Вирусы растений список названий. Экология СПРАВОЧНИК

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Вирусы растений. Вирусы растений список названий


Вирусы растений Википедия

Ви́рус (лат. virus — яд[2]) — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток[комм. 2]. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей[3] (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, способные реплицироваться только в присутствии других вирусов (вирусы-сателлиты).

Со времени публикации в 1892 году статьи Дмитрия Ивановского, описывающей небактериальный патоген растений табака[4][5], и открытия в 1898 году Мартином Бейеринком вируса табачной мозаики[6] были детально описаны более 6 тысяч видов вирусов[7], хотя предполагают, что их существует более ста миллионов[8]. Вирусы обнаружены почти в каждой экосистеме на Земле, они являются самой многочисленной биологической формой[9][10]. Изучением вирусов занимается наука вирусология, раздел микробиологии.

У животных вирусные инфекции вызывают иммунный ответ, который чаще всего приводит к уничтожению болезнетворного вируса. Иммунный ответ также можно вызвать вакцинами, дающими активный приобретённый иммунитет против конкретной вирусной инфекции. Однако некоторым вирусам, в том числе вирусу иммунодефицита человека и возбудителям вирусных гепатитов, удаётся ускользнуть от иммунного ответа, вызывая хроническую болезнь. Антибиотики не действуют на вирусы, однако было разработано несколько противовирусных препаратов.

Этимология названия

Слово «вирус» образовано от лат. virus — «яд»[2]. Для обозначения агента, способного вызывать инфекционную болезнь, оно впервые было применено в 1728 году[11] до открытия вирусов Дмитрием Ивановским в 1892 году, им был введён термин фильтрующийся вирус как обозначение небактериального болезнетворного агента, способного проходить сквозь бактериальные фильтры — фильтроваться. Термин «вирион», создание которого датируется 1959 годом[12], применяется для обозначения единичной стабильной вирусной частицы, покинувшей клетку и способной инфицировать другие клетки того же типа[13].

История исследований

По мере накопления данных об инфекционных заболеваниях различных организмов стало очевидно, что далеко не все из них вызываются патогенами, известными на тот момент — бактериями, протистами или микроскопическими грибками. В частности, Луи Пастер не смог найти агент, вызывающий бешенство, и предполагал, что этот патоген слишком мал, чтобы увидеть его в микроскоп[14]. В 1884 году французский микробиолог Шарль Шамберлан изобрёл фильтр (сейчас известный как фильтр Шамберлана или фильтр Шамберлана—Пастера), поры которого меньше бактерий. С помощью этого фильтра можно полностью удалить бактерии из раствора[15]. В 1892 году русский биолог Дмитрий Ивановский использовал его для изучения вида, сейчас известного как вирус табачной мозаики. Его эксперименты показали, что экстракт перетёртых листьев заражённых растений табака сохраняет инфекционные свойства и после фильтрации. Ивановский предположил, что инфекция может вызываться токсином, выделяемым бактериями, однако он не развил эту идею[16]. В то время считалось, что любой инфекционный агент можно выделить на фильтре и выращивать в питательной среде — таков один из постулатов микробной теории болезней[6]. Кроме того, Ивановский в оптический микроскоп наблюдал в заражённых клетках растений кристаллоподобные тела, которые в современном понимании являлись скоплениями вирусов, впоследствии они были названы «кристаллами Ивановского»[17]. В 1898 году голландский микробиолог Мартин Бейеринк повторил эксперименты Ивановского и пришёл к выводу, что прошедший сквозь фильтр инфекционный материал есть не что иное, как новая форма инфекционных агентов[18]. Он подметил, что агент размножался только в делящихся клетках, однако его опыты не выявили того, что он представляет собой частицы. Бейеринк назвал его Contagium vivum fluidum (дословно лат. растворимый живой микроб) и вновь ввёл в употребление слово «вирус»[16]. Он утверждал, что по своей природе вирус жидкий. Эта теория впоследствии была опровергнута Уэнделлом Стэнли, доказавшим, что вирусы представляют собой частицы[16]. В том же году Фридрих Лёффлер и Пауль Фрош обнаружили первый вирус животных — возбудитель ящура (афтовирус), пропустив его через схожий фильтр[19].

В начале XX века английский бактериолог Фредерик Туорт открыл группу вирусов, инфицирующих бактерии (сейчас они известны как бактериофаги[20] или просто фаги), а франко-канадский микробиолог Феликс Д’Эрелль описал вирусы, которые при добавлении к бактериям на агаре образуют вокруг себя пространство с мёртвыми бактериями. Д’Эрелль сделал точные разведения суспензии этих вирусов и установил наибольшее разведение (наименьшую концентрацию вирусов), при котором не все бактерии погибают, но тем не менее образуются отдельные области с мёртвыми клетками. Подсчитав число таких областей и учитывая коэффициент разведения, он определил число вирусных частиц в первоначальной суспензии[21]. Фаги были объявлены потенциальным средством от болезней, таких как тиф и холера, однако это было забыто в связи с открытием уникальных свойств пенициллина. Изучение фагов дало информацию о явлении «включения» и «выключения» генов, а также позволило использовать их для введения в бактериальный геном чужеродных генов.

К концу XIX века было известно, что вирусы обладают инфекционными свойствами, способны проходить через фильтры и нуждаются в живом хозяине для размножения. В то время вирусы в исследовательских целях культивировали только в растениях и животных. В 1906 году Росс Грэнвилл Гаррисон изобрёл метод выращивания тканей в лимфе, и в 1913 году Штейнард, Израэли и Ламберт использовали этот метод при выращивании вируса осповакцины на фрагментах ткани роговицы морских свинок[22]. В 1928 году Г. Б. Мэйтланд и М. К. Мэйтланд вырастили вирус осповакцины на суспензии из измельчённых куриных почек. Этот метод не применялся широко до конца 1950-х годов, когда в больших масштабах стали выращивать полиовирус для производства вакцины[23].

Другое крупное достижение принадлежит американскому патологу Эрнесту Уильяму Гудпасчеру; в 1939 г он вырастил вирус гриппа и несколько других вирусов в оплодотворённых куриных яйцах[24]. В 1949 году Джон Франклин Эндерс, Томас Уэллер и Фредерик Роббинс вырастили полиовирус на культуре клеток зародыша человека. Это был первый вирус, выращенный не на тканях животных или яйцах. Эта работа дала возможность Джонасу Солку создать эффективную полиовакцину (вакцину против полиомиелита)[25].

Первые изображения вирусов были получены после изобретения электронного микроскопа немецкими инженерами Эрнстом Руской и Максом Кноллем[26]. В 1935 году американский биохимик и вирусолог Уэнделл Мередит Стэнли тщательно изучил вирус табачной мозаики и обнаружил, что он по большей части состоит из белка[27]. Спустя короткое время этот вирус был разделён на белковую и РНК-составляющую[28]. Вирус табачной мозаики был кристаллизован первым среди вирусов, что позволило многое узнать о его структуре. Первая рентгенограмма кристаллизованного вируса была получена Берналем и Фэнкухеном в конце 1930-х годов. На основании полученных ею изображений Розалинд Франклин в 1955 году определила полную структуру вируса[29]. В том же году Хайнц Френкель-Конрат и Робли Уилльямс показали, что очищенная РНК вируса табачной мозаики и белок оболочки способны к самосборке в функциональный вирус. Это позволило им предположить, что подобный механизм лежит в основе сборки вирусов внутри клеток-хозяев[30].

Вторая половина XX века стала периодом расцвета вирусологии. В то время было открыто свыше 2000 видов вирусов животных, растений и бактерий[31]. В 1957 году были открыты лошадиный артеривирус и возбудитель вирусной диареи коров (пестивирус). В 1963 году Барух Бламберг открыл вирус гепатита B[32], а в 1965 году Хоуард Темин описал первый ретровирус. В 1970 году Темин и Дейвид Балтимор независимо друг от друга описали обратную транскриптазу, ключевой фермент, с помощью которого ретровирусы синтезируют ДНК-копии своих РНК[33]. В 1983 году группа учёных во главе с Люком Монтанье из Института Пастера во Франции впервые выделила ретровирус, известный сейчас как ВИЧ[34].

В 2002 году в Нью-Йоркском университете был создан первый синтетический вирус (вирус полиомиелита)[35].

Происхождение

Появление вирусов на эволюционном древе жизни неясно: некоторые из них могли образоваться из плазмид, небольших молекул ДНК, способных передаваться от одной клетки к другой, в то время как другие могли произойти от бактерий. В эволюции вирусы являются важным средством горизонтального переноса генов, обуславливающего генетическое разнообразие[36]. Некоторые[кто?] считают вирусы особой формой жизни, так как они имеют генетический материал, способны создавать себе подобные вирусы, и эволюционируют путем естественного отбора. Однако у вирусов отсутствуют важные характеристики (такие как клеточное строение), без которых их нельзя отнести к живому. Так как они обладают некоторыми, но не всеми свойствами, вирусы описываются как «организмы на краю жизни».

Вирусы найдены везде, где есть жизнь, и, вероятно, вирусы существуют с момента появления первых живых клеток[37]. Происхождение вирусов неясно, поскольку они не оставляют каких бы то ни было ископаемых останков и их родственные связи можно изучать только методами молекулярной филогенетики[38].

Гипотезы о происхождении вирусов

Существует три основные гипотезы происхождения вирусов[39][40]:

  • регрессивная гипотеза;
  • гипотеза клеточного происхождения;
  • гипотеза коэволюции.
Регрессивная гипотеза

Согласно этой гипотезе, вирусы когда-то были мелкими клетками, паразитирующими в более крупных клетках. С течением времени эти клетки предположительно утратили гены, которые были «лишними» при паразитическом образе жизни. Эта гипотеза основывается на наблюдении, что некоторые бактерии, а именно риккетсии и хламидии, представляют собой клеточные организмы, которые, тем не менее, подобно вирусам могут размножаться только внутри другой клетки. Эту гипотезу также называют гипотезой дегенерации[41][42] или гипотезой редукции[43].

Гипотеза клеточного происхождения

Некоторые вирусы могли появиться из фрагментов ДНК или РНК, которые «высвободились» из генома более крупного организма. Такие фрагменты могут происходить от плазмид (молекул ДНК, способных передаваться от клетки к клетке) или от транспозонов (молекул ДНК, реплицирующихся и перемещающихся с места на место внутри генома)[44]. Транспозоны, которые раньше называли «прыгающими генами», являются примерами мобильных генетических элементов, возможно, от них могли произойти некоторые вирусы. Транспозоны были открыты Барбарой Мак-Клинток в 1950 году в кукурузе[45]. Эту гипотезу также называют гипотезой кочевания[6][46] или гипотезой побега[43].

Гипотеза коэволюции

Эта гипотеза предполагает, что вирусы возникли из сложных комплексов белков и нуклеиновых кислот в то же время, что и первые на Земле живые клетки, и зависят от клеточной жизни вот уже миллиарды лет. Помимо вирусов, существуют и другие неклеточные формы жизни. Например, вироиды — это молекулы РНК, которые не рассматриваются как вирусы, потому что у них нет белковой оболочки. Тем не менее, ряд характеристик сближает их с некоторыми вирусами, а потому их относят к субвирусным частицам[47]. Вироиды являются важными патогенами растений[48]. Они не кодируют собственные белки, однако взаимодействуют с клеткой-хозяином и используют её для осуществления репликации своей РНК[49]. Вирус гепатита D имеет РНК-геном, схожий с геномом вироидов, однако сам не способен синтезировать белок оболочки. Для формирования вирусных частиц он использует белок капсида вируса гепатита B и может размножаться только в клетках, заражённых этим вирусом. Таким образом, вирус гепатита D является дефектным вирусом[50]. Вирофаг Спутник схожим образом зависит от мимивируса, поражающего простейшее Acanthamoeba castellanii[51]. Эти вирусы зависят от присутствия в клетке-хозяине другого вируса и называются вирусами-сателлитами. Подобные вирусы демонстрируют, как может выглядеть промежуточное звено между вирусами и вироидами[52][53].

Каждая из этих гипотез имеет свои слабые места: регрессивная гипотеза не объясняет, почему даже мельчайшие клеточные паразиты никак не походят на вирусы. Гипотеза побега не даёт объяснения появлению капсида и других компонентов вирусной частицы. Гипотеза коэволюции противоречит определению вирусов как неклеточных частиц, зависимых от клеток-хозяев[43].

Тем не менее, в настоящее время многие специалисты признают вирусы древними организмами, появившимися, предположительно, ещё до разделения клеточной жизни на три домена[54]. Это подтверждается тем, что некоторые вирусные белки не обнаруживают гомологии с белками бактерий, архей и эукариот, что свидетельствует о сравнительно давнем обособлении этой группы. В остальном же достоверно объяснить происхождение вирусов на основании трёх закрепившихся классических гипотез не удаётся, что делает необходимыми пересмотр и доработку этих гипотез[54].

Мир РНК

Гипотеза мира РНК[55] и компьютерный анализ последовательностей вирусной ДНК и ДНК хозяина дают лучшее понимание эволюционных взаимоотношений между различными группами вирусов и могут помочь определить предков современных вирусов. До настоящего времени такие исследования пока не прояснили, какая из трёх основных гипотез верна[55]. Однако представляется маловероятным, чтобы все современные вирусы имели общего предка, и, возможно, в прошлом вирусы независимо возникали несколько раз по одному или нескольким механизмам, так как между различными группами вирусов имеются значительные различия в организации генетического материала[56].

Препарат головного мозга коровы, поражённой коровьим бешенством. В сером веществе образуются микроскопические полости, которые придают ткани вид губки

Прионы

Прионы — это инфекционные белковые молекулы, не содержащие ДНК или РНК[57]. Они вызывают такие заболевания, как почесуха овец[58], губчатая энцефалопатия крупного рогатого скота и хроническая слабость (англ. chronic wasting disease) у оленей. К прионным болезням человека относят куру, болезнь Крейтцфельдта — Якоба и синдром Герстмана — Штраусслера — Шейнкера[59]. Прионы способны стимулировать образование собственных копий. Прионный белок способен существовать в двух изоформах: нормальной (PrPC) и прионной (PrPSc). Прионная форма, взаимодействуя с нормальным белком, способствует его превращению в прионную форму. Хотя прионы фундаментально отличаются от вирусов и вироидов, их открытие даёт больше оснований поверить в то, что вирусы могли произойти от самовоспроизводящихся молекул[60].

Биология

Вирусы как форма жизни

Пока вирус находится во внеклеточной среде или в процессе заражения клетки, он существует

wikiredia.ru

Вирусы и их особенности

Вирусы и их особенности

Министерство образования и науки РФ

ФГБОУ ВПО «Сыктывкарский государственный университет»

Институт социальных технологий

Кафедра теоретических и медико-биологических основ физической культуры

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Биология»

Вирусы и их особенности

Исполнитель: Студент ИСТ 7190 группы

Олег Алексеевич Баклагин

Преподаватель: к.б.н., доцент Ишкаева А.Ф.

Сыктывкар 2013

Содержание

Введение

Глава 1. Вирусы

.1 Открытие вирусов

.2 Размеры и особенности строения вирусов

.3 Жизненный цикл вирусов

Глава 2. Вирусы - возбудители различных заболеваний

.1 Вирусы растений

.2 Вирусы животных и человека

Заключение

Список литературы

Приложения

Введение

Существует большая группа живых существ, не имеющих клеточного строения. Эти существа носят название вирусов (от латинского virus - «яд, ядовитое начало») и представляют неклеточные формы жизни.

О вирусах ученым известно сравнительно немного, не говоря уже о тех, кто не занимается их изучением. Вирусы - это мельчайшие возбудители многочисленных болезней человека, животных, растений и даже своих родственников по микромиру - бактерий.

Вирусы представляют собой как бы «осколки жизни», обладающие основными свойствами живых организмов. Они размножаются, их обмен веществ тесно связан с обменом веществ зараженных клеток. Вирусы обладают наследственностью, которая обусловлена теми же биологическими и химическими структурами, что и у других живых организмов, - нуклеиновыми кислотами. Наконец, вирусы, как и все другие существа, обладают изменчивостью и хорошо приспосабливаются к меняющимся условиям окружающей среды.

Вирусные болезни легко передаются от больных здоровым, быстро распространяются и плохо поддаются лечению. Долгое время полагали, что вирусы вызывают лишь острые массовые заболевания. К настоящему времени накоплено много свидетельств того, что именно вирусы являются причиной различных хронических, «дремлющих» болезней, длящихся годами и даже десятилетиями.

И все же было бы ошибкой думать, что только болезнетворные свойства вирусов явились причиной повышенного внимания к ним ученых. Так было лишь на первых порах. По мере того как шаг за шагом открывались особенности их строения и размножения, все яснее становилось, что вирусы могут сослужить науке хорошую службу.

Глава 1. Вирусы

.1 Открытие вирусов

Первые упоминания о самой грозной вирусной инфекции прошлого - оспе найдены в древнеегипетских папирусах. Эпидемия оспы в Египте за 12 веков до нашей эры описана древними арабскими учеными. На коже мумии фараона Рамзеса V (1085 г. до н.э.) обнаружены типичные оспенные поражения.

Другую вирусную болезнь описал основоположник научной медицины древнегреческий врач Гиппократ (460-370 г. до н.э.). Эта болезнь приводила к укорочению и деформации ног («сухая нога», «конская стопа») и пожизненной хромоте. В 1874 г. она получила современное название - полиомиелит. Гиппократ считал, что «каждая болезнь имеет свою естественную причину».

В 1892 г. русский ученый Д.И. Ивановский описал необычные свойства возбудителя болезни табака - так называемой табачной мозаики. Этот возбудитель проходил через бактериальные фильтры. Таким образом, можно было заразить бесклеточным фильтратом сока больного растения. Через несколько лет был обнаружен возбудитель ящура, который также проходил через бактериальные фильтры. В 1917 г. Эррель открыл бактериофаг - вирус, поражающий бактерии. Так были открыты вирусы растений, животных и микроорганизмов.

Эти три события положили начало новой науке - вирусологии, изучающей неклеточные формы жизни.

.2 Размеры и особенности строения вирусов

Вирусы - это мельчайшие живые организмы, размеры которых варьируют в пределах от 20 до 300 нм. (прил.1). Самый крупный вирус (вирус оспы) приближается по размерам к небольшой бактерии; самые мелкие (возбудители полиомиелита, энцефалита, ящура) близки по размерам к крупным белковым молекулам (например, гемоглобин крови) в среднем они в 50 раз меньше бактерий.

Сегодня науке известно около полутора тысяч вирусов, но они настолько малы, что, по словам одного из ученых, коллекция, собранная из всех известных вирусов, «поместилась бы в коробочке размером с маковое зернышко». Их нельзя увидеть с помощью светового микроскопа, и они проходят через фильтры, не пропускающие бактерий.

Вирусы не имеют клеточного строения. Каждая вирусная частица устроена очень просто - она состоит из расположенного в центре носителя генетической информации и оболочки. Генетический материал представляет собой короткую молекулу нуклеиновой кислоты, это образует сердцевину вируса. Нуклеиновая кислота у разных вирусов может быть представлена ДНК или РНК, причем эти молекулы могут иметь необычное строение: встречается однонитчатая ДНК и двухнитчатая РНК. Так, ДНК встречается у вирусов оспы человека, овец, свиней; двухнитчатая РНК служит генетической матрицей у некоторых вирусов насекомых. Широко распространены вирусы, содержащие однонитчатую РНК (вирусы энцефалита, краснухи, кори, бешенства и др.).

Оболочка называется капсид. Она образована субъединицами - капсомерами, каждый из которых состоит из одной или двух белковых молекул. Число капсомеров для каждого вируса строго постоянно (например, в капсиде вируса полиомиелита их 60, а у вируса табачной мозаики - 2130). Иногда нуклеиновая кислота вместе с капсидом называется нуклеокапсидом. Если вирусная частица, кроме каспида, больше не имеет оболочки, ее называют простым вирусом, если имеется еще одна - наружная, вирус называется сложным. Примером сложно организованных вирусов служат возбудитель гриппа и герпеса. Наружную оболочку сложных вирусов также называют суперкаспидом, генетически она не принадлежит вирусу, а происходит из плазматической мембраны клетки-хозяина и формируется при выходе собранной вирусной частицы из инфицированной клетки. Таким образом, вирусная частица состоит только из двух классов биополимеров: нуклеиновых кислот и белков, тогда как в любой клетке в обязательном порядке должны присутствовать еще полисахариды и липиды.

У каждого вируса капсомеры капсида располагаются в строго определенном порядке, благодаря чему возникает определенный тип симметрии (прил.2):

при спиральной симметрии капсид приобретает трубчатую (вирус табачной мозаики) и сферическую (РНК-содержащие вирусы животных) форму.

при кубической симметрии капсид имеет форму икосаэдра (двадцатигранника), такой симметрией обладают изометрические вирусы.(вирус герпеса).

прикомбинированной симметрии капсид обладает кубической формой, а расположенная внутри нуклеиновая кислота уложена спирально.

Правильная геометрия капсида даже позволяет вирусным частицам совместно образовывать кристаллические структуры.

Каждый компонент имеет определённые функции: белковая оболочка защищает от неблагоприятных воздействий, нуклеиновая кислота отвечает за наследственные и инфекционные свойства и играет ведущую роль в изменчивости вирусов, а ферменты участвуют в их размножении.

.3 Жизненный цикл вирусов

Вирусы не могут самостоятельно размножаться и осуществлять обмен веществ. В соответствии с этим у них различают две жизненные формы: покоящаяся внеклеточная - вирион и активно репродуцирующаяся внутриклеточная - вегетативная. Вирионы демонстрируют отменную жизнеспособность. В частности, они выдерживают давление до 6000 атм т переносят высокие дозы радиации, однако погибают при высокой температуре, облучении ультрафиолетовыми лучами, а также воздействии кислот и дезинфицирующих веществ. Взаимоотношения вируса с клеткой последовательно проходят несколько стадий. Рис.1.

Первая стадия представляет собой адсорбцию вирионов на поверхности клетки-мишени, которая для этого должна обладать соответствующими поверхностными рецепторами. Именно с ними специфически взаимодействует вирусная частица, после чего происходит их прочное связывание, по этой причине клетки восприимчивы не ко всем вирусам. Именно этим объясняется строгая определенность путей проникновения вирусов. Например, рецепторы к вирусу гриппа имеются у клеток слизистой оболочки верхних дыхательных путей, а у клеток кожи их нет. Поэтому через кожу гриппом заболеть нельзя - вирусные частицы для этого нужно вдохнуть с воздухом.

Первая фаза обратима - вирусную частицу можно отделить от клетки-мишени (например, обычным встряхиванием), после чего следует необратимая фаза, при которой разделение уже невозможно.

Рис. 1. Репродукция вирусов.1 - адсорбция вириона на клетке; 2 - проникновение вириона в клетку путем виропексиса; 3 - вирус внутри вакуоли клетки; 4 - депротеинизация вириона вируса; 5 - репликация вирусной нуклеиновой кислоты; 6 - синтез вирусных белков на рибосомах клетки; 7 - формирование вириона; 8 - выход вириона из клетки путем почкования. (Микробиология и иммунология Под редакцией Воробьева А.А. - М. - 1999)

Вторая стадия состоит в проникновении целого вириона или его нуклеиновой кислоты внутрь клетки-хозяина. Легче происходит проникновение вирусов в животные клетки, поскольку те не имеют оболочек и вирусы попадают в них путем эндоцитоза. Если вирион имеет наружную липопротеидную мембрану, то при контакте с клеткой-хозяином мембраны сливаются и вирион оказывается в цитоплазме. Значительно сложнее вирусам растений, грибов и бактерий, вынужденным «пробиваться» через жесткую клеточную стенку.

Третья стадия называется депротеинизация. В ходе ее происходит освобождение носителя генетической информации вируса - его нуклеиновой кислоты. У многих вирусов, например бактериофагов (за исключением нитчатых), этот процесс совпадает с предыдущей стадией, поскольку в клетку проникает только нуклеиновая кислота. Если вирус проникает в клетку целиком, то удаление оболочки осуществляется клеточными протеазами. Ферментативному расщеплению подвергаются лишь белковая составляющая вирусной частицы, а его нуклеиновая кислота остается неповрежденной. В результате нуклеиновая кислота вируса освобождается, и впоследствии именно она существенным образом преобразует деятельность клетки-хозяина, подчиняя ее метаболизм своим потребностям и вынуждая ее синтезировать определенные вещества.

В ходе четвертой стадии на основе вирусной нуклеиновой кислоты происходит синтез необходимых для вируса соединений. Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка - рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь - запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «-» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухнитчатая ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

В пятой стадии происходит синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида, причем все компоненты синтезируются многократно. Клетка, сама того не желая, начинает синтезировать вирусные белки вместо собственных. При этом используются структуры и энергия самой клетки.

В ходе шестой стадии из синтезированных ранее многочисленных копий нуклеиновой кислоты и белков формируются новые вирионы путем самосборки. Для этого необходимо, чтобы концентрация компонентов вириона достигла высокого (критического) уровня. Компоненты вирусной частицы синтезируются раздельно и в разных частях клетки. У сложных вирусов, кроме капсида, также образуется наружная оболочка из компонентов плазматической мембраны клетки.

Последняя - седьмая стадия - представляет собой выход вновь собранных вирусных частиц из клетки-хозяина. У разных вирусов этот процесс проходит неодинаково. У некоторых вирусов это сопровождается гибелью клетки за счет освобождения литических ферментов лизисом - лизис клетки. У других вирионы выходят из живой клетки путем отпочковывания, однако и в этом случае клетка со временем погибнет, поскольку при отпочковывания повреждается плазматическая мембрана.

Глава 2. Вирусы - возбудители различных заболеваний

вирус капсид заболевание

Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным.

Многие вирусы не могут долго сохраняться в природе при низкой плотности расселения вида-хозяина. Малочисленность популяций первобытных охотников и сборщиков растений создавала неблагоприятные условия для существования некоторых вирусов; поэтому весьма вероятно, что какие-то вирусы человека возникли позже, с появлением городских и сельских поселений.

К наиболее «свежим» примерам эволюции вирусов можно отнести синдром приобретенного иммунодефицита человека (СПИД). Существуют данные о генетическом сходстве вирусов иммунодефицита человека и африканских зеленых мартышек.

«Новые» инфекции обычно протекают в тяжелой форме, нередко со смертельным исходом, но в процессе эволюции возбудителя они могут стать более легкими.

Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов.

Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала «хвост» фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты «хвоста» растворяют участок бактериальной стенки и в образовавшееся отверстие через «хвост», как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК).

.1 Вирусы растений

О том, что растения болеют, люди узнали в те далекие времена, когда перешли на оседлое земледелие. Земледельцы как могли, лечили растения, старались предотвратить массовое поражение. Один из возбудителей болезней растений - вирус табачной мозаики. Подобный вирус встречается у картофеля, томатов, цветов, плодовых и ягодных культур. Одним из признаков вирусного поражения является изменение окраски цветов в поколения (например, тюльпанов) и изменения окраски листьев (желтуха растений).

Разработка эффективных противовирусных мероприятий основаны на характерной особенности каждого вируса растений, на передаче заболевания от одних растений другим. Применяется термическая обработка, химиотерапия, сочетание этих способов (опрыскивание растений или насыщения атмосферы термокамеры ингибиторами вируса).

Используется также метод, названный культурой меристемы. Метод, основан на том, что в различных тканях растений вирусы распространены не равномерно, а некоторых частях отсутствует (например, в клетках меристемы, в точках роста). Данный участок в стерильных условиях вырезается и является материалом для получения здорового потомства.

.2 Вирусы животных и человека

Наряду с вирусами растений существует опасные возбудители болезней животных и человека. Многие вирусы, к которым чувствителен человек, поражает животных и наоборот. Кроме того, некоторые животные являются переносчиками вирусов человека, при этом не болея.

Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico - очень мелкий, англ. RNA - РНК) - самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы - причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. arthropodborne - «переносимые членистоногими») - самая большая группа вирусов (более 300) - переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней.

Существует несколько способов передачи вирусных инфекций.

Воздушно-капельный путь (капельная инфекция). При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми микроорганизмами могут вдохнуть другие люди, особенно в местах большого скопления народа, к тому же еще и плохо вентилируемых.

Пищеварительный тракт, кишечник. Некоторые вирусы проникают в организм с пищей и водой (вирус гепатита А).

Непосредственный контакт (контагиозная передача). В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. К контагиозным вирусным болезням относится трахома (болезнь глаз, очень распространенная в тропических странах), обычные бородавки и обыкновенный герпес.

Половой контакт. Некоторыми вирусами можно заразиться при половом контакте, т.к. вирусы могут содержаться в сперме или вагинальном секрете больного человека. Таким способом распространяются такие заболевания как ВИЧ или гепатит В.

Через кровь. Люди, получающие препараты крови или цельную кровь в лечебных целях, подвержены риску заражения инфекцией, передаваемой с кровью (например, гепатит В).

К лекарству, которое разрабатывается против вируса, предъявляются определенные требования. Оно должно губительно действовать на вирус, но не влиять на жизнедеятельность самой клетки. Лечение вирусных болезней - задача весьма сложная.

Из-за высокой мутабельности вирусов лечение вирусных заболеваний довольно сложно. Гораздо успешнее применять вакцинацию, заключающуюся во введении аттенуированных (то есть ослабленных) микроорганизмов или умеренных (близкородственных, но не патогенных) штаммов.

Кратко остановимся на некоторых вирусных заболеваниях.

Полиомиелит - вирусное заболевание, при котором поражается серое вещество центральной нервной системы.

Корь - острое инфекционное заболевание, протекающее с лихорадкой, крупнопятнистой сыпью на теле, с воспалением слизистых оболочек глаз, полости рта и дыхательных путей.

Вирусный гепатит А - воспалительное заболевание печени, в основе которого лежит гибель ее клеток под воздействием вируса.

Герпес. Это одна из самых распространенных инфекций, наряду с гриппом и гепатитом бытующих в мире.

Грипп - это болезнь вирусной этиологии, склонная к широкому распространению.

Заключение

Вирусы - мельчайшие живые организмы, не имеют клеточного строения. Способны жить и воспроизводиться, паразитируя внутри других клеток. Каждый тип вируса распознает и инфицирует лишь определенные типы клеток. Многие из них вызывают болезни человека, животных, растений.

Какова вероятность встречи с вирусами? С возбудителями гриппа, кори, свинки, герпеса, гастроэнтерита и различных ОРЗ контакты практически неизбежны (90-100%). С вирусами вызывающими гепатит, краснуху, бешенство, полиомиелит, миокардиты, встреч можно избежать. Так или иначе, но человек на протяжении всей жизни подвергается опасности заразиться и заболеть какой-либо вирусной инфекцией.

Вместе с тем, вирусы, как и любые другие паразиты, стимулируют деятельность защитных сил организмов, направляя, в известной степени, эволюционный процесс. Многие вирусы, поражающие бактерии, чрезвычайно важны для медицины и ветеринарии, поскольку позволяют естественным путем и без химических реагентов побеждать многие бактериальные инфекции.

Вирусы не вредный, чужеродный для живой природы элемент, а необходимая составная часть, без которой, наверное, были бы невозможны существование и эволюция биосферы.

Список литературы

1.Балич Г.Л., Крыжановский В.А. Биология для поступающих в вузы: - М.: Издательство Оникс, 2008. - 1088с.

. Жданов В.М., Ершов Ф.И. Укрощение строптивых: рассказы о вирусах и вирусологии: - М.: Медицина, 1988. - 160с.

. Мамонтов С.Г. Биология. Для школьников старших классов и поступающих в вузы: Учеб.пособие - М.: Дрофа, 1995. - 480с.

. Тейлор Д., Грин Н., Стаут У. Биология: В 3-х т. Т.1: Пер. с англ./Под ред. Р. Сопера - 3-е изд., - М.: Мир, 2004. - 454с.

Приложение 1

РАЗМЕРЫ ВИРУСОВ

Приложение 2

ТИПЫ СИММЕТРИИ КАСПИД

ПРОСТЫЕ

.Спиральный

.Икосаэдрический

СЛОЖНЫЕ

Схема Т-фага кишечной палочки1.кубоидальная каспидная головка 2.двухнитчатая ДНК 3.стержень 4.спиралеобразный каспид 5.базальная пластина 6.хвостовые фибриллы

Теги: Вирусы и их особенности  Контрольная работа  БиологияПросмотров: 26658Найти в Wikkipedia статьи с фразой: Вирусы и их особенности

diplomba.ru

Группы вирусов растений

В списке вирусов растений, опубликованном Микологическим институтом [1164], числится 630 болезпей, вызываемых вирусами, а также заболеваний, вирусная этиология которых представляется вероятной. Для 457 из этих заболеваний известно, что опи передаются либо путем механической инокуляции, либо с помощью одного из беслозвоночных-переносчиков (или обоими способами), но сведения о свойствах частиц возбудителя отсутствуют. Результаты исследований, обсуждавшиеся в гл. X, позволяют предположить, что около 60 из этих болезней, возможно, вызываются микоплазмо-подобными организмами, а не вирусами. В данный момент мы можем считать доказанным с высокой степенью вероятности вирусное происхождение 173 болезней, для которых имеются некоторые сведения о размере и форме вирусных частиц.[ ...]

Подкомиссия вирусов растений Международной комиссии по номенклатуре вирусов (председатель Харрисон) имеет следующие задачи: 1) оценка степени сходства и различия между вирусами растений, учитывая все известные свойства этих вирусов; 2) разделение всех известных вирусов на группы; 3) описание типичного представителя каждой из предлагаемых групп; 4) именование групп, если это потребуется; 5) тщательное изучение мнений исследователей, работающих в области вирусологии растений; 6) представление доклада следующему Международному микробиологическому конгрессу.[ ...]

Комиссия подготовила список групп вирусов. Приводимый ниже перечень аналогичен тому, который был разослан вирусологам всего мира для обсуждения. Метод, использованный при объединении различных вирусов в те или иные группы, отличается как от иерархического метода, так и от метода Адансона и составляет тот самый подход к проблеме, который мы назвали подходом с точки зрения здравого смысла; вероятно, он получит поддержку большинства исследователей вирусов растений.[ ...]

Большим шагом вперед явилось бы достижение соглашения об основных группах вирусов. В настоящее время не делается никаких попыток выявить степень родства в пределах каждой группы. Эту проблему еще долго не удастся решить. В пределах многих групп (например, в группе ВТМ) непрерывно обнаруживаются новые штаммы [360], которые часто не укладываются в рамки группы, установленные исходя из ранее известных штаммов. Ниже приводится список групп вирусов растений, предложенный Харрисоном (апрель 1969 г.).[ ...]

Примечание: отсутствие одного или нескольких свойств, общих со свойствами типичного представителя данной группы, не исключает возможности включения данного вируса в эту группу. Однако подавляющее большинство свойств должно быть общим. Группы перечисляются в произвольном порядке.[ ...]

Другие представители: вирус раннего побурения гороха.[ ...]

Другие представители: вирус зеленой крапчатой мозаики огурцов, вирус кольцевой пятнистости Odontoglossum, вирус мозаики подорожника, вирус опунции Сэммонса, вирус мозаики конопли, вирус мозаики томатов.[ ...]

Другие представители: Х-вирус кактуса, вирус желтой мозаики клевера, вирус кольцевой пятнистости гортензии, вирус мозаики белого клевера.[ ...]

Возможные представители: вирус курчавой карликовости артишоков, вирус обыкновенной мозаики маниока, вирус мозаики орхидеи (род СутЫ-сИит), вирус мозаики нарциссов, вирус мозаики папайи, вирус аукуба-мозаи-ки картофеля.[ ...]

Другие представители: вирус 2 кактуса, 5-вирус хризантемы, латентный вирус страстоцвета, вирус полосатости гороха, М-вирус картофеля, 5-вирус картофеля, вирус жилковой мозаики красного клевера.[ ...]

Вернуться к оглавлению

ru-ecology.info


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта