Углеводы в растениях. Химический состав растений: Углеводы

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Функции углеводов в растениях. Углеводы в растениях


Какие углеводы в растениях

Углеводы в растениях разделяют на две большие группы: простые углеводы, не способные к гидролизу (моносахариды), и сложные углеводы, гидролизующиеся на простые (полисахариды).

Простые углеводы

Название свое простые углеводы получили в связи с тем, что вначале развития химии углеводов считали, что они состоят из атомов углерода и воды. Из простых углеводов в ягодных растениях больше всего:

  • глюкозы,
  • сахарозы,
  • фруктозы.

Глюкоза

В зрелом винограде особенно много глюкозы, поэтому ее часто называют виноградным сахаром.

Грозди виноградаВ зрелом винограде много глюкозы

Глюкоза в том или ином количестве встречается во всех ягодах поэтому это наиболее распространенный моносахарид. Являясь одним из основных источников энергии, глюкоза выполняет очень важные функции в организме человека, а для мозга и нервной ткани такой источник является единственным, (подробнее: Применение глюкозы).

Фруктоза

Фруктоза также широко распространена в природе. Особенно в большом количестве она встречается в плодах.

Какие углеводы в растенияхФруктоза в яблоках

В организме человека фруктоза легко может превращаться в глюкозу, а также включается в обмен веществ непосредственно, минуя процесс превращения в глюкозу. Некоторая часть фруктозы перерабатывается в организме без инсулина, (подробнее: Лечение диабета).

Сахароза

Сахароза (сахар из свеклы или тростника) это важная составная часть питания и состоит из молекул фруктозы и глюкозы. Около 27% сахарозы содержится в корнях сахарной свеклы и около 20 % в стеблях сахарного тростника.

Сахарная свеклаСахарная свекла

Сахароза может легко гидролизоваться в разведенных кислотах, распадаясь при этом на глюкозу и фруктозу. Такая смесь фруктозы и глюкозы называется инвертным сахаром.С помощью фермента сахарозы или инвертазы в кишечнике человека и животных, а также при образовании меда в организме пчел происходит ферментативное расщепление сахарозы. Например, пчелиный мед на 97-99% состоит из инвертного сахара. Сахароза входит в состав всех ягод.

Полисахариды

Важнейшими полисахаридами растений являются:

  • крахмал,
  • целлюлоза (клетчатка),
  • пектиновые вещества.

Крахмал

Крахмал — это резервный полисахарид растений. Он откладывается в виде зернышек в клубнях и корнях, в зернах злаков, а также содержится во многих незрелых плодах — яблоках, грушах, айве и др. При созревании плодов крахмал расщепляется до глюкозы. На этом свойстве основан химический метод определения степени зрелости плодов. В клубнях картофеля содержится от 12 до 24 % крахмала.

Крахмал в клубнях картофеляКрахмал в клубнях картофеля

Крахмал является богатым источником энергии, обладает обволакивающими свойствами и широко применяется в пищевой промышленности и медицине.

Целлюлоза

Из целлюлозы преимущественно состоят оболочки клеток растений. Она является структурным полисахаридом. В древесине 50% целлюлозы, в волокнах хлопка — до 90 %. Вату можно считать почти чистой целлюлозой. Молекула целлюлозы содержит до 10 000 глюкозных остатков.Клетчатка, или целлюлоза, не расщепляется ферментами пищеварительного канала человека, однако она выполняет роль активатора двигательной функции желудка и кишечника благодаря своей грубой структуре и регулирует деятельность этих органов, обеспечивает своевременный и ритмичный выброс шлаков из организма.

Пектиновые вещества (пектины)

По химической природе пектиновые вещества относят к сложным углеводам. Так при лечении заболеваний пищеварительного тракта они нормализуют состав микрофлоры кишечника и кишечную перистальтику.

Пектины обладают антибактериальным действием. Со многими металлами (свинцом, кальцием, стронцием, кобальтом и др.) они могут образовывать нерастворимые комплексные соединения, которые не перевариваются и выводятся из организма.

Благодаря способности связывать радиоактивные и тяжелые металлы в организме пектины являются лучезащитными и детоксицирующими продуктами в питании человека. Они обезвреживают ядовитые вещества, образующиеся в кишечнике в результате процессса гниения и жизнедеятельности микрофлоры.

Пектины в фруктахПектины в фруктах

Пектины обладают также противосклеротическим действием. Пектинами богаты крыжовник, черноплодная рябина, красная смородина, яблоки, клюква, барбарис, цитрусовые (кожура плодов).

libtime.ru

Функции углеводов в растениях

  1. Пластическая. Углеводы образуются в растениях в процессе фотосинтеза и служат исходным сырьем для синтеза всех других органических веществ;

  2. Структурная. Эту роль выполняют целлюлоза или клетчатка, пектиновые вещества, гемицеллюлоза;

  3. Запасающая. Запасные питательные вещества: крахмал, инулин, сахароза…

  4. Защитная. Сахароза у зимующих растений – основное защитное питательное вещество.

  5. Энергетическая. Углеводы – основной субстрат дыхания. При окислении 1 г. углеводов выделяется 17 кДж энергии.

2.2. Белки (Б).

Белки, или протеины – высокомолекулярные соединения, построенные из аминокислот.

Среди органических веществ по количеству в растениях на первом месте стоят не белки, а углеводы и жиры. Но именно Б. играют решающую роль в обмене веществ.

Функции белков в растениях.

  1. Структурная. В цитоплазме клеток доля белков составляет 2/3 от всей массы. Белки являются составной частью мембран;

  2. Запасающая. В растениях белков меньше, чем в животных организмах, но достаточно много. Так, в семенах злаков – 10-20 % сухой массы, в семенах бобовых и масличных культур – 20-40 %;

  3. Энергетическая. Окисление 1 г белка дает 17 кДж;

  4. Каталитическая. Ферменты клеток, выполняющие каталитическую функцию являются белковыми веществами;

  5. Транспортная. Осуществляют транспорт веществ через мембраны;

  6. Защитная. Белки как антитела.

Белки выполняют ряд других специфических функций.

2.2.1. Аминокислоты (А),

А – основные структурные единицы, из которых построены молекулы всех белковых веществ. Аминокислоты – производные кислот жирного или ароматического рядов, содержащие одновременно аминогруппу (-Nh3) и и карбоксильную группу (-СООН). Большинство природных А. имеет общую формулу

R-C-COOH

Nh3

А. могут содержать две и более аминогрупп, а также две карбоксильные группы (дикарбоновые А.). Природа радикала Rтакже различна: остатки жирных кислот, ароматические кольца, гетероциклы и др.

В природе присутствует около 200 А., а в построении Б. участвуют лишь 20, а также два амида- аспарагин и глутамин. Остальные А. называются свободными.

В Б. присутствуют только левые аминокислоты.

Из химических свойств А. отметим их амфотерность. В связи с амфотерным характером А. в водных растворах в зависимости от рН раствора диссоциация групп –СООН или –Nh3подавляется и А. обнаруживают свойства кислоты или щелочи.

(-) щелочная среда кислая среда заряд «+»

Н2О +R-СН-СОО-← ОН- +R-СН-СОО- + Н+ →R-СН-СООН

| | |

h3Nh4N+h4N+

Реакция раствора А., при которой наблюдается равенство «+» и «-» зарядов, называется изоэлектрической точкой (ИЭТ). В ИЭТ молекула А. электронейтральна и не передвигается в электрическом поле.

В состав Б. входят 20 А. и два амида-аспарагин и глутамин. Из 20 А. 8 являются незаменимыми, так как они не могут синтезироваться в организме человека и животных, а синтезируются растениями и микроорганизмами. К незаменимым аминокислотам относятся: валин; лизин; метионин; треонин; лейцин; изолейцин; триптофан; фенилаланин.

Представители А.

Аланин СН3-СН-СООН (6.02)

|

NН2

Цистеин СН2-СН-СООН (5.02)

| |

SHNН2

Аспарагиновая СООН-СН2-СН-СООН (2.97)

кислота |

NН2

Глутаминовая СООН-СН2-СН2-СН-СООН (3.22)

кислота |

NН2

Лизин СН2-СН2-СН2-СН2-СН-СООН (9.74)

| |

Nh3NН2

2.2.2. Состав и общие свойства белков.

Элементарный состав Б. довольно постоянен и почти все они содержат 50-60 % С, 20-24 % О, 6-7 % Н, 15-19 % N, а количество серы – от 0 до 3 %. В сложных Б. в небольшом количестве присутствуют фосфор, железо, цинк, медь…..

Свойства белков.

  1. Амфотерность. Б. содержат свободные Nh3и СООН группы и могут диссоциировать как кислоты и как основания (см. на примере А.). Они имеют ИЭТ. При реакции раствора равной или близкой ИЭТ белки характеризуются крайней неустойчивостью и легко выпадают из растворов в осадок при самых слабых внешних воздействиях. Это используется для выделения белков.

  2. Денатурация. Это потеря белком своих биологических свойств под влиянием различных внешних воздействий – высокая температура, действие кислот, солей тяжелых металлов, спирт, ацетон и др. (см. факторы коагуляции коллоидов). В результате воздействия в белковой молекуле происходит изменение строения полипептидных цепей, нарушается пространственная структура, но распад на аминокислоты не происходит. Например, при нагревании куриного яйца белок свертывается. Это необратимая денатурация; или абсолютно высушенные семена.

  3. Биологическая питательная ценность белков (БПЦ). Она определяется содержанием в Б. незаменимых А. Для этого исследуемый Б. сравнивают со стандартным Б., утвержденным ФАО (Международная продовольственная и с.-х. организация). Рассчитывают аминокислотный скор каждой незаменимой аминокислоты и выражают его в % содержание незаменимой А. в исследуемом белке (мг) х 100 %

Содержание незаменимой А. в стандарте (мг)

Те А., у которых аминокислотный скор меньше 100 %, называются лимитирующими. Во многих Б. вообще нет отдельных незаменимых А.. Например, триптофан отсутствует в белках яблок; во многих растительных Б. лимитирующими чаще всего бывают четыре незаменимых А. – лизин, триптофан, метионин и треонин. Б., не содержащие некоторых незаменимых А., называютсянеполноценными. Растительные Б.считаются неполноценными,а Б. животных –полноценными. На создание 1 кг животного Б. расходуется 8-12 кг растительного. По БПЦ белка можно оценить: 100 % - белки молока, яиц; другие животные Б – 90-95 %; Б. бобовых культур – 75-85 %; Б. зерновых культур - 60-70 %.

2.2.3. Строение белков.

Согласно полипептидной теории строения Б. (Данилевский, Фишер) аминокислоты взаимодействуют между собой с образованием пептидной связи – СО-NH-. Образуются ди-, три-, пенто- и полипептиды.

Молекула Б. построена из одной или нескольких связанных между собой полипептидных цепей, состоящих из аминокислотных остатков.

СН3 СН2SН СН3СН2SН

h3N-СН-СООН +h3N-СН-СООН →h3N-СН-СО-NН-СН-СООН + Н2О

Аланин цистеин аланилцистеин

(дипептид)

Структура Б.

Существуют различные уровни организации белковой молекулы и каждая молекула имеет свою пространственную структуру. Потеря или нарушение этой структуры вызывает нарушение выполняемой функции (денатурация).

Существуют различные уровни организации белковой молекулы.

  1. Первичная структура. Определяется количеством и последовательностью расположения аминокислот в молекуле Б. Первичная структура закреплена генетически. Молекула Б. имеет при этой структуре нитевидную форму. …….

Первичная структура гомологичных белков используется, в частности, в качестве критерия для установления родства между отдельными видами растений, животных и человека.

  1. Вторичная структура. Она представляет собой спиралевидную конфигурацию полипептидных цепей. Решающая роль в ее образовании принадлежит водороднымсвязям…… Однако между отдельными точками спирали могут возникать и дисульфидные связи (-S-S-), которые нарушают типичную спиральную структуру.

  2. Третичная структура. Это еще более высокий уровень организации Б. Она характеризует пространственную конфигурацию молекулы. Она обусловлена тем, что свободные карбоксильные, аминные, гидроксильные и др. группы боковых радикалов молекул аминокислот в полипептидных цепях взаимодействуют между собой с образованием амидных, сложноэфирных и солеобразных связей. Благодаря этому полипептидная цепь, имеющая определенную вторичную структуру, еще более складывается и упаковывается и приобретает специфическую пространственную конфигурацию. Существенную роль в ее образовании играют также водородные и дисульфидные связи. Формируется глобулярная (шаровидная) форма белков.

  3. Четвертичная структура. Она образуется при объединении нескольких белков с третичной структурой. Следует отметить, что функциональная активность того или иного белка определяется всеми четырьмя уровнями его организации.

2.2.4. Классификация белков.

По строению белки подразделяются на протеины, или простые Б., построенные только из остатков аминокислот, и протеиды, или сложные Б., состоящие из простого Б. и прочно связанного с ним какого-либо другого соединения небелковой природы. В зависимости от природы небелковой части протеиды делятся на подгруппы.

  1. Фосфопротеиды – белок соединен с фосфорной кислотой.

  2. Липопротеиды – белок соединен с фосфолипидами и др. липидами, например, в мембранах.

  3. Гликопротеиды – белок соединен с углеводами и их производными. Например, в составе растительных слизей.

  4. Металлопротеиды – содержат металлы, г.о. микроэлементы: Fe,Cu,Zn….. Это в основном металлосодержащие ферменты: каталаза, цитохромы и др.

  5. Нуклеопротеиды – одна из самых важных подгрупп. Здесь белок соединяется с нуклеиновыми кислотами.

Большое практическое значение имеет классификация протеинов по растворимости в различных растворителях. Различают следующие фракции Б.по растворимости:

  1. Альбумины – растворимые в воде. Типичный представитель – альбумин куриного яйца, многие белки – ферменты.

  2. Глобулины – белки, растворимые в слабых растворах нейтральных солей (4 или 10 % NaClили КCl).

  3. Проламины – растворяются в 70 % этиловом спирте. Например, глиадины пшеницы и ржи.

  4. Глютелины – растворяются в слабых растворах щелочей (0,2-2 %).

  5. Гистоны – низкомолекулярные Б. щелочного характера, содержащиеся в ядрах клеток.

Фракции Б. различаются по аминокислтному составу и биологической питательной ценности (БПЦ). По БПЦ фракции располагаются в последовательности: альбумины › глобулины ≈ глютелины › проламины. Содержание фракций зависит от вида растений, оно неодинаково в различных частях зерна. (см. частную биохимию с.-х. культур).

    1. Липиды (Л).

Липиды – жиры (Ж) и жироподобные вещества (липоиды) близкие по своим физико-химическим свойствам, но различающиеся по биологической роли в организме.

Липиды обычно разделяются на две группы: жиры и липоиды. Обычно к липидам относят и жирорастворимые витамины.

studfiles.net

Химический состав растений: Углеводы,

27 марта 2017 г.

Углеводы входят в состав клеток всех растений и животных и являются неотъемлемой частью обмена веществ живого организма. Высушенные растения содержат 70-80% углеводов.

По химической природе углеводы представляют собой углеводородные соединения, содержащие альдегидную, кетоновую и несколько гидроксильных групп, а также продукты их конденсации.

Моносахариды — это углеводы, молекулы которых состоят из 2—7 атомов углерода и карбонильной группы. В зависимости от количества атомов углерода их называют тетрозами, пентозами, гексозами. В растениях часто встречаются пентозы и гексозы. Наиболее распространены такие моносахара, как глюкоза, фруктоза, галактоза, манноза, сорбоза, арабиноза. Перечисленные сахара встречаются как в свободном состоянии в плодах, семенах, корнеклубнях и других частях растений, так и служат основой для сахаров более сложной структуры. Моносахариды хорошо растворимы в холодной воде, лучше в горячей, мало растворимы в этиловом спирте и других органических растворителях. В виде индивидуальных лекарственных веществ моносахариды используются редко, исключение составляет глюкоза. Чаще их используют как вспомогательные вещества в технологии порошков, пилюль, таблеток, других лекарственных форм.

Олигосахариды - углеводы, состоящие из двух-трех остатков молекул моносахаридов, чаще всего гексоз. Наиболее часто в растениях встречаются дисахариды. К ним относится сахароза - свекловичный или тростниковый сахар, состоящий из молекул глюкозы и фруктозы. Мальтоза - солодовый сахар, состоящий из молекул глюкозы. Лактоза - молочный сахар, состоящий из молекул глюкозы и галактозы. Раффиноза - сахар, построенный из молекул глюкозы, фруктозы и галактозы. Аналогично моносахаридам олигосахариды растворимы в холодной воде, мало растворимы в органических растворителях. Применяются в медицинской практике в основном в качестве вспомогательных веществ при изготовлении порошков и таблеток.

Полисахариды - это высокомолекулярные вещества, состоящие из большого числа остатков молекул моносахаридов. Для растения они являются строительным материалом и служат запасными питательными веществами.

Крахмал - важнейший полисахарид, содержащийся в корнях, корневищах, клубнях растений. Он состоит из амилозы и амилопектина, в основе которых лежит молекула глюкозы. В практике используют картофельный, кукурузный, рисовый и пшеничный крахмал. Крахмал применяют как для наружных целей в виде присыпок, микроклизм и дерматологических паст, так и внутрь в качестве обволакивающих средств в виде 2-5 % водных растворов. Является широко употребляемым вспомогательным веществом при изготовлении таблеток и гидрофильных основ.

При изготовлении раствора крахмала в холодной воде происходит растворение амилозы; амилопектин при этом только смачивается и набухает. Для перехода амилопектина в растворенное состояние необходимо наличие кипящей воды. Поэтому для получения крахмальной слизи крахмал предварительно взбалтывают в холодной воде, а затем эту смесь приливают тонкой струйкой в кипящую воду при постоянном помешивании и оставляют на 2-3 минуты до полного просветления раствора. При приготовлении водных извлечений из растительного сырья, содержащего в незначительном количестве крахмал, например, корни алтея, недопустимо использование в качестве экстрагента кипящей воды. В этом случае образование слизи происходит внутри клеток, вследствие чего поры клеточной стенки закупориваются, и выход каких-либо веществ из клетки и их экстракция не происходит. В этом случае целесообразно готовить вытяжки в режиме холодного настоя или настоя на кипящей водяной бане.

Инулин - высокомолекулярный углевод, растворимый в воде; из водных растворов осаждается спиртом. При кислотном гидролизе инулина образуются фруктофураноза и небольшое количество глюкопиранозы. Инулин в больших количествах содержится в подземных частях растений семейств Asteraceae и Campanulасеае, в которых он заменяет крахмал. Растения, содержащие инулин, используются для получения D-фруктозы. Богатое инулином сырье (корни цикория, клубни топинамбура) широко используется в составе различных пищевых добавок, применяемых при заболевании сахарным диабетом. Инулин хорошо растворяется в воде, поэтому экстрагирование его из растительных клеток происходит при любом режиме экстракции.

Гликоген - полисахарид, принимающий активное участие в углеводном обмене животного организма. Содержится в основном, в зернах кукурузы и грибах. Его основу составляет глюкоза.

Клетчатка - полисахарид, из которого строятся оболочки растительных клеток. Основной структурной единицей клетчатки является глюкоза. В пищеварительном тракте человека клетчатка практически не переваривается, но она стимулирует перистальтику органов желудочно-кишечного тракта и адсорбирует холестерин и эндотоксины.

Гемицеллюлоза — полисахарид, в основе которого лежат различные моносахариды. В отличие от клетчатки легче подвергается гидролизу, однако при экстрагировании различными растворителями, также как и клетчатка, в раствор не переходит и остается без изменений.

Слизи — полисахариды, содержащие в своем составе остатки молекул моносахаридов (ксилозы, арабинозы), кислоты и их соли. В холодной воде склонны к набуханию и частичному растворению, лучше растворяются в кипящей воде. Для извлечения из растений используют режим холодного настаивания или же настаивания на кипящей водяной бане. Применяют внутрь и наружно в качестве мягчительного отхаркивающего и обволакивающего средства. Наиболее часто употребляют слизь корней алтея, семян льна и подорожника блошного.

Пектины - высокомолекулярные гетерополисахариды растительного происхождения, главным компонентом которых является Д-галактуроновая кислота. Помимо нее возможно присутствие нейтральных полисахаридов - арабинанов, галактанов, арабогалактанов, связанных ковалентными связями с кислыми фрагментами пектинов. Пектиновые вещества в растениях присутствуют преимущественно в виде протопектина, составляющего большей частью межклеточное вещество и первичные стенки молодых растительных клеток. Они предохраняют растение от высыхания, повышая засухоустойчивость, влияют на прорастание семян.

Пектиновые вещества находятся в растении в состоянии динамического равновесия, превращаясь друг в друга. При созревании плодов нерастворимый протопектин переходит в растворимые формы, которые хорошо растворимы в воде, особенно горячей. Эти соединения склонны к набуханию, при растворении образуют вязкие растворы.

В медицинской практике пектины применяют для приготовления кровоостанавливающих препаратов, адсорбентов, особенно в отношении холестерина и тяжелых металлов. Они также оказывают противоязвенное и антивоспалительное действие. Камеди - это продукты, выделяющиеся в виде вязких субстанций из надрезов и трещин растений. По своей химической природе относятся к гетерополисахаридам - гексозанам, пепиазанам, полиуронидам. Камеди не растворимы в органических растворителях - спирте, эфире, хлороформе и др. По растворимости в воде делятся на три группы:

– полностью растворимые в воде (аравийская камедь)

– малорастворимые, но сильно набухающие (камеди сливы, вишни)

– нерастворимые в холодной воде, но частично растворимые при кипячении (камедь трогаконта).

Наиболее богаты камедями растения семейства бобовых. В медицине камеди используются как стабилизаторы суспензий и эмульсий. Некоторые из них, например, гуггул, применяется в Аюрведической медицине как сильнейший энтеросорбент холестерина.

Агар-агар — представляет собой полисахарид, состоящий из остатков галактозы и серной кислоты. Содержится в красных водорослях, хорошо растворим в горячей воде с образованием вязких растворов. В состав клеточных стенок многих водорослей входит полисахарид - альгиновая кислота. В медицинской практике агар-агар, а также как и альгиновая кислота и ее производные используются, как энтеросорбент холестерина и эндотоксинов, а также для приготовления мазевых основ и вегетарианских капсул.

 И.И. Ветров

Отрывок из статьи "Химический состав растений. Вещества первичного синтеза" из книги "Основы Аюрведической фитотерапии" (И.И. Ветров, Ю.В. Сорокина)

.

om-aditya.ru

Углеводы в растениях

Имеют очень широкое распространение. Клеточная оболочка состоит из нескольких У. Для отделения клеточных оболочек исследуемое растение тщательно измельчается. Полученное вещество обезжиривается сначала эфиром и затем кипящим алкоголем. Затем вещество обрабатывается разбавленной щелочью для удаления белков и растворимых в воде тел. Далее следует кипячение с водой для превращения крахмала в клейстер, который осахаривается солодовой вытяжкой. Отфильтрованное вещество снова подвергается действию слабой щелочи, тщательно промывается водой, отжимается, обрабатывается спиртом, эфиром и высушивается над серной кислотой. Полученное вещество служит исходным материалом для получения У., находящихся в клеточной оболочке. После кипячения с разбавленной 2—4% серной или соляной кислотой переходят в раствор бывшие в оболочках гемицеллюлозы. Они принадлежат к группе полисахаридов и при гидролизе дают различные монозы (глюкозы): ксилозу, арабинозу, галактозу, маннозу. Гемицеллюлозы получают названия в зависимости от полученных из них моноз: ксилан, арабан, галактан, маннан. Для получения из гемицеллюлоз соответствующих моноз отфильтрованный от клеточных оболочек раствор гемицеллюлоз в кислоте кипятят еще два часа с обратным холодильником. Затем кислую жидкость сливают в фарфоровые чашки и удаляют серную кислоту гидратом бария. Отфильтрованная светлая жидкость выпаривается на водяной бане при температуре не выше 80°. Полученный сироп обливается 95° спиртом, чашку покрывают стеклом и кипятят на водяной бане. Монозы переходят в раствор, который очищается животным углем и выпаривается над серной кислотой. Через некоторое время выкристаллизовываются монозы. Клеточные оболочки различных растений дают различные гемицеллюлозы. Для получения ксилозы удобнее всего брать кукурузные отруби, для арабинозы — ржаные и пшеничные отруби, a лактоза получается из семян лупинов, манноза из семян Phytelephas macrocarpa. В клеточных оболочках по удалении гемицеллюлоз остается целлюлоза, или клетчатка, с инкрустирующими веществами. Инкрустирующие вещества удаляются различными способами: кипячением в азотной кислоте с бертолетовой солью, действием смеси азотной и серной кислоты и т. д. Инкрустирующие вещества распадаются и переходят в раствор, целлюлоза же остается нерастворенной. Целлюлоза при гидролизе дает всегда глюкозу. Иногда при гидролизе целлюлозы, кроме d-глюкозы, получается еще манноза и ксилоза. Хлопчатая бумага состоит из клетчатки, дающей при гидролизе только глюкозу. Кофейные семена дают клетчатку, из которой при гидролизе, кроме d-глюкозы, получается еще и манноза. Наконец, клетчатка буковых опилок дает, кроме глюкозы, еще ксилозу. В клеточных оболочках некоторых грибов, кроме У., находится еще особое вещество, тождественное с хитином и названное микозином. Это вещество, так же как и хитин, при действии кислот дает глюкозамин и уксусную кислоту. Иногда клеточные оболочки состоят из особого вещества амилоида. Раствор йода в йодистом калии окрашивает амилоид в синий цвет, а клетчатку — в коричневый. Амилоид находится в семенах Paeonia officinalis, Tropaeolum majus, Impatiens balsamina и некоторых других. Для количественных определений клетчатки (нечистой) пользуются способом Геннеберга и Штомана. Способ не совсем точный, но достаточный для практических целей. Измельченные растения кипятят сначала с разбавленной серной кислотой и затем с разбавленной щелочью, остаток тщательно промывается, высушивается и взвешивается. В отдельных порциях определяется количество золы и белковых веществ, и полученные числа вычитаются из общей суммы найденного вещества. После У., находящихся в клеточных оболочках, как по распространению, так и практическому значению наибольшего внимания заслуживает крахмал. Он отлагается в растениях в виде особых крахмальных зерен разнообразной формы и величины. Для обнаруживания крахмальных зерен под микроскопом пользуются раствором йода, окрашивающим крахмальные зерна в синий цвет. Для количественного определения крахмала в растениях последние измельчаются, обезжириваются и нагреваются в воде для превращения крахмала в клейстер. В охлажденную до 65° жидкость прибавляется солодовый экстракт. Когда весь крахмал будет разрушен диастазом, жидкость отфильтровывается и к фильтрату прибавляется соляная кислота. После трехчасового нагревания подкисленного фильтрата на водяной бане в нем определяется фелинговой жидкостью количество глюкозы. Если в исследуемом растении были растворимые У., то их количество вычитают из найденного количества глюкозы и полученную разность перечисляют на крахмал. Крахмал встречается почти во всех частях растений. В зеленых листьях он является как первый видимый продукт усвоения атмосферной углекислоты. Только ничтожное число растений не содержит крахмала в листьях. Таковы Allium Сера, Allium fistulosum, Orchis militaris, Lactuca sativa и нек. друг. Большинство семян содержит в себе крахмал. Находится в клубнях, луковицах, в коре и т. д. В некоторых растениях запасный материал отлагается не в виде крахмала, а в виде инулина. Инулин находится в корнях Inula Helenium, Dahlia, Cichorium intybus, Helianthus tuberosus, Taraxacuip officinale, в клубнях Stachys tuberifera и друг. Он находится в виде раствора в клеточном соке и осаждается при действии спирта. Широко распространенный в животном царстве гликоген в растениях редко встречается: в различных грибах. В растениях широко распространены также глюкоза и фруктоза. Сравнительно в недавнее время доказано также широкое распространение сахарозы (тростникового сахара): находится в листьях и образуется также во время прорастания. Кроме перечисленных, встречаются еще различные У., но одни из них имеют ограниченное распространение, другие мало изучены. Раффиноза в сменах хлопчатника и зародышах пшеницы. Стахиоза в клубнях Stachys tuberifera. Лупеоза в сменах бобовых. Левозин в семенах злаков. Секалоза в стеблях незрелой ржи. Трегалоза в различных грибах. Цератиноза в вишневом клее. Крокоза в шафране. Дамбоза в некоторых сортах каучука. Сорбин получается при брожении ягод рябины. Мелицитоза в бриансонской манне. Молочный сахар в плодах Achras sapota. Ср. König, "Untersuchung der landwirthschaftlich und gewerblichwichtiger Stoffe"; Франкфурт, "Методы химического исследования веществ растительного происхождения"; Beilstein, "Handbuch der organischen Chemie"; Меншуткин, "Лекции органической химии".

В. Палладин.

Источник: Энциклопедический словарь Брокгауза и Ефрона на Gufo.me

gufo.me

Углеводы в растениях

имеют очень широкое распространение. Клеточная оболочка состоит из нескольких У. Для отделения клеточных оболочек исследуемое растение тщательно измельчается. Полученное вещество обезжиривается сначала эфиром и затем кипящим алкоголем. Затем вещество обрабатывается разбавленной щелочью для удаления белков и растворимых в воде тел. Далее следует кипячение с водой для превращения крахмала в клейстер, который осахаривается солодовой вытяжкой. Отфильтрованное вещество снова подвергается действию слабой щелочи, тщательно промывается водой, отжимается, обрабатывается спиртом, эфиром и высушивается над серной кислотой. Полученное вещество служит исходным материалом для получения У., находящихся в клеточной оболочке. После кипячения с разбавленной 2—4% серной или соляной кислотой переходят в раствор бывшие в оболочках гемицеллюлозы. Они принадлежат к группе полисахаридов и при гидролизе дают различные монозы (глюкозы): ксилозу, арабинозу, галактозу, маннозу. Гемицеллюлозы получают названия в зависимости от полученных из них моноз: ксилан, арабан, галактан, маннан. Для получения из гемицеллюлоз соответствующих моноз отфильтрованный от клеточных оболочек раствор гемицеллюлоз в кислоте кипятят еще два часа с обратным холодильником. Затем кислую жидкость сливают в фарфоровые чашки и удаляют серную кислоту гидратом бария. Отфильтрованная светлая жидкость выпаривается на водяной бане при температуре не выше 80°. Полученный сироп обливается 95° спиртом, чашку покрывают стеклом и кипятят на водяной бане. Монозы переходят в раствор, который очищается животным углем и выпаривается над серной кислотой. Через некоторое время выкристаллизовываются монозы. Клеточные оболочки различных растений дают различные гемицеллюлозы. Для получения ксилозы удобнее всего брать кукурузные отруби, для арабинозы — ржаные и пшеничные отруби, a лактоза получается из семян лупинов, манноза из семян Phytelephas macrocarpa. В клеточных оболочках по удалении гемицеллюлоз остается целлюлоза, или клетчатка, с инкрустирующими веществами. Инкрустирующие вещества удаляются различными способами: кипячением в азотной кислоте с бертолетовой солью, действием смеси азотной и серной кислоты и т. д. Инкрустирующие вещества распадаются и переходят в раствор, целлюлоза же остается нерастворенной. Целлюлоза при гидролизе дает всегда глюкозу. Иногда при гидролизе целлюлозы, кроме d-глюкозы, получается еще манноза и ксилоза. Хлопчатая бумага состоит из клетчатки, дающей при гидролизе только глюкозу. Кофейные семена дают клетчатку, из которой при гидролизе, кроме d-глюкозы, получается еще и манноза. Наконец, клетчатка буковых опилок дает, кроме глюкозы, еще ксилозу. В клеточных оболочках некоторых грибов, кроме У., находится еще особое вещество, тождественное с хитином и названное микозином. Это вещество, так же как и хитин, при действии кислот дает глюкозамин и уксусную кислоту. Иногда клеточные оболочки состоят из особого вещества амилоида. Раствор йода в йодистом калии окрашивает амилоид в синий цвет, а клетчатку — в коричневый. Амилоид находится в семенах Paeonia officinalis, Tropaeolum majus, Impatiens balsamina и некоторых других. Для количественных определений клетчатки (нечистой) пользуются способом Геннеберга и Штомана. Способ не совсем точный, но достаточный для практических целей. Измельченные растения кипятят сначала с разбавленной серной кислотой и затем с разбавленной щелочью, остаток тщательно промывается, высушивается и взвешивается. В отдельных порциях определяется количество золы и белковых веществ, и полученные числа вычитаются из общей суммы найденного вещества. После У., находящихся в клеточных оболочках, как по распространению, так и практическому значению наибольшего внимания заслуживает крахмал. Он отлагается в растениях в виде особых крахмальных зерен разнообразной формы и величины. Для обнаруживания крахмальных зерен под микроскопом пользуются раствором йода, окрашивающим крахмальные зерна в синий цвет. Для количественного определения крахмала в растениях последние измельчаются, обезжириваются и нагреваются в воде для превращения крахмала в клейстер. В охлажденную до 65° жидкость прибавляется солодовый экстракт. Когда весь крахмал будет разрушен диастазом, жидкость отфильтровывается и к фильтрату прибавляется соляная кислота. После трехчасового нагревания подкисленного фильтрата на водяной бане в нем определяется фелинговой жидкостью количество глюкозы. Если в исследуемом растении были растворимые У., то их количество вычитают из найденного количества глюкозы и полученную разность перечисляют на крахмал. Крахмал встречается почти во всех частях растений. В зеленых листьях он является как первый видимый продукт усвоения атмосферной углекислоты. Только ничтожное число растений не содержит крахмала в листьях. Таковы Allium Сера, Allium fistulosum, Orchis militaris, Lactuca sativa и нек. друг. Большинство семян содержит в себе крахмал. Находится в клубнях, луковицах, в коре и т. д. В некоторых растениях запасный материал отлагается не в виде крахмала, а в виде инулина. Инулин находится в корнях Inula Helenium, Dahlia, Cichorium intybus, Helianthus tuberosus, Taraxacuip officinale, в клубнях Stachys tuberifera и друг. Он находится в виде раствора в клеточном соке и осаждается при действии спирта. Широко распространенный в животном царстве гликоген в растениях редко встречается: в различных грибах. В растениях широко распространены также глюкоза и фруктоза. Сравнительно в недавнее время доказано также широкое распространение сахарозы (тростникового сахара): находится в листьях и образуется также во время прорастания. Кроме перечисленных, встречаются еще различные У., но одни из них имеют ограниченное распространение, другие мало изучены. Раффиноза в сменах хлопчатника и зародышах пшеницы. Стахиоза в клубнях Stachys tuberifera. Лупеоза в сменах бобовых. Левозин в семенах злаков. Секалоза в стеблях незрелой ржи. Трегалоза в различных грибах. Цератиноза в вишневом клее. Крокоза в шафране. Дамбоза в некоторых сортах каучука. Сорбин получается при брожении ягод рябины. Мелицитоза в бриансонской манне. Молочный сахар в плодах Achras sapota. Ср. König, "Untersuchung der landwirthschaftlich und gewerblichwichtiger Stoffe"; Франкфурт, "Методы химического исследования веществ растительного происхождения"; Beilstein, "Handbuch der organischen Chemie"; Меншуткин, "Лекции органической химии".

В. Палладин.

slovar.wikireading.ru

Функции углеводов в растениях

  1. Пластическая. Углеводы образуются в растениях в процессе фотосинтеза и служат исходным сырьем для синтеза всех других органических веществ;

  2. Структурная. Эту роль выполняют целлюлоза или клетчатка, пектиновые вещества, гемицеллюлоза;

  3. Запасающая. Запасные питательные вещества: крахмал, инулин, сахароза…

  4. Защитная. Сахароза у зимующих растений – основное защитное питательное вещество.

  5. Энергетическая. Углеводы – основной субстрат дыхания. При окислении 1 г. углеводов выделяется 17 кДж энергии.

2.2. Белки (Б).

Белки, или протеины – высокомолекулярные соединения, построенные из аминокислот.

Среди органических веществ по количеству в растениях на первом месте стоят не белки, а углеводы и жиры. Но именно Б. играют решающую роль в обмене веществ.

Функции белков в растениях.

  1. Структурная. В цитоплазме клеток доля белков составляет 2/3 от всей массы. Белки являются составной частью мембран;

  2. Запасающая. В растениях белков меньше, чем в животных организмах, но достаточно много. Так, в семенах злаков – 10-20 % сухой массы, в семенах бобовых и масличных культур – 20-40 %;

  3. Энергетическая. Окисление 1 г белка дает 17 кДж;

  4. Каталитическая. Ферменты клеток, выполняющие каталитическую функцию являются белковыми веществами;

  5. Транспортная. Осуществляют транспорт веществ через мембраны;

  6. Защитная. Белки как антитела.

Белки выполняют ряд других специфических функций.

2.2.1. Аминокислоты (А),

А – основные структурные единицы, из которых построены молекулы всех белковых веществ. Аминокислоты – производные кислот жирного или ароматического рядов, содержащие одновременно аминогруппу (-Nh3) и и карбоксильную группу (-СООН). Большинство природных А. имеет общую формулу

R-C-COOH

Nh3

А. могут содержать две и более аминогрупп, а также две карбоксильные группы (дикарбоновые А.). Природа радикала Rтакже различна: остатки жирных кислот, ароматические кольца, гетероциклы и др.

В природе присутствует около 200 А., а в построении Б. участвуют лишь 20, а также два амида- аспарагин и глутамин. Остальные А. называются свободными.

В Б. присутствуют только левые аминокислоты.

Из химических свойств А. отметим их амфотерность. В связи с амфотерным характером А. в водных растворах в зависимости от рН раствора диссоциация групп –СООН или –Nh3подавляется и А. обнаруживают свойства кислоты или щелочи.

(-) щелочная среда кислая среда заряд «+»

Н2О +R-СН-СОО-← ОН- +R-СН-СОО- + Н+ →R-СН-СООН

| | |

h3Nh4N+h4N+

Реакция раствора А., при которой наблюдается равенство «+» и «-» зарядов, называется изоэлектрической точкой (ИЭТ). В ИЭТ молекула А. электронейтральна и не передвигается в электрическом поле.

В состав Б. входят 20 А. и два амида-аспарагин и глутамин. Из 20 А. 8 являются незаменимыми, так как они не могут синтезироваться в организме человека и животных, а синтезируются растениями и микроорганизмами. К незаменимым аминокислотам относятся: валин; лизин; метионин; треонин; лейцин; изолейцин; триптофан; фенилаланин.

Представители А.

Аланин СН3-СН-СООН (6.02)

|

NН2

Цистеин СН2-СН-СООН (5.02)

| |

SHNН2

Аспарагиновая СООН-СН2-СН-СООН (2.97)

кислота |

NН2

Глутаминовая СООН-СН2-СН2-СН-СООН (3.22)

кислота |

NН2

Лизин СН2-СН2-СН2-СН2-СН-СООН (9.74)

| |

Nh3NН2

2.2.2. Состав и общие свойства белков.

Элементарный состав Б. довольно постоянен и почти все они содержат 50-60 % С, 20-24 % О, 6-7 % Н, 15-19 % N, а количество серы – от 0 до 3 %. В сложных Б. в небольшом количестве присутствуют фосфор, железо, цинк, медь…..

Свойства белков.

  1. Амфотерность. Б. содержат свободные Nh3и СООН группы и могут диссоциировать как кислоты и как основания (см. на примере А.). Они имеют ИЭТ. При реакции раствора равной или близкой ИЭТ белки характеризуются крайней неустойчивостью и легко выпадают из растворов в осадок при самых слабых внешних воздействиях. Это используется для выделения белков.

  2. Денатурация. Это потеря белком своих биологических свойств под влиянием различных внешних воздействий – высокая температура, действие кислот, солей тяжелых металлов, спирт, ацетон и др. (см. факторы коагуляции коллоидов). В результате воздействия в белковой молекуле происходит изменение строения полипептидных цепей, нарушается пространственная структура, но распад на аминокислоты не происходит. Например, при нагревании куриного яйца белок свертывается. Это необратимая денатурация; или абсолютно высушенные семена.

  3. Биологическая питательная ценность белков (БПЦ). Она определяется содержанием в Б. незаменимых А. Для этого исследуемый Б. сравнивают со стандартным Б., утвержденным ФАО (Международная продовольственная и с.-х. организация). Рассчитывают аминокислотный скор каждой незаменимой аминокислоты и выражают его в % содержание незаменимой А. в исследуемом белке (мг) х 100 %

Содержание незаменимой А. в стандарте (мг)

Те А., у которых аминокислотный скор меньше 100 %, называются лимитирующими. Во многих Б. вообще нет отдельных незаменимых А.. Например, триптофан отсутствует в белках яблок; во многих растительных Б. лимитирующими чаще всего бывают четыре незаменимых А. – лизин, триптофан, метионин и треонин. Б., не содержащие некоторых незаменимых А., называютсянеполноценными. Растительные Б.считаются неполноценными,а Б. животных –полноценными. На создание 1 кг животного Б. расходуется 8-12 кг растительного. По БПЦ белка можно оценить: 100 % - белки молока, яиц; другие животные Б – 90-95 %; Б. бобовых культур – 75-85 %; Б. зерновых культур - 60-70 %.

2.2.3. Строение белков.

Согласно полипептидной теории строения Б. (Данилевский, Фишер) аминокислоты взаимодействуют между собой с образованием пептидной связи – СО-NH-. Образуются ди-, три-, пенто- и полипептиды.

Молекула Б. построена из одной или нескольких связанных между собой полипептидных цепей, состоящих из аминокислотных остатков.

СН3 СН2SН СН3СН2SН

h3N-СН-СООН +h3N-СН-СООН →h3N-СН-СО-NН-СН-СООН + Н2О

Аланин цистеин аланилцистеин

(дипептид)

Структура Б.

Существуют различные уровни организации белковой молекулы и каждая молекула имеет свою пространственную структуру. Потеря или нарушение этой структуры вызывает нарушение выполняемой функции (денатурация).

Существуют различные уровни организации белковой молекулы.

  1. Первичная структура. Определяется количеством и последовательностью расположения аминокислот в молекуле Б. Первичная структура закреплена генетически. Молекула Б. имеет при этой структуре нитевидную форму. …….

Первичная структура гомологичных белков используется, в частности, в качестве критерия для установления родства между отдельными видами растений, животных и человека.

  1. Вторичная структура. Она представляет собой спиралевидную конфигурацию полипептидных цепей. Решающая роль в ее образовании принадлежит водороднымсвязям…… Однако между отдельными точками спирали могут возникать и дисульфидные связи (-S-S-), которые нарушают типичную спиральную структуру.

  2. Третичная структура. Это еще более высокий уровень организации Б. Она характеризует пространственную конфигурацию молекулы. Она обусловлена тем, что свободные карбоксильные, аминные, гидроксильные и др. группы боковых радикалов молекул аминокислот в полипептидных цепях взаимодействуют между собой с образованием амидных, сложноэфирных и солеобразных связей. Благодаря этому полипептидная цепь, имеющая определенную вторичную структуру, еще более складывается и упаковывается и приобретает специфическую пространственную конфигурацию. Существенную роль в ее образовании играют также водородные и дисульфидные связи. Формируется глобулярная (шаровидная) форма белков.

  3. Четвертичная структура. Она образуется при объединении нескольких белков с третичной структурой. Следует отметить, что функциональная активность того или иного белка определяется всеми четырьмя уровнями его организации.

2.2.4. Классификация белков.

По строению белки подразделяются на протеины, или простые Б., построенные только из остатков аминокислот, и протеиды, или сложные Б., состоящие из простого Б. и прочно связанного с ним какого-либо другого соединения небелковой природы. В зависимости от природы небелковой части протеиды делятся на подгруппы.

  1. Фосфопротеиды – белок соединен с фосфорной кислотой.

  2. Липопротеиды – белок соединен с фосфолипидами и др. липидами, например, в мембранах.

  3. Гликопротеиды – белок соединен с углеводами и их производными. Например, в составе растительных слизей.

  4. Металлопротеиды – содержат металлы, г.о. микроэлементы: Fe,Cu,Zn….. Это в основном металлосодержащие ферменты: каталаза, цитохромы и др.

  5. Нуклеопротеиды – одна из самых важных подгрупп. Здесь белок соединяется с нуклеиновыми кислотами.

Большое практическое значение имеет классификация протеинов по растворимости в различных растворителях. Различают следующие фракции Б.по растворимости:

  1. Альбумины – растворимые в воде. Типичный представитель – альбумин куриного яйца, многие белки – ферменты.

  2. Глобулины – белки, растворимые в слабых растворах нейтральных солей (4 или 10 % NaClили КCl).

  3. Проламины – растворяются в 70 % этиловом спирте. Например, глиадины пшеницы и ржи.

  4. Глютелины – растворяются в слабых растворах щелочей (0,2-2 %).

  5. Гистоны – низкомолекулярные Б. щелочного характера, содержащиеся в ядрах клеток.

Фракции Б. различаются по аминокислтному составу и биологической питательной ценности (БПЦ). По БПЦ фракции располагаются в последовательности: альбумины › глобулины ≈ глютелины › проламины. Содержание фракций зависит от вида растений, оно неодинаково в различных частях зерна. (см. частную биохимию с.-х. культур).

    1. Липиды (Л).

Липиды – жиры (Ж) и жироподобные вещества (липоиды) близкие по своим физико-химическим свойствам, но различающиеся по биологической роли в организме.

Липиды обычно разделяются на две группы: жиры и липоиды. Обычно к липидам относят и жирорастворимые витамины.

studfiles.net

Функции углеводов в растениях

  1. Пластическая. Углеводы образуются в растениях в процессе фотосинтеза и служат исходным сырьем для синтеза всех других органических веществ;

  2. Структурная. Эту роль выполняют целлюлоза или клетчатка, пектиновые вещества, гемицеллюлоза;

  3. Запасающая. Запасные питательные вещества: крахмал, инулин, сахароза…

  4. Защитная. Сахароза у зимующих растений – основное защитное питательное вещество.

  5. Энергетическая. Углеводы – основной субстрат дыхания. При окислении 1 г. углеводов выделяется 17 кДж энергии.

2.2. Белки (Б).

Белки, или протеины – высокомолекулярные соединения, построенные из аминокислот.

Среди органических веществ по количеству в растениях на первом месте стоят не белки, а углеводы и жиры. Но именно Б. играют решающую роль в обмене веществ.

Функции белков в растениях.

  1. Структурная. В цитоплазме клеток доля белков составляет 2/3 от всей массы. Белки являются составной частью мембран;

  2. Запасающая. В растениях белков меньше, чем в животных организмах, но достаточно много. Так, в семенах злаков – 10-20 % сухой массы, в семенах бобовых и масличных культур – 20-40 %;

  3. Энергетическая. Окисление 1 г белка дает 17 кДж;

  4. Каталитическая. Ферменты клеток, выполняющие каталитическую функцию являются белковыми веществами;

  5. Транспортная. Осуществляют транспорт веществ через мембраны;

  6. Защитная. Белки как антитела.

Белки выполняют ряд других специфических функций.

2.2.1. Аминокислоты (А),

А – основные структурные единицы, из которых построены молекулы всех белковых веществ. Аминокислоты – производные кислот жирного или ароматического рядов, содержащие одновременно аминогруппу (-Nh3) и и карбоксильную группу (-СООН). Большинство природных А. имеет общую формулу

R-C-COOH

Nh3

А. могут содержать две и более аминогрупп, а также две карбоксильные группы (дикарбоновые А.). Природа радикала Rтакже различна: остатки жирных кислот, ароматические кольца, гетероциклы и др.

В природе присутствует около 200 А., а в построении Б. участвуют лишь 20, а также два амида- аспарагин и глутамин. Остальные А. называются свободными.

В Б. присутствуют только левые аминокислоты.

Из химических свойств А. отметим их амфотерность. В связи с амфотерным характером А. в водных растворах в зависимости от рН раствора диссоциация групп –СООН или –Nh3подавляется и А. обнаруживают свойства кислоты или щелочи.

(-) щелочная среда кислая среда заряд «+»

Н2О +R-СН-СОО-← ОН- +R-СН-СОО- + Н+ →R-СН-СООН

| | |

h3Nh4N+h4N+

Реакция раствора А., при которой наблюдается равенство «+» и «-» зарядов, называется изоэлектрической точкой (ИЭТ). В ИЭТ молекула А. электронейтральна и не передвигается в электрическом поле.

В состав Б. входят 20 А. и два амида-аспарагин и глутамин. Из 20 А. 8 являются незаменимыми, так как они не могут синтезироваться в организме человека и животных, а синтезируются растениями и микроорганизмами. К незаменимым аминокислотам относятся: валин; лизин; метионин; треонин; лейцин; изолейцин; триптофан; фенилаланин.

Представители А.

Аланин СН3-СН-СООН (6.02)

|

NН2

Цистеин СН2-СН-СООН (5.02)

| |

SHNН2

Аспарагиновая СООН-СН2-СН-СООН (2.97)

кислота |

NН2

Глутаминовая СООН-СН2-СН2-СН-СООН (3.22)

кислота |

NН2

Лизин СН2-СН2-СН2-СН2-СН-СООН (9.74)

| |

Nh3NН2

2.2.2. Состав и общие свойства белков.

Элементарный состав Б. довольно постоянен и почти все они содержат 50-60 % С, 20-24 % О, 6-7 % Н, 15-19 % N, а количество серы – от 0 до 3 %. В сложных Б. в небольшом количестве присутствуют фосфор, железо, цинк, медь…..

Свойства белков.

  1. Амфотерность. Б. содержат свободные Nh3и СООН группы и могут диссоциировать как кислоты и как основания (см. на примере А.). Они имеют ИЭТ. При реакции раствора равной или близкой ИЭТ белки характеризуются крайней неустойчивостью и легко выпадают из растворов в осадок при самых слабых внешних воздействиях. Это используется для выделения белков.

  2. Денатурация. Это потеря белком своих биологических свойств под влиянием различных внешних воздействий – высокая температура, действие кислот, солей тяжелых металлов, спирт, ацетон и др. (см. факторы коагуляции коллоидов). В результате воздействия в белковой молекуле происходит изменение строения полипептидных цепей, нарушается пространственная структура, но распад на аминокислоты не происходит. Например, при нагревании куриного яйца белок свертывается. Это необратимая денатурация; или абсолютно высушенные семена.

  3. Биологическая питательная ценность белков (БПЦ). Она определяется содержанием в Б. незаменимых А. Для этого исследуемый Б. сравнивают со стандартным Б., утвержденным ФАО (Международная продовольственная и с.-х. организация). Рассчитывают аминокислотный скор каждой незаменимой аминокислоты и выражают его в % содержание незаменимой А. в исследуемом белке (мг) х 100 %

Содержание незаменимой А. в стандарте (мг)

Те А., у которых аминокислотный скор меньше 100 %, называются лимитирующими. Во многих Б. вообще нет отдельных незаменимых А.. Например, триптофан отсутствует в белках яблок; во многих растительных Б. лимитирующими чаще всего бывают четыре незаменимых А. – лизин, триптофан, метионин и треонин. Б., не содержащие некоторых незаменимых А., называютсянеполноценными. Растительные Б.считаются неполноценными,а Б. животных –полноценными. На создание 1 кг животного Б. расходуется 8-12 кг растительного. По БПЦ белка можно оценить: 100 % - белки молока, яиц; другие животные Б – 90-95 %; Б. бобовых культур – 75-85 %; Б. зерновых культур - 60-70 %.

2.2.3. Строение белков.

Согласно полипептидной теории строения Б. (Данилевский, Фишер) аминокислоты взаимодействуют между собой с образованием пептидной связи – СО-NH-. Образуются ди-, три-, пенто- и полипептиды.

Молекула Б. построена из одной или нескольких связанных между собой полипептидных цепей, состоящих из аминокислотных остатков.

СН3 СН2SН СН3СН2SН

h3N-СН-СООН +h3N-СН-СООН →h3N-СН-СО-NН-СН-СООН + Н2О

Аланин цистеин аланилцистеин

(дипептид)

Структура Б.

Существуют различные уровни организации белковой молекулы и каждая молекула имеет свою пространственную структуру. Потеря или нарушение этой структуры вызывает нарушение выполняемой функции (денатурация).

Существуют различные уровни организации белковой молекулы.

  1. Первичная структура. Определяется количеством и последовательностью расположения аминокислот в молекуле Б. Первичная структура закреплена генетически. Молекула Б. имеет при этой структуре нитевидную форму. …….

Первичная структура гомологичных белков используется, в частности, в качестве критерия для установления родства между отдельными видами растений, животных и человека.

  1. Вторичная структура. Она представляет собой спиралевидную конфигурацию полипептидных цепей. Решающая роль в ее образовании принадлежит водороднымсвязям…… Однако между отдельными точками спирали могут возникать и дисульфидные связи (-S-S-), которые нарушают типичную спиральную структуру.

  2. Третичная структура. Это еще более высокий уровень организации Б. Она характеризует пространственную конфигурацию молекулы. Она обусловлена тем, что свободные карбоксильные, аминные, гидроксильные и др. группы боковых радикалов молекул аминокислот в полипептидных цепях взаимодействуют между собой с образованием амидных, сложноэфирных и солеобразных связей. Благодаря этому полипептидная цепь, имеющая определенную вторичную структуру, еще более складывается и упаковывается и приобретает специфическую пространственную конфигурацию. Существенную роль в ее образовании играют также водородные и дисульфидные связи. Формируется глобулярная (шаровидная) форма белков.

  3. Четвертичная структура. Она образуется при объединении нескольких белков с третичной структурой. Следует отметить, что функциональная активность того или иного белка определяется всеми четырьмя уровнями его организации.

2.2.4. Классификация белков.

По строению белки подразделяются на протеины, или простые Б., построенные только из остатков аминокислот, и протеиды, или сложные Б., состоящие из простого Б. и прочно связанного с ним какого-либо другого соединения небелковой природы. В зависимости от природы небелковой части протеиды делятся на подгруппы.

  1. Фосфопротеиды – белок соединен с фосфорной кислотой.

  2. Липопротеиды – белок соединен с фосфолипидами и др. липидами, например, в мембранах.

  3. Гликопротеиды – белок соединен с углеводами и их производными. Например, в составе растительных слизей.

  4. Металлопротеиды – содержат металлы, г.о. микроэлементы: Fe,Cu,Zn….. Это в основном металлосодержащие ферменты: каталаза, цитохромы и др.

  5. Нуклеопротеиды – одна из самых важных подгрупп. Здесь белок соединяется с нуклеиновыми кислотами.

Большое практическое значение имеет классификация протеинов по растворимости в различных растворителях. Различают следующие фракции Б.по растворимости:

  1. Альбумины – растворимые в воде. Типичный представитель – альбумин куриного яйца, многие белки – ферменты.

  2. Глобулины – белки, растворимые в слабых растворах нейтральных солей (4 или 10 % NaClили КCl).

  3. Проламины – растворяются в 70 % этиловом спирте. Например, глиадины пшеницы и ржи.

  4. Глютелины – растворяются в слабых растворах щелочей (0,2-2 %).

  5. Гистоны – низкомолекулярные Б. щелочного характера, содержащиеся в ядрах клеток.

Фракции Б. различаются по аминокислтному составу и биологической питательной ценности (БПЦ). По БПЦ фракции располагаются в последовательности: альбумины › глобулины ≈ глютелины › проламины. Содержание фракций зависит от вида растений, оно неодинаково в различных частях зерна. (см. частную биохимию с.-х. культур).

    1. Липиды (Л).

Липиды – жиры (Ж) и жироподобные вещества (липоиды) близкие по своим физико-химическим свойствам, но различающиеся по биологической роли в организме.

Липиды обычно разделяются на две группы: жиры и липоиды. Обычно к липидам относят и жирорастворимые витамины.

studfiles.net


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта