойчивость растений

Жароустойчивость (жаровыносливость) - способность растении переносить действие высоких температур, перегрев. Виды и сорта сельскохозяй­ственных растений различаются по выносливости к высоким температурам.

По жароустойчивости выделяют три группы растений.

Жаростойкие - термофильные сине-зеленые водоросли и бактерии горячих минеральных источников, способные переносить повышение температуры до 75-100 °С. Это свойство определяется высоким уровнем метаболизма, повышенным содержнием РНК в клетках, устой­чивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые - растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толс­танковые), выдерживающие нагревание солнечными лучами до 50-65 °С. Жароустойчивость суккулентов во многом определяет­ся повышенными вязкостью цитоплазмы и содержанием связанной воды в клетках, пониженным обменом веществ.

Нежаростойкие - мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47 °С. затененных мест - около 40-42 °С, водные растения выдерживают повышение температуры до 38-42 °С. Из сельско­хозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, сни­жающей температуру листьев. Более жаростойкие мезофиты от­личаются повышенной вязкостью цитоплазмы и усиленным син­тезом жаростойких белков-ферментов.

Изменения обмена веществ, роста и развития растений при действии максимальных температур. Жароустойчивость во многом зависит от продолжительности действия высоких темпе­ратур и их абсолютного значения. Большинство сельскохозяйст­венных растений начинает страдать при повышении температуры до 35-40 °С. При этих и более высоких температурах нормаль­ные физиологические функции растения угнетаются, а при тем­пературе около 50 °С происходят свертывание протоплазмы и отмирание клеток.

Превышение оптимального температурного уровня приводитк частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и дру­гих клеточных мембран, приводит к потере осмотических свойств клетки. В результате наблюдаются дезорганизация мно­гих функций клеток, снижение скорости различных физиологи­ческих процессов. Так, при температуре 20 °С все клетки прохо­дят процесс митотического деления, при 38 °С митоз отмечается в каждой седьмой клетке, а повышение температуры до 42 °С снижает число делящихся клеток в 500 раз (одна делящаяся клетка на 513 неделящихся).

Иллюстрацией влияния повышения температуры на белковолипидные комплексы могут служить следующие данные: при температуре 22 °С лизис ядер не наблюдается совсем, при по­вышении температуры до 38 °С он отмечается у 5,3 % исследо­ванных клеток, а при температуре 52 °С практически все ядра лизированы. При максимальных температурах расход органичес­ких веществ на дыхание превышает его синтез, растение беднеет углеводами, а затем начинает голодать (Н. А. Максимов, 1952). Особенно резко это выражено у растений более умеренного кли­мата (пшеница, картофель, многие огородные культуры). Общее ослабление повышает их восприимчивость к грибным заболева­ниям. Фотосинтез более чувствителен к действию высоких тем­ператур, чем дыхание. При субоптимальных температурах расте­ния прекращают рост и фотоассимиляцию, что обусловлено нарушением деятельности ферментов, повышением дыхательного газообмена, снижением его энергетической эффективности, уси­лением гидролиза полимеров, в частности белка, отравлением протоплазмы вредными для растения продуктами распада (амми­ак и др.). У жаростойких растений в этих условиях увеличивается содержание органических кислот, связывающих избыточный ам­миак.

При действии высоких температур в клетках растений инду­цируется синтез стрессовых белков (белков теплового шока). Растения сухих, светлых мест обитания более стойки к жаре, чем тенелюбивые. Кратковременное влияние очень высоких температ** (43-45 °С) может быть таким же губительным, как и продол­жительное воздействие более низких, но превышающих опти­мальные значения температур. Способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой.

В результате транспирации температура растений снижается дногда на 10-15 °С. Завядающие растения, с закрытыми устьи­цами, легче погибают от перегрева, чем достаточно снабженные мздой. Растения сухую жару переносят легче, чем влажную, так как во время жары при высокой влажности воздуха регуляция температуры листьев за счет транспирации ограничена.

Повышение температурьюсобенно опасно при сильной инсодяции. Для уменьшения интенсивности воздействия солнечного света растения располагают листья вертикально, параллельно его лучам (эректоидно). При этом хлоропласты активно перемеща­ются в клетках мезофилла листа, как бы уходя от избыточной инсоляции. Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсо­ляцию; складывание и скручивание листьев; опущения или че­шуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий;

большую толщину кутикулярного слоя; высокое содержание уг­леводов и малое-воды в цитоплазме и др.

В полевых условиях особенно губительно совместное действие высоких температур и обезвоживания. При длительном и глубо­ком завядании угнетаются не только фотосинтез, но и дыхание, что вызывает нарушение всех основных физиологических функций растения. Жароустойчивость в значительной степени опре­деляется фазой роста и развития растений. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее ус­тойчивы, чем старые и «покоящиеся». Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более - побеги и почки.

На тепловой стресс растения очень быстро реагируют индук­тивной адаптацией. К воздействию высоких температур они

могут подготовиться за несколько часов. Так, в жаркие дни устойчивость растений к высоким температурам после полудня выше, чем утром. Обычно эта устойчивость временная, она не закрепляется и довольно быстро исчезает, если становится про­хладно. Обратимость теплового воздействия может составлять от нескольких часов до 20 дней. В период образования генератив­ных органов жаростойкость однолетних и двулетних растений снижается.

Вредное действие повышенных температур -одна из важнейших причин значительного снижения урожаев ранних яровых при запаздывании с их посевом. Например, у пшеницы в фазе кущения в конусе нарастания идет дифференциация колосков. Высокая температура почвы и воздуха приводит к повреждению конуса нарастания, ускоряет процесс и сокращает время прохож­дения **-* этапов, в результате уменьшается число колосков в колосе, а также число цветков в колоске, что приводит к сниже­нию урожая.

При совместном действии жары и сухости почвы, что характерно для районов Юго-Востока, в этот период в зачаточком колосе оказываются поврежденными все закладывающиеся цвет­ки, в результате после колошения колос очень быстро засыхает и белеет -явление пустоколосицы или белоколосицы. Для многих растении жара особенно опасна в период цветения, так как вызывает стерильность цветков и опаление завязей. Так, дейст­вие высокой температуры и низкой влажности в период, когда в пыльниках пшеницы образуется пыльца, а затем идет процесс оплодотворения, приводит к череззернице (не полностью озер­ценному колосу) и пустоколосью. Высокая температура в период молочной зрелости яровой пшеницы вызывает щуплость зерна ­«запал».

Диагностика жароустойчивости. Физиологическая стойкость Растений к перегреву обусловливается особыми физико-химичес­кими свойствами протоплазмы и способностью обезвреживать накапливающиеся в тканях аммиак и другие вредные продукты обмена. Жароустойчивость определяют помещением исследуемого растительного объекта на определенное время в камеру с высокой температурой и влажностью воздуха, исключающей ох­лаждение объекта благодаря транспирации. Об устойчивости судят по повреждению клеток, тканей, органов и т. д.

По методу Ф. Ф. Мацкова листья исследуемых растений опускают последовательно на 30 мин в подогретую воду при температурах 40, 45, 50 ... до 80 °С, а затем' в холодную воду на 10 мин, каждый раз отбирают пробы и после холодной воды переносят в 0,2 н. НС1. Отмершие (поврежденные) участки лис­тьев и мертвые листья буреют. Сравнительную жароустойчивость растений определяют также по изменению проницаемости про­топйазмы и другими методами.

Оюсобы повышения жароустойчивости растений и избежания *********. Лабораторная инфильтрация в ткани листьев раство­ров сахаров (глюкоза, галактоза, сахароза, маннит. лактоза, маль­тоза, раффиноза) значительно повышает устойчивость к перегреву. Возможно, что сахара «консервируют» структуру митохонд­рий, которая становится менее чувствительной к тепловому счуессу, и этим сохраняют энергетическую функцию митохонд­рий (К). Г. Молотковский, 1961).

Г1_ А. Генкель (1982) предложил для повышения жароустойчи­вости сахарной свеклы, моркови, томата, дыни обрабатывать их семена перед посевом 0,25%-ным раствором хлорида кальция (****_) в течение 20 ч. Однако эффективность подобной обработ­ки семян нестабильна. Для повышения жароустойчивости растений рекомендуют некорневую обработку посевов 0,05%-ным раствором солей цинка. Хороший эффект дают освежительные поливы дождеванием во второй половине дня (20-30 м_ воды на 1 га).

Для древесных растений (кустарников и плодовых деревьев) рекомендуют побелку: солнечный свет отражается от стволов, и они предохраняются от перегрева. Из мер, направленных на борьбу с повышенной температурой, можно отметить посадку полезащитных полос и полив. Оптимальная температура клубней образования у картофеля около 17 °С. При культуре картофеля в южных районах России и государств СНГ высокие температуры почвы во время роста и созревания клубней вызывают израста­ние, вырождение клубней, ускоряя прохождение в них измене­ний, приводящих к их одряхлению, снижению урожайности, потере клубнями сортовых и семенных качеств (неправильная форма клубней, несвойственная сорту окраска и др.). Использо­вание вырожденных клубней для посадки приводит к снижению урожая. Для борьбы с вырождением картофеля в южных районах используют летнюю (июльскую) посадку его на семена, когда развитие клубней совпадает с уже более холодной погодой сен­тября.

studfiles.net

Жароустойчивость растений

У большинства животных организмов температурные границы активной жизнедеятельности находятся в пределах от 1 до 45 °С. При температуре ниже нуля. Процессы жизнедеятельности замедляются. Вода не передвигается по растению при —7, —8°С, а при —10°С физиолого-биохимические процессы практически не протекают. В состоянии покоя растения переносят без ущерба для своей жизнедеятельности как высокие, так и низкие температуры. Сухие семена одинаково переносят как 100 °С, так и самые низкие отрицательные температуры. Среди бактерий и сине-зеленых водорослей имеются такие формы, которые выдерживают 70—80 °С, но при 28 или 30 °С не размножаются. Эти формы обитают в горячих источниках и около них. Среди высших растений таких форм нет.

Суккуленты, особенно из семейства кактусов, способны переносить сравнительно высокие температуры, но не принимают их за норму. Это обстоятельство дает основание считать, что жаростойкость находится в прямой зависимости от места обитания: у водных растений — валиснерии и элодеи — температурный максимум 28,5—41,5 °С; у теневых кислицы и бальзамина —. 40,5— 42°С; у слаботеневых — гравилата, чистотела, папоротника — 45—46°С; у световыносливых — гвоздики и коровяка — до 48 °С; у мезоморфных—куколя, дурмана и паслена черного —44—49,5 °С; у суккулентов — очиток и кактусов — до 54 °С.

Жаростойкость — особенность растений, обусловленная специфической структурой цитоплазмы, способной поддерживать обмен веществ и минеральное питание при высокой температуре. При губительном действии высоких температур у растения наблюдается нарушение микроструктуры цитоплазмы, разрушение белково-липоидного комплекса, пластид, гидролиз белков и липидов, нарушение дыхания и усвоения энергии, которая выделяется в виде тепла, образование аммиака не только как токсичного вещества, но и способствующего выделению тепла. Степень жаростойкости изменяется в онтогенезе растений. Сначала она увеличивается с повышением температуры, а в конце в связи с возрастными особенностями несколько понижается. Увеличение жаростойкости связано с защитными реакциями организма. У бактерий и сине-зеленых водорослей горячих источников и ксеромезофитов, например проса, кукурузы, при большом содержании нуклеопротеидов и повышенном обмене веществ происходит синтез белка, его обновление, повышается гидратация цитоплазмы, содержание связанной воды и общая устойчивость растения. У суккулентов и некоторых ксерофитов, обладающих невысоким обменом веществ, процессы распада начинаются при более высоких температурах. Однако образующиеся при этом органические кислоты связывают ядовитые продукты обмена. При низком обмене веществ дыхание сохраняет свою продуктивность и обновление белка протекает с достаточной интенсивностью. В клетках поддерживаются специфические коллоидно-химические свойства цитоплазмы (вязкость, гидрофильность), повышающие общую устойчивость растений.

К осени температура постепенно понижается, и растения испытывают неблагоприятное действие холода.

По жароустойчивости выделяют три группы растений

Жаростойкие — термофильные синезеленые водоросли и бактерии горячих минеральных источников, способные переносить повышение температуры до 75-100 °С. Жароустойчивость термофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устойчивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые — растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толстянковые), выдерживающие нагревание солнечными лучами до 50-65 °С. Жароустойчивость суккулентов во многом определяется повышенными вязкостью цитоплазмы и содержанием связанной воды в клетках, пониженным обменом веществ. Нежаростойкие — мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47 °С, затененных мест — около 40-42 °С, водные растения выдерживают повышение температуры до 38-42 °С. Из сельскохозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, снижающей температуру листьев. Более жаростойкие мезофиты отличаются повышенной вязкостью цитоплазмы и усиленным синтезом жаростойких белков-ферментов.

Изменения обмена веществ, роста и развития растений при действии максимальных температур.

Жароустойчивость во многом зависит от продолжительности действия высоких температур и их абсолютного значения. Большинство сельскохозяйственных растений начинает страдать при повышении температуры до 35-40 °С. При этих и более высоких температурах нормальные физиологические функции растения угнетаются, а при температуре около 50 °С происходят свертывание протоплазмы и отмирание клеток.

Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и других клеточных мембран, приводит к потере осмотических свойств клетки. В результате наблюдаются дезорганизация многих функций клеток, снижение скорости различных физиологических процессов. Так, при температуре 20 °С все клетки проходят процесс митотического деления, при 38 °С митоз отмечается в каждой седьмой клетке, а повышение температуры до 42 °С снижает число делящихся клеток в 500 раз (одна делящаяся клетка на 513 неделящихся).

Иллюстрацией влияния повышения температуры на белково-липидные комплексы могут служить следующие данные: при температуре 22 °С лизис ядер не наблюдается совсем, при повышении температуры до 38 °С он отмечается у 5,3 % исследованных клеток, а при температуре 52 °С практически все ядра лизированы. При максимальных температурах расход органических веществ на дыхание превышает его синтез, растение беднеет углеводами, а затем начинает голодать (Н. А. Максимов, 1952). Особенно резко это выражено у растений более умеренного климата (пшеница, картофель, многие огородные культуры). Общее ослабление повышает их восприимчивость к грибным заболеваниям. Фотосинтез более чувствителен к действию высоких температур, чем дыхание. При субоптимальных температурах растения прекращают рост и фотоассимиляцию, что обусловлено нарушением деятельности ферментов, повышением дыхательного газообмена, снижением его энергетической эффективности, усилением гидролиза полимеров, в частности белка, отравлением протоплазмы вредными для растения продуктами распада (аммиак и др.). У жаростойких растений в этих условиях увеличивается содержание органических кислот, связывающих избыточный аммиак.

При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока). Растения сухих, светлых мест обитания более стойки к жаре, чем тенелюбивые. Кратковременное влияние очень высоких температур (43-45 °С) может быть таким же губительным, как и продолжительное воздействие более низких, но превышающих оптимальные значения температур. Способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой.

В результате транспирации температура растений снижается иногда на 10-15 °С. Завядающие растения, с закрытыми устьицами, легче погибают от перегрева, чем достаточно снабженные водой. Растения сухую жару переносят легче, чем влажную, так как во время жары при высокой влажности воздуха регуляция температуры листьев за счет транспирации ограничена.

Повышение температуры особенно опасно при сильной инсоляции. Для уменьшения интенсивности воздействия солнечного света растения располагают листья вертикально, параллельно его лучам (эректоидно). При этом хлоропласты активно перемещаются в клетках мезофилла листа, как бы уходя от избыточной инсоляции. Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсоляцию; складывание и скручивание листьев; опушения или чешуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий; большую толщину кутикулярного слоя; высокое содержание углеводов и малое — воды в цитоплазме и др.

В полевых условиях особенно губительно совместное действие высоких температур и обезвоживания. При длительном и глубоком завядании угнетаются не только фотосинтез, но и дыхание, что вызывает нарушение всех основных физиологических функций растения. Жароустойчивость в значительной степени определяется фазой роста и развития растений. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее устойчивы, чем старые и «покоящиеся». Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более — побеги и почки.

На тепловой стресс растения очень быстро реагируют индуктивной адаптацией. К воздействию высоких температур они могут подготовиться за несколько часов. Так, в жаркие дни устойчивость растений к высоким температурам после полудня выше, чем утром. Обычно эта устойчивость временная, она не закрепляется и довольно быстро исчезает, если становится прохладно. Обратимость теплового воздействия может составлять от нескольких часов до 20 дней. В период образования генеративных органов жаростойкость однолетних и двулетних растений снижается.

Вредное действие повышенных температур — одна из важнейших причин значительного снижения урожаев ранних яровых при запаздывании с их посевом. Например, у пшеницы в фазе кушения в конусе нарастания идет дифференциация колосков. Высокая температура почвы и воздуха приводит к повреждению конуса нарастания, ускоряет процесс и сокращает время прохождения IV-V этапов, в результате уменьшается число колосков в колосе, а также число цветков в колоске, что приводит к снижению урожая.

При совместном действии жары и сухости почвы, что характерно для районов Юго-Востока, в этот период в зачаточном колосе оказываются поврежденными все закладывающиеся цветки, в результате после колошения колос очень быстро засыхает и белеет — явление пустоколосицы или белоколосицы. Для многих растений жара особенно опасна в период цветения, так как вызывает стерильность цветков и опадение завязей. Так, действие высокой температуры и низкой влажности в период, когда в пыльниках пшеницы образуется пыльца, а затем идет процесс оплодотворения, приводит к череззернице (не полностью озерненному колосу) и пустоколосью. Высокая температура в период молочной зрелости яровой пшеницы вызывает щуплость зерна — «запал».

Диагностика жароустойчивости растений

Физиологическая стойкость растений к перегреву обусловливается особыми физико-химическими свойствами протоплазмы и способностью обезвреживать накапливающиеся в тканях аммиак и другие вредные продукты обмена. Жароустойчивость определяют помещением исследуемого растительного объекта на определенное время в камеру с высокой температурой и влажностью воздуха, исключающей охлаждение объекта благодаря транспирации. Об устойчивости судят по повреждению клеток, тканей, органов и т. д.

По методу Ф. Ф. Мацкова листья исследуемых растений опускают последовательно на 30 мин в подогретую воду при температурах 40, 45, 50... до 80 °С, а затем в холодную воду на 10 мин, каждый раз отбирают пробы и после холодной воды переносят в 0,2 н. НС1. Отмершие (поврежденные) участки листьев и мертвые листья буреют. Сравнительную жароустойчивость растений определяют также по изменению проницаемости протоплазмы и другими методами.

Способы повышения жароустойчивости растений и избежания перегрева

Лабораторная инфильтрация в ткани листьев растворов Сахаров (глюкоза, галактоза, сахароза, маннит, лактоза, мальтоза, раффиноза) значительно повышает устойчивость к перегреву. Возможно, что сахара «консервируют» структуру митохондрий, которая становится менее чувствительной к тепловому стрессу, и этим сохраняют энергетическую функцию митохондрий (Ю. Г. Молотковский, 1961).

П. А. Генкель (1982) предложил для повышения жароустойчивости сахарной свеклы, моркови, томата, дыни обрабатывать их семена перед посевом 0,25 %-ным раствором хлорида кальция (СаСЬ) в течение 20 ч. Однако эффективность подобной обработки семян нестабильна. Для повышения жароустойчивости растений рекомендуют некорневую обработку посевов 0,05 %-ным раствором солей цинка. Хороший эффект дают освежительные поливы дождеванием во второй половине дня (20-30 м3 воды на 1 га).

Для древесных растений (кустарников и плодовых деревьев) рекомендуют побелку: солнечный свет отражается от стволов, и они предохраняются от перегрева. Из мер, направленных на борьбу с повышенной температурой, можно отметить посадку полезащитных полос и полив. Оптимальная температура клубне-образования у картофеля около 17 °С. При культуре картофеля в южных районах России и государств СНГ высокие температуры почвы во время роста и созревания клубней вызывают израстание, вырождение клубней, ускоряя прохождение в них изменений, приводящих к их одряхлению, снижению урожайности, потере клубнями сортовых и семенных качеств (неправильная форма клубней, несвойственная сорту окраска и др.). Использование вырожденных клубней для посадки приводит к снижению урожая. Для борьбы с вырождением картофеля в южных районах используют летнюю (июльскую) посадку его на семена, когда развитие клубней совпадает с уже более холодной погодой сентября.



biofile.ru

Цветы для жаркого лета

Наступил июль, и в моих краях, на юге России, началась поистине жаркая пора, причем в прямом смысле. Температура на солнце зашкаливает далеко за сорок, а почва порой прогревается до шестидесяти градусов, да плюс еще отсутствие осадков в течение длительного времени. Такие нечеловеческие условия способны выдержать далеко не всякие растения. Поэтому подбор цветов для солнечных клумб и лужаек приходится производить с учетом местных особенностей. Вот о таких-то жро- и засухоустойчивых растениях я и хочу сегодня поговорить. Ну и еще о том, как же помочь цветам пережить такое нелегкое для них время.

Начну я с того, как же все-таки облегчить участь наших зеленых питомцев.

  • Еще при посадке растений стоит позаботиться о структуре почвы. Земля, содержащая достаточное количество компоста, лучше удерживает влагу.
  • При посадке следует оставлять достаточное расстояние между растениями, чтобы каждому хватало влаги и питательных веществ.
  • Во время вегетации следует своевременно удалять сорняки, они поглощают влагу, так нужную цветам.
  • Полив растений лучше производить поздно вечером, чтобы уменьшить испарение влаги. Наиболее эффективным является полив под корень.
  • Мульчирование поможет удержать влагу в земле. Для этого можно разложить между растениями измельченные листья, солому или опилки.

Ну а теперь о некоторых растениях, которые хорошо переносят жару и засуху. Прежде всего, хочу отметить луковичные первоцветы, такие как пролеска, крокус, мускари, тюльпаны. Эти растения к началу лета уже заканчивают свою вегетацию и впадают в состояние покоя, а, следовательно, в поливе уже не нуждаются, правда и свою декоративность к этому времени они утрачивают.

Так хочется, чтобы растения не только выдерживали жару, но еще и радовали своим цветением все лето. О таких цветах и пойдет мой дальнейший рассказ. И начать я хочу с неприхотливых многолетников.

очиток видныйОчиток – одно из самых неприхотливых растений, насчитывающее более 500 видов по всей планете. Очиток относится к суккулентам и почти не нуждается в поливе, а так же хорошо переносит жару и нетребователен к почвам.

синеголовникСинеголовник – многолетнее, реже одно- или двухлетнее растение с кожистыми листьями, заканчивающимися шипами и мелкими голубыми или синими цветами шарообразной формы. Это растение так же отличается исключительной жаро- и засухоустойчивостью и не требовательно к почвам.

тысячелистникТысячелистник — в основном знаком всем как дикорастущее лечебное растение, но в садоводстве используется несколько декоративных видов этого цветка. Растение так же не требовательно к условиям выращивания и почвам и не нуждается в частом поливе.

гайлардияГайлардия — так же неприхотливое многолетнее растение. Предпочитает сухие, плодородные легкие почвы, не выносит переизбытка влаги и не требует особого ухода.

эхинацея пурпрнаяЭхинацея – красивое многолетнее растение, похожее на большую ромашку. Растение получило широкое распространение благодаря своей неприхотливости и высокой степени адаптации. Этот цветок довольно легко переноси жару и засуху.

Ну а теперь немного о неприхотливых однолетниках. У этих растений более продолжительный период цветения, так что их тоже не стоит упускать из виду.

портулак крупноцветковыйПортулак – выращивается как однолетнее растение и относится к суккулентам, обильно цветет с июня и до самых заморозков, быстро разрастается, образуя цветущий «коврик». Портулак неприхотлив к почвам, предпочитает бедную удобрениями песчаную землю, взрослые растения легко переносят жару и превосходно растут на сухой земле.

эшшольцияЭшшольция – однолетнее растение из семейства маковых. Она светолюбива, засухоустойчива, холодостойка, хорошо растет на сухих, дренированых почвах. Цветет эшшольция с начала лета и до середины осени.

гацанияГацания (газания) – однолетнее или многолетнее низкорослое травянистое растение, с крупными красочными цветами. Эти цветы предпочитают солнечные места и легкие питательные почвы, не переносят избытка влаги, довольно холодостойки. Цветет обильно с июня по ноябрь.

цинияЦиния – однолетнее растение семейства сложноцветных. Растение поражает разнообразием окрасок и обильно цветет с июня до заморозков. Циния устойчива к жаре и довольно легко переносит засуху.

Похожие

vcady.ru

Пути повышения жароустойчивости растений. — КиберПедия

Помимо методов диагностики жаростойкости немаловажное значение имеют пути повышения жаростойкости растений. На любом отрезке жизненного цикла растение, застигнутое жарой, так или иначе приспосабливается к этому неблагоприятному фактору. Однако это приспособление дается растению не простой ценой. А именно: приостанавливается его рост, затем начинают тратиться накопленные им ранее запасы питательных веществ, расходуются метаболиты и растение перестраивается на новый обмен и ритм своего развития. При этой перестройке растение может или ускорить, или сильно задержать свое развитие. Естественно , что продуктивность при этом будет сильно падать. Более слабые растения сильно повреждаются или даже погибают.

При разработке метода повышения жароустойчивости растений применяется биологический подход с использованием приспособительных возможностей растения. Данный подход заключается в том, что слегка наклюнувшиеся семена и зерновки растений подвергаются обезвоживанию. Их жизнедеятельность при этом пробудилась, но ростовые процессы задерживаются из-за минимума воды, которая им давалась для наклевывания. Такие набухшие или слегка наклюнувшиеся семена и зерновки выдерживают 24 -48 часов в намоченном состоянии, затем подсушивают на воздухе или в сушилках до воздушно-сухого состояния. Так молодое растение переносит засуху перед посевом и приспосабливается к ней, что приводит к глубокой физиолого-биохимической перестройке растений и к повышению их жароустойчивости. Этот метод был назван методом предпосевного закаливания. Положительная сторона данного метода в том, что закаленные растения по сравнению с незакаленными приносят более высокий урожай.

Помимо повышенной жароустойчивости, закаленные растения обнаруживают еще один феномен – стимуляционный эффект (тенденцию к усилению роста). Стимуляционный эффект от закаливания связан с большей активностью хроматина.

Закаленные растения демонстрируют ряд отличительных особенностей[8]:

· закаленные растения обладают высоким энергетическим уровнем из-за содержания в них органического кислоторастворимого фосфора.

· закаленные растения имеет более прочную ультраструктуру митохондрий, и лучше переносят высокие температуры.

· у закаленных необезвоженных растений по сравнению с незакаленными наблюдается более интенсивный распад РНК. В цитоплазме клетки увеличивается содержание конечных продуктов рибонуклеазной деполимеризации РНК - рибонуклеозидномофосфатов, усиливается рибонуклеазная активность. Предпосевное закаливание сказывается не только на усиленном синтезе РНК, но и на усиленном ее распаде.

Также повышенное внимание уделяется увеличению урожайности зерна в варианте удобрение + закаливание. Очевидно, что закаленные растения эффективнее используют удобрения, нежели незакаленные.

Предпосевное закаливание отражается как на анатомических, так и на морфологических особенностях растений( на структуре их клеток и мощности их корневой системы).

Достаточно интересным фактом является то, что наблюдается передача свойств высокой жароустойчивости у закаленных растений следующим поколениям, причем она носит характер длительной модификации, так как постепенно исчезает через несколько поколений.

Все изложенное выше приводит к выводу, что закаленные растения являются значительно более продуктивными. Очень важным является то обстоятельство, что с ростом урожая разница между закаленными и контрольными растениями в абсолютных величинах не только не падает, но даже возрастает.

Существует еще один метод, позволяющий повысить жароустойчивость. Свойство солей кальция повышать вязкость протоплазмы было использовано для повышения жароустойчивости.

Сухие зерновки обрабатываются 1/40 М раствором CaCl2, погружая их в гипертонический раствор на 18-24 часа без последующего промывания водой. После чего немного просушивают и высевают. Наблюдается повышение вязкости цитоплазмы и жаростойкости клеток. Растения отличает более благоприятный водный режим за счет увеличения объема и поглощающей поверхности корней. Обработка семян CaCl2 благоприятно сказывается на росте, развитии растений и повышении урожая.

В.Ф. Альтергот [2] предложил метод закаливания (повышения жароустойчивости) проростков. В своих опытах он чередовал действие повышенных и нормальных температур на проростки и этим сильно повышал жароустойчивость. Под влиянием повышенных температур происходит подавление синтетических реакций и энергетическое значение дыхания меняется, накапливаются сахара, аскорбиновая кислота и др. В поврежденных высокой температурой органах растений находятся легко ресинтезируемые продукты деполимеризации неглубокого распада. В результате происходит отток метаболитов из поврежденных тканей к физиологически активным с неповрежденными точками роста. Если поочередно то повышать температуры, то опускать до нормального уровня, то можно наблюдать восстановление повреждений. При этом получаются жароустойчивые растения с большой регенерационной способностью .

Комплексный метод повышения жароустойчивости. На 100 г зерновок добавляется 10 мл 0,5 % раствора БЭС (бромистый деметил-β-бромэтилсульфанит) или 5% раствора хлорхолинхлорида (ССС). Зерновки встряхиваются в течение 6 часов с ретардантами, затем их высевают в сосуды с почвой. Контролем служат зерновки, опрыснутые таким же количеством воды. У закаленных растений всходы появляются на 2-3 дня раньше, а также наблюдается углубление узла кущения. Комплексная обработка повышает жароустойчивость растений, усиливает защитные механизмы, способствует углублению узла кущения и увеличивает стойкость к полеганию.

Предпосевное закаливание картофеля.

Сначала картофель промывают 0,5 % раствором формалина, затем разрезают. Одну половину оставляют на свету до появления ростков, а другую – в темноте при температуре 15-18°С. Через 10 дней весь материал делят на 3 части. Первую отправляют в сушильный шкаф на сутки при температуре 30-35°С, затем переносят в помещение с температурой 15°С, затем выдерживают на свету или в темноте 2 суток. Прогреванию она подвергается 2 раза и высаживается. Вторая часть - подсушивается при температуре 15°С. Третья часть – контрольная, не подвергается дальнейшей обработке, хранится при 3°С в подвале и промывается перед посевом 0,5 % формалином. В конце отмечается повышение урожая и товарности клубней во всех вариантах. Наилучшими вариантами будут десятидневное проращивание, а затем подсушивание при 30-35°С в течение суток.

Таким образом, данные методы демонстрируют довольно широкий диапазон приспособительных возможностей растительных организмов. Закаляя растение на разных этапах жизненного цикла, можно наблюдать довольно интересные особенности проявления устойчивости живых организмов к повышенным температурам. К примеру, при адаптации к обезвоживанию растения проявляют сопряженную устойчивость, повышая способность лучше переносить не только обезвоживание, но и перегрев. Можно сказать, что закаленные растения являются жароустойчивыми .

 

Климат Рязанской области

В Рязанской области преобладает умеренно-континентальный климат. Характерными его чертами являются теплое лето, умеренно-холодная зима с более менее устойчивым снежным покровом и выраженными сезонными переходами[15].

Теплый сезон.

Начало теплого сезона приходится на середину весны. В третьей декаде марта наблюдается весеннее снеготаяние. Средняя месячная температура самого теплого месяца – июля – колеблется в пределах от 18,5 до 19,5 °С. Иногда температура воздуха может повышаться до 38-41 °С (так назывемый абсолютный максимум). Продолжительность теплого периода года в среднем составляет 210-218 дней ; безморозного периода - 170-180 дней.

 

Холодный сезон.

Температура воздуха самого холодного месяца – января - составляет –10,5-11,0 °С, а в очень холодные суровые зимы может снижаться и до –40-45 °С (так называемый абсолютный минимум). В зимнее время образуется устойчивый снежный покров, высота которого к концу зимы достигает 25-30 сантиметров.

 

Амплитуда среднемесячных температур составляет 30-31 °С. По увлажнению Рязанская область входит в группу неустойчивого увлажнения. Атмосферные засухи наблюдаются на севере области в среднем в 70% случаев, из них в 20% бывают дни и с интенсивными засухами; в центральной части в 90% , из которых 30% - с интенсивной засухой; а на юго-востоке засухи наблюдаются почти ежегодно. Число таких дней за теплый период – от 5 до 10.

Годовое количество атмосферных осадков около 500-575 мм с колебаниями в отдельные годы от 170-200 мм (1920 г.) до 750-850 мм (1952, 1962 гг.). Две третьи осадков выпадает в виде дождя, а одна треть в виде снега. Осадки в летний период носят преимущественно ливневой характер.

ГЛАВА 4

cyberpedia.su


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта