У растений есть рибосомы. Рибосомы эукариот и прокариот, сходства и различия

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Секреты жизни в рибосомах бактерий. У растений есть рибосомы


Рибосомы эукариот и прокариот, сходства и различия

Рибосома (от «РНК» и soma – тело) – клеточный немембранный органоид, осуществляющий трансляцию (считывание кода мРНК и синтез полипептидов). Молекула белка рождается в цитоплазме клетки на свободных рибосомах или на цистернах транспортно-накопительной системы. Специальные белки шапероны, укладывают растущую цепочку в ажурную конструкцию. Затем, если нужно, белок достраивают. Различают 2 основных типа рибосом – прокариотные и эукариотные. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот. Рибосомы эукариот расположены на мембранах эндоплазматической сети (гранулярная ЭС) и в цитоплазме. Прикрепленные к мембранам рибосомы синтезируют белок «на экспорт», а свободные рибосомы – для нужд самой клетки.

Рибосомы прокариот

У прокариот генетический материал не изолирован от аппарата трансляции, и прокариотные рибосомы занимают почти весь цитоплазматический компартмент. Относительное (по сравнению с другими органеллами) количество рибосом у прокариотов выше, чем у эукариотов, и это обеспечивает более высокую активность их метаболизма, а также более высокую скорость их роста и размножения. Рибосомы — это множественные генеральные микрокомпартменты, которые находятся в цитоплазматическом компартменте и выполняют роль универсальной белоксинтезирующей органеллы. За исключением редких случаев, когда полипептиды синтезируются нерибосомным путем, аминокислоты связываются в линейную цепь только благодаря ферментативной активности рибосом.

Биосинтетический процесс трансляции уникален, поскольку информация о порядке расположения нуклеотидных триплетов (код мРНК) переводится в информацию о порядке расположения аминокислот (код полипептида). Посредником между этими кодами, или «адаптером» (англ. adapter — звукосниматель аудиосистемы) является тРНК. Она доставляет аминокислоту в пептидилтрансферазный центр и одновременно с этим распознает ее кодон в молекуле мРНК.

Рибосомы служат универсальным аппаратом для синтеза белка, без которого невозможно существование клеточных форм жизни. Собственным аппаратом трансляции обладают не только облигатные внутриклеточные паразиты, но и полу автономные органеллы бактериального происхождения — митохондрии и пластиды. Центральную роль в организации рибосомы играют рибосомные РНК, нуклеотидная последовательность которых содержит и высоко консервативные, и вариабельные участки. С учетом этого именно структура рРНК была избрана в качестве универсального критерия для реконструкции филогении клеточных форм жизни.

Типы рибосом. Рибосома — это мультимолекулярный комплекс, состоящий из рРНК и рибосомных белков в массовом соотношении 2:1. В рабочем состоянии рибосома, или «моносома» представляет собой частицу диаметром 25 нм, которая состоит из двух субъединиц — большой L-субъединицы (от англ. large) и малой S-субъединицы (от англ. small). Они имеют разный состав, разную морфологию и выполняют разные функции.

По количественным признакам все рибосомы подразделяются на два типа — прокариотный и эукариотный. Прокариотная рибосома имеет коэффициент седиментации 70S (субъединицы 50S и 30S), а эукариотная рибосома —80S (субъединицы 60S и 40S). Прокариотная рибосома содержит три молекулы рРНК — 23S (~3000 нуклеотидов), 16S (~1500 нуклеотидов) и 5S (~120 нуклеотидов), а также 53-65 однокопий-ных белков. Эукариотная рибосома устроена сложнее прокариотной. Она содержит не три, а четыре молекулы рРНК —28S (4000-6000 нуклеотидов), 18S (1750-1850 нуклеотидов), 5S (~120 нуклеотидов) и 5,8S (~150 нуклеотидов), а также более богатый набор однокопийных белков (70-84).

Механизм трансляции. Хотя современные представления об архитектуре рибосом и процессе трансляции сложились на основе данных, полученных на бактериях, доказано, что работа рибосомы универсальна у всех трех глобальных доменов. Результаты рентген-структурного анализа с уровнем разрешения 5,5А и криоэлектронной микроскопии дали для рибосомы Е. coli картину геометрического тела сложнейшей конфигурации, состоящего из взаимно переплетенных молекул рРНК и белка. Внутри него, а также на его поверхности имеются каналы, борозды, углубления, площадки, выступы и мостики.

Субстратами для биосинтеза полипептидной цепи служат аминоацил-тРНК, причем для каждой аминокислоты существует своя тРНК и своя аминоацил-тРНК-синтетаза. Специфические тРНК (~75 нуклеотидов) различаются по первичной структуре, однако все они имеют стандартную Г-образную третичную структуру. На дистальном конце длинного «локтя» находится антикодон, комплементарный триплету мРНК, который кодирует специфическую аминокислоту. На дистальном конце короткого «локтя» всех тРНК находится 3'-концевая последовательность ССА. К аденозину (по его 2'- или З'-гидроксильному радикалу) присоединяется а-карбоксильная группа специфической аминокислоты. В ходе трансляции антикодон длинного «локтя» распознает на S-субъединице кодон мРНК, а короткий «локоть» с аминокислотой взаимодействует на L-субъединице с пептидилтрансферазным центром, который катализирует образование пептидной связи.

Долгое время считали, что трансляцию обеспечивают рибосомные белки, а рРНК служит лишь каркасом для их сборки. Однако в настоящее время доказано, что роль главного катализатора трансляции играет рРНК, а белки выполняют структурную функцию.

Между субъединицами рибосомы существует разделение труда. Малая субъединица содержит декодирующий центр, который обеспечивает взаимодействие между мРНК и тРНК. Большая субъединица содержит пептидилтрансферазный центр. В организации декодирующего центра участвуют 16S рРНК и рибосомные белки, в то время как пептидилтрансферазный центр образован только 23S рРНК. Последовательность Шайна-Дальгарно (J. Shine, L. Dalgarno), предшествующая стартовому кодону мРНК, спаривается с комплементарной последовательностью на З'-конце 16S рРНК. Антикодоновый конец тРНК также взаимодействует с 16S рРНК, тогда как акцепторный конец тРНК взаимодействует с 23S рРНК.

Рибосома шаг за шагом образует пептидные связи в направлении от N-конца к С-концу. Для инициации полипептидной цепи у бактерий используется особая аминокислота — формилметионин, которая доставляется в рибосому с помощью специфической тРНК. Происходит спонтанная пептидилтрансферазная реакция: нуклеофильная а-аминогруппа аминоацил-тРНК атакует электрофильную карбонильную группу (*) в сложной эфирной связи между пептидом (или формил-метиониновой затравкой) и другой тРНК. Молекулы 16S рРНК и 23S рРНК образуют три сайта —Р, А и Е, каждый из которых представлен субсайтами в обеих субъединицах рибосомы. P-сайт (от англ. peptide) связывает пептидил-тРНК, A-сайт (от англ. amino acid) связывает аминоацил-тРНК, а Е-сайт (от англ. exit) связывает деацилированную тРНК.

Рабочий цикл рибосомы состоит из четырех этапов, или состояний.

1. В исходном состоянии Р/Р-А/А пептидил-тРНК находится в P-сайте, аминоацил-тРНК в A-сайте, Е-сайт свободен. Специфическая аминоацил-тРНК связывается с A-сайтом при помощи фактора элонгации EF-Tu. Для этого используется энергия гидролиза ГТФ. Тройственный комплекс аминоацил-тРНК/(ЕГ-Ти) × ГТФ прочно связывается с рибосомой только если антикодон комплементарен кодону в декодирующем субсайте А.

2. В «претранслокационном» состоянии Р/Р-А/А происходит пептидилтрансфераз-ная реакция. При этом аминокислота, находящаяся в A-сайте, образует связь с пептидом (или формилметионином, если цепь инициируется), который находится в P-сайте. В обоих случаях дипептид или полипептидная цепь, удлиннившаяся на один аминокислотный остаток, переносятся в А-сайт. Чтобы следующая молекула аминоацил-тРНК могла попасть в A-сайт, пептидил-тРНК должна освободить его и перейти в P-сайт. Этот процесс называется «транслокацией». При транслокации взаимодействующие друг с другом тРНК и мРНК перемещаются внутри рибосомы на расстояние до 50А.

3. В «гибридном транслокационном» состоянии Е/Р-Р/А связанный с пептидом конец тРНК перемещается на большой субъединице из А-субсайта в Р-субсайт, а акцепторный ССА-конец деацилированной тРНК перемещается из Р-субсайта в Е-субсайт. Этот этап транслокации напоминает «эффект домино» и зависит от рРНК. Его механизм еще неизвестен.

4. В «однородном транслокационном» состоянии Е/Е-Р/Р антикодоновый конец тРНК, связанной с пептидом, перемещается на малой субъединице из А-субсайта в ее же Р-субсайт, а антикодоновый конец деацилированной тРНК перемещается из Р-субсайта в Е-субсайт. В результате этого мРНК сдвигается в малой субъединице на один кодон. Теперь A-сайт может принять следующую молекулу аминоацил-тРНК, а деацилированная молекула тРНК может покинуть рибосому. Хотя этот этап транслокации зависит от рРНК, он ускоряется фактором элонгации EF-G, который использует энергию гидролиза ГТФ.

Действие многих антибиотиков (канамицина, неомицина, олеандомицина, стрептомицина, тетрациклина, хлорамфеникола и др.) основано на их связывании с факторами элонгации и сайтами, которые образует рРНК.

Структура рибосом эукариот

Рибосомы состоят из двух различных субчастиц, каждая из которых построена из рибосомной РНК и многих белков. Рибосомы и их субчастицы обычно классифицируют не по массам, а в соответствии с коэффициентами седиментации. Так. коэффициент седиментации полной эукариотической рибосомы составляет около 80 единиц Сведберга (80S), а коэффициент седиментации ее субчастиц составляет 40S и 60S.

Меньшая 40S-субчастица состоит из одной молекулы 18S-рРНК и 30-40 белковых молекул. Большая 60S-субчастица содержит три типа рРНК с коэффициентами седиментации 5S, 5,8S и 28S и 40-50 белков (например, рибосомы гепатоцитов крысы включают 49 белков). В присутствии мРНК (mRNA) субчастицы объединяются с образованием полной рибосомы, масса которой примерно в 650 раз больше массы молекулы гемоглобина. Рибосомы имеют диаметр 20-200 нм и их можно видеть в электронный микроскоп. Структурная организация рибосом полностью не выяснена. Однако известно, что молекулы мРНК проходит через щель около характерной структуры в виде «рога» на малой субчастице, причем эта щель ориентирована как раз в промежуток между двумя субчастицами. тРНК также связываются вблизи этого участка. Для сравнения на схеме в том же масштабе показана молекула тРНК.

В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков.

Каждая рибосома состоит из двух субчастиц - большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.  Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение.

В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи.  В эукариотических клетках отчетливо видны две популяции рибосом - свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.  В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5'- к 3'-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК В этом процессе рибосома функционирует как циклически работающая мол. машина.

Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на поверхности, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, которые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в основном на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме может быть предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.

Отличия в строении рибосом прокариотов и эукариотов

Прокариотическая клетка содержит несколько тысяч рибосом, в эукариотической клетке их в десятки раз больше. Рибосомы про- и эукариот отличаются по размерам (у прокариот они мельче, чем у эукариот), но принцип их строения одинаков. Состоят рибосомы из двух частей: большой и малой субъединиц. В их состав кроме белков входят РНК. Эти РНК получили название рибосомных, рРНК.

Величину рибосом и составляющих их частей принято указывать в специальных единицах - S (Сведберг). S - это коэффициент седиментации, который характеризует скорость перемещения молекул или частиц в центробежном поле при центрифугировании. Скорость перемещения зависит от массы частиц, их размеров и формы. Величина рибосом прокариот и эукариот - 70S и 80S соответственно.

В рибосомы прокариот входит три разных вида молекул рРНК (16S рРНК - в малую; 23S рРНК и 5S рРНК - в большую субъединицы) и 55 различных белков (21 - в малую и 34 - в большую субъединицы). В состав эукариотических рибосом входят четыре вида молекул рРНК (18S рРНК - в малую; 28S рРНК, 5.8S рРНК и 5S рРНК - в большую субъединицы) и около 80 белков. В митохондриях и хлоропластах также обнаружены рибосомы. Они характеризуются теми же свойствами и параметрами, что и рибосомы прокариот.

Молекулы рРНК взаимодействуют друг с другом и с белками, образуя компактные структуры - субъединицы рибосом. У эукариот соединение рРНК с рибосомными белками происходит в ядрышке. В центре ядрышка расположен участок хромосомы, в котором находятся гены рибосомных РНК. Синтезированные рРНК соединяются с рибосомными белками, которые поступили через ядерные поры из цитоплазмы, где они были синтезированы на уже существовавших рибосомах. Они соединяются с молекулами рРНК, образуя субъединицы рибосом. Готовые субъединицы через поры выходят в цитоплазму, где будут участвовать в синтезе белка.

Таким образом, ядрышко - это не только место синтеза рибосомных РНК, но и место сборки субъединиц рибосом. Рибосомы нужны в огромных количествах, поскольку в клетке постоянно идут процессы синтеза белка. Поэтому на хромосомах в тех местах, где расположены гены рРНК, находится громадное скопление молекул: синтезируемые рРНК, пришедшие из цитоплазмы рибосомные белки, собираемые и готовые суъединицы рибосом. Понятно, почему ядрышко является самой плотной частью ядра и клетки. Размеры ядрышка зависят от функционального состояния клеток. Если в клетке активно идут процессы биосинтеза белков, ядрышко может занимать до 25% от объема ядра.

Ядрышко образуется на тех хромосомах, где есть гены рРНК. Эти участки хромосом называются ядрышковыми организаторами. Например, у человека десять хромосом способны образовывать ядрышки. Каждый ядрышковый организатор представляет собой огромную хроматиновую петлю, так как содержит несколько десятков и даже сотен одинаковых последовательностей - генов рРНК. Эти последовательности расположены друг за другом и синтез рРНК идет одновременно со всех копий. Таким образом увеличивается интенсивность синтеза рРНК, на долю которой приходится более 90 % всей РНК клетки. Ядрышки, образованные разными хромосомами, очень часто сливаются друг с другом. В ядрах клеток человека обычно наблюдают одно, два или три ядрышка.

При начале трансляции малая субъединица рибосомы связывается с определенным участком иРНК, к ним присоединяется тРНК с аминокислотой, а затем с этим комплексом связывается большая субъединица. После этого рибосома готова к выполнению своей функции - синтезу белка. Белки рибосом способны выполнять свои функции только в составе рибосомы -только в комплексе с рРНК и другими рибосомными белками они приобретают небходимую конформацию.

Эукариотная транскрипция разделена с трансляцией в пространстве и времени. Транскрипция вместе с процессингом РНК происходят в нуклеоплазме, а трансляция, в зависимости от типа клеток, осуществляется преимущественно в цитозоле или на шероховатом эндогшазматическом ретикулуме (англ. rough endoplasmic reticulun, RER). Интегральные белки встраиваются в мембрану RER котрансляционно, а секретируемые белки выделяются в полость цистерны RER через тороидальный переходник между выходным порталом рибосомы и мембранным транслоконом (его образует белок Sec61).

У прокариотов не существует пространственно-временной изоляции процессов транскрипции и трансляции. Цитоплазматические рибосомы присоединяются к 5'-концу мРНК еще до завершения образования короткоживущего транскрипта. Котрансляционная инсерция интегральных белков известна только на примере «шероховатых тилакоидов» цианобактерий. Гидрофобные белки при помощи SRP-частиц презентируются транс локону — компоненту генеральной системы секреции Sec.

Транспортная РНК, напоминает в развернутой форме клеверный лист. Аминокислота прикреплена к “черешку клеверного листа”, а на вершине листа находится триплет, взаимодействующий с кодоном в иРНК - антикодон. Роль "заглавной буквы" при трансляции аминокислотной последовательности у прокариот выполняет измененная форма аминокислоты метионина - формилметионин. Ей соответствует кодон АУГ. После завершения синтеза полипептидной цепи формилметионин отщепляется и в готовом белке отсутствует. В том случае, когда триплет АУГ стоит внутри гена, он кодирует неизмененную аминокислоту метионин.

Если кодон и антикодон комплементарны друг другу, то рибосома передвигается относительно иРНК, и следующий кодон становится доступным для взаимодействия со следующей тРНК. Происходит отсоединение первой аминокислоты от первой тРНК и присоединение ее к аминокислоте, которую принесла вторая тРНК. Во время передвижения рибосомы относительно иРНК первая тРНК, свободная от аминокислоты, покидает рибосому. Вторая тРНК остается, соединенная с пептидом из двух аминокислотных остатков, и в рибосому входит третий кодон иРНК для взаимодействия с очередной тРНК и т.д.

Когда в рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА), ни одна тРНК не может занять место напротив него, так как не существует тРНК с антикодонами, комплементарными этим последовательностям. Полипептидной цепи не к чему присоединиться и она покидает рибосому. Синтез белка завершен. Таким образом, рибосома соединяет в одном месте участников трансляции: иРНК и аминокислоты в комплексе с тРНК, при этом молекулы РНК так ориентированы относительно друг друга, что становится возможным кодон-антикодоновое взаимодействие. Образование пептидной связи контролируется правильностью кодон-антикодонового взаимодействия. Рибосома осуществляет образование пептидной связи и перемещение относительно иРНК.

Молекула информационной РНК взаимодействует не с одной рибосомой, а с несколькими. Каждая рибосома проходит весь путь от "заглавного" кодона до терминирующего, синтезируя одну молекулу белка. Чем больше рибосом пройдет по иРНК, тем больше молекул белка будет синтезировано. Молекула информационной РНК с несколькими рибосомами похожа на нитку бус и называется полирибосомой, или полисомой.



biofile.ru

строение и функции, методы выявления

Изучение основных процессов, которые поддерживают существование органической жизни, ведется в разных направлениях. Львиная доля исследований приходится на молекулярную биологию и микробиологию. Как уже сейчас ясно, здоровье и жизнь многоклеточных сложных организмов по большей части зависит от тех операций, которые протекают внутри клеток. Изучение внутриклеточных метаморфоз – трудоемкое занятие, поскольку клетка многоклеточного эукариота не может жить жизнью отдельного организма. Жизнь эукариотов изучается, в том числе, и на базе знаний о простейших и бактерий. Так, рибосомы простейших бактерий очень похожи и по строению, и по функциям с ядерными клетками.

Прокариотическая рибосома

Бактериальная рибосома

Изучая рибосомы в составе бактерий, человек получает не только важные знания о сложном процессе синтеза белка из аминокислот в органической клетке, но и добывает инструменты в борьбе со многими болезнями. Именно рибосомные нуклеопротеиды бактерий дают информацию о механизмах воздействия антибиотиков на патогенные микроорганизмы (вирусы, бактерии и т.д.).

Основная роль

В клетке бактерии рибосома выполняет функцию формировщика молекул белка. Ее строение обуславливает сложный процесс биосинтеза.

Суть работы нуклеопротеида заключается в том, что с его помощью на базе матричных РНК, с использованием транспортных РНК, производятся сложные полипептидные соединения, без которых бактериальная клетка не может продолжать свое существование.

Матричная и транспортная РНК не являются частью рибосомы, а содержатся в цитоплазме бактериальной клетки.

Таким образом, в синтезе белка принимает участие три клеточных структуры:

  • матрица;
  • транспортная РНК;
  • рибосома.

Методы изучения

Современные биологические лаборатории имеют широкие возможности для изучения клетки и ее органоидов.

В сравнении с рибосомами эукариот, эти органоиды у прокариотов очень мелкие. Хотя в остальном эти составляющие клеток и бактерий и эукариотов очень похожи. Они также состоят из двух субчастиц, и сам процесс синтеза белка имеет массу схожих механизмов.

Рибосомы прокариот и эукариот

В связи с тем, что рибосомные нуклеопротеиды представляют одну из наиболее интересных человеку структурных единиц клетки, сегодня есть достаточно методов выявления закономерностей устройства и функционирования этого органоида.

Одним из самых широко используемых методов выявления нуклеопротеидов в бактериях является рибосомальный профилинг.

Этот метод выполняют следующим образом:

  1. Разрушение бактериальной клетки путем механического воздействия на нее. Химические реакции в данном случае исказят картину.
  2. Разрушение молекул РНК, которые не входят в состав рибосомы.
  3. Удаление всех полипептидных остатков из тех продуктов, которые были получены в результате разрушения.
  4. Обратное преобразование РНК в ДНК.
  5. Чтение аминокислотных последовательностей.

Само секвенирование может реализовываться с помощью нескольких методов, в частности, двух самых распространенных.

Метод Эдмана

Один из первых разработанных. Суть этого метода состоит в том, что пептид (белок) обрабатывают определенными реагентами, в результате чего происходит отщепление аминокислоты, из которой состоит белок.

Метод Сэнгера

Наиболее современный метод. Основан на использовании синтетического олигонуклеотида (олигонуклеотиды состоят более чем из двух нуклеиновых кислот).

Используемый метод позволяет идентифицировать все, даже наиболее мелкие участки РНК, которая исследуется. Благодаря получению полной информации об аминокислотах исследователи имеют возможность восстанавливать наиболее важные операционные моменты биосинтеза.

Большое значение эта информация имеет при исследовании реакции бактерий на антибиотики.

Строение

На данный момент наука имеет убедительное количество проверенных опытным путем сведений о строении рибосом бактерий и эукариотов.

Строение рибосом эукариот и прокариот

Это макромолекулярный комплекс, который состоит из двух субчастиц разной величины:

  • малая субчастица;
  • большая субчастица.

Малая рибосома состоит из одной рибосомной РНК и трех десятков разных белков. Основная функция малой субчастицы состоит в том, чтобы связывать нуклеопротеид с матричной РНК (мРНК).

В течение всего процесса инициации и элонгации (присоединение мономеров к цепи макромолекулы) малая субчастица удерживает мРНК. Кроме того, она обеспечивает прохождение матрицы через нуклеопротеоид.

Таким образом, малая субчастица выполняет генетическую функцию декодирования информации.

В большой субчастице содержится 3 рибосомных РНК и около 50 белковых соединений. Большая субчастица с матрицей не вступает в контакт, она ответственна за протекание химических процессов в нуклеопротеидах при образовании полипептидных связей в транслируемом полипептиде.

Процесс трансляции

Процесс синтезирования белка (как у бактерий, так и эукариотов) имеет следующий цикл:

  • инициация;
  • элонгация;
  • терминация.

Инициация

Инициация начинается с того, что к малой субчастице рибосомы присоединяется матричная РНК.

Если рибосомная макромолекула узнает тот трехбуквенный кодон, который есть на мРНК, то происходит присоединение антикодона тРНК.

Элонгация

Присоединений аминокислот, которые принесла тРНК и продвижение рибосомы вдоль матрицы с высвобождением молекулы тРНК.

Движение по мРНК осуществляется до тех пор, пока оно не достигает стоп-кодона, который имеется во всех матрицах.

Терминация

Новообразованный белок, который состоит из протранслированных аминокислот, отсоединяется.

В некоторых случаях завершение трансляции новообразованного белка сопровождается распадом (диссоциацией) рибосомы.

Отличия синтеза белка в клетках эукариотов

Несмотря на то, что рибосомы эукариотов состоят из тех же структурных частей, что и в клетках бактерий, синтез полипептидов эукариотов имеет свои особенности:

  1. Отличия в механизме инициации (узнавании кодонов и подборе антикодонов).
  2. Отличия на стадии терминации. У эукариотов в некоторых случаях после завершения синтеза белка и образования новой молекулы эта молекула не отсоединяется, а начинает инициацию заново.

Синтез белка у прокариот и эукариот

Антибиотики

Воздействие на бактерию антибиотиками наиболее губительно сказывается на работе рибосом. Антигены, которые содержатся в антибиотиках, ингибируют все стадии трансляции белка, в результате чего белок не может нормально синтезироваться, в клетке прекращаются все обменные процессы, а также процессы, связанные с ростом и с размножением организма.

probakterii.ru

Рибосомы | Info-Farm.RU

Рибосомы (ribosome) является немембранные органелл клетки, состоящий из рРНК и рибосомных белков (протеинов). Рибосомы осуществляет биосинтез белков транслируя с мРНК полипептидную цепь. Таким образом, рибосому можно считать фабрикой, производящей белки, основываясь на имеющейся генетической информации. В клетке созревшие рибосомы находятся преимущественно в компартментах, для активного белкового синтеза. Они могут свободно плавать в цитоплазме или быть прикрепленными к цитоплазматического стороны мембран эндоплазматического ретикулума или ядра. Активные (те что есть в процессе трансляции) рибосомы находятся преимущественно в виде полисом. Существует ряд свидетельств, указывающих на то, что рибосома является рибозимов.

Исторический обзор

Рибосомы было обнаружено в начале 1950-х годов. Первое глубокое исследование и описание рибосом, как клеточных органелл, было совершено Джорджем Паладе (George E. Palade). По имени исследователя, рибосомы были названы «частицами Паладе», но впоследствии, в 1958 году, их было переименовано в «рибосомы», учитывая высокое содержание РНК. Роль рибосом в биосинтезе белков было установлено более десятилетием позже.

Синтетическая рибосома

После отсоединения от мРНК и началом нового раунда трансляции рибосомальные малая и большая субъединицы отделяются друг от друга. Поэтому, создание синтетической рибосомы было технически сложным, поскольку синтетические и имеющиеся в клетке субъединицы смешивались от раунда к раунду трансляции.

Начиная с конца 90-х годов 20 века удалось создать несколько видов мутантных малых субъединиц рибосомы, которые имели специфическую последовательность в 16S рРНК и соединялись с мРНК, в которой последовательность Шайна-Дальгарно была специфически синтезирована для взаимодействия с модифицированной 16S рРНК. Это позволило выполнять отбор мутировавших малых субъединиц РНК от нативных и интрудукуваты несколько мутаций для изучения свойств синтеза белка.

Однако большая рибосомальная субъединица представила проблемы, поскольку при создании синтетического варианта не бело возможности заставить его отделяться от мРНК или от малой субъединицы после завершения одного раунда трансляции. Большая субъединица содержит важные для изучения структуры, такие как канал для выхода синтезируемого белка и сайт PTC (англ. Peptidyl transferase centre), в котором происходит соединение аминокислоты, присоединена к тРНК, которая находятся на А-сайте рибосомы, к пептидильного цепи , который соединен к молекуле тРНК, которая находится на P-сайи рибосомы

В июле 2015 года удалось синтезировать первую полностью синтетическую рибосому. Для того, чтобы большая и малая субъединицы НЕ отсоединялись, их было связано в одну молекулу путем синтеза 16S-23S конструкта (Ribo-T). Такая синтетическая рибосома успешно выполняла синтез белка не только in vitro, но и поддерживала рост E.coli при вынужденной отсутствия нативных рибосом.

Строение рибосомы

Общее строение

Рибосомы прокариот и эукариот очень похожи по строению и функции, но отличаются размером. Они состоят из двух субъединиц: одной большой и одной малой. Для процесса трансляции необходимо слаженное взаимодействие обеих субъединиц, вместе составляют комплекс с молекулярной массой несколько миллионов Дальтон (Da). Субъединицы рибосом обычно обозначаются единицами Сведберга (S), является мерой скорости седиментации при центрифугирования и зависят от массы, размера и формы частицы. Обозначены в этих единицах, большая субъединица является 50S или 60S (прокариотические или эукариотические, соответственно), имела является 30S или 40S, и целая рибосома (комплекс малой вместе с большой) 70S или 80S.

Молекулярный состав

Молекулярный состав рибосом является достаточно сложным. Например, рибосома дрожжей "Saccharomyces cerevisiae" состоит из 79 рибосомных белков и 4 различных молекул рРНК. Биогенез рибосом также чрезвычайно сложным и многоступенчатым процессом, происходящим в ядре и ядрышке эукариотической клетки.

Атомная структура большой субъединицы (50S) организма Haloarcula marismortui была опубликована N. Ban et al. В журнале Science 11 августа 2000. Вскоре после этого, 21шого сентября 2000 года, BT Wimberly, et al., Опубликовали в журнале Nature структуру 30S субъединицы организма Thermus thermophilus. Используя эти координаты, MM Yusupov, et al. Сумели реконструировать целую 70S частичку Thermus thermophilus и опубликовать ее в журнале Science, в Мае 2001 В 2009 году профессор Джордж Чьорч (George Church) и коллеги из Гарварда создали полностью функциональную искусственную рибосому в обычных условиях , которые присутствуют в клеточном среде. Как конструкционные элементы использовались молекулы с расщепленной с помощью энзимов кишечной палочки. Созданная рибосома успешно синтезирует белок, отвечающий за биолюминесценцию.

Центры связывания РНК

Рибосомы содержит четыре сайты связывания для молекул РНК: один для мРНК и три для тРНК. Первый сайт связывания тРНК называется сайтом 'аминоацил-тРНК ", или" А-сайтом ". В этом сайте содержится молекула тРНК "заряженная" "следующей" аминокислотой. Другой сайт, "пептидил-тРНК 'связывающий, или" P-сайт ", содержит молекулу тРНК, связывает растущий конец полипептидной цепи. Третий сайт, это "сайт выхода", или "E-сайт". В этот сайт попадает пустая тРНК которая избавилась растущего конца полипептида, после его взаимодействия с последующей "заряженной" аминокислотой в пептидильному сайте. Сайт связывания мРНК находится в малой субъединицы. Он удерживает рибосому "нанизанной" на мРНК которую рибосома транслирует.

Функция

Рибосомы являются органелл, на которой происходит трансляция генетической информации, закодированной в мРНК. Эта информация воплощается в синтезированный тут же полипептидную цепь. Рибосомы несет двоякую функцию: является структурной платформой для процесса декодирования генетической информации с РНК, и владеет каталитическим центром ответственным за формирование пептидной связи, так называемым "пептидил-трансферазним центром". Считается пептидил-трансферазна активность ассоциируется с рРНК, и поэтому рибосома является рибозимов.

Локализация рибосом

Рибосомы классифицируются как свободные (находятся в гиалоплазме) и несвободные или прикрепленные (связанные с мембранами эндоплазматической сети).

Свободные и прикреплены рибосомы отличаются только локализацией, но они структурно идентичны. Рибосому называют свободной или прикрепленной в зависимости от того белок синтезируемый имеет ЭР-нацеленную сигнальную последовательность, поэтому индивидуальная рибосома может быть прикрепленной создавая один белок, но свободной в цитозоле когда создает другой белок.

Рибосомы иногда называют органеллами, но использование термина органеллы ограничивается субклеточном компонентами которых фосфолипидную мембрану, а рибосома (being entirely particulate) таковой не является. Поэтому рибосомы иногда описывают как "немембранные органеллы".

Общая информация

В эукариотических организмах рибосомы можно найти не только в цитоплазме, но и внутри в некоторых крупных мембранных органеллах, в частности в митохондриях и хлоропластах. Строение и молекулярный состав этих рибосом отличается от состава обще-клеточных рибосом, и является близким в состав рибосом прокариот. Такие рибосомы синтезируют органелл-специфические белки, транслируя органелл-специфическую мРНК.

В эукариотических клетках долгое время считалось, что рибосомы, прикрепленные к эндоплазматического ретикулума выполняют синтез белков, которые будут секретируемого наружу или трансмембранных или других сигнальных белков, присоединенных к плазмалеммы. Рибонуклеопротеин SRP (англ. Signal recognition particle) выполняет распознавание тех белков в процессе синтеза, которые должны быть трансмембранными и присоединяет рибосому к эндоплазматического ретикулума. Однако в последнее время исследования указывают, что 50-75% рибосом могут быть прикреплены к ЭПР за не до конца выяснены механизмы и большинство белков в клетке проходит синтез в рибосомах, прилегающих к ЭПР. Так, в клеточной линии HEK-293 75% мРНК видповидяе цитозольным белкам, однако до 50% рибосом связанные с ЭПР.

Болезни

Считается, что генетические дефекты рибосомных белков и факторов биогенеза рибосом является летальными на ранних эмбриональных стадиях развития высших организмов. Экспериментальный мутагенез рибосомных белков в Drosophila melanogaster (мутации minute) вызывает общий фенотип: заниженная скорость митоза, уменьшен размер тела, заниженная фертильность, короткие реснички. Существует ряд свидетельств связывающих раковую трансформацию клеток млекопитающих с расстройствами трансляционной системы в целом и расстройствами системы биогенеза рибосом в частности.

info-farm.ru

Единицы живого: Рибосомы

Рибосома — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой(полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.

Схема синтеза рибосом в клетках эукариот.1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК(45S — предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.

Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

Константа седиментации (скорость оседания в ультрацентрифуге) рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), бактериальных клеток (а также митохондрий и пластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно).

http://www.youtube.com/watch?v=aZd9DZIdt5Y

biology623.blogspot.com

Рибосомы хлоропластов - Справочник химика 21

    Как прокариотическая, так и эукариотическая рибосомы содержат две различные высокополимерные РНК, по одной на каждую субчастицу, и одну относительно низкомолекулярную РНК, так называемую 58 РНК. Кроме того, эукариотические рибосомы содержат и другую относительно низкомолекулярную РНК, так называемую 5,88 РНК, которая является гомологом 5 -концевой части (около 160 нуклеотидных остатков) высокополимерной РНК большой субчастицы прокариот. В рибосомах хлоропластов высших растений имеется также так называемая 4,58 РНК, которая является гомологом З -концевой части (около 100 нуклеотидных остатков) высокополимерной РНК большой субчастицы бактерий. Таким образом, 5,88 РНК эукариотических рибосом и 4,58 РНК хлоропластных рибосом являются результатом расщепления ( процессинга ) предшественника высокополимерной РНК большой субчастицы в процессе биогенеза или созревания рибосом они непосредственно участвуют в формировании структуры высокополимерной РНК большой субчастицы, как и их гомологичные последовательности у бактерий (см. ниже), и поэтому могут не рассматриваться как самостоятельные виды рибосомной РНК. В дальнейшем изложении они будут обсуждаться вместе с высокополимерной РНК большой субчастицы. Не исключено, что у некоторых видов организмов могут существовать и другие разрывы ковалентной цепи высокополимерной РНК в зрелой рибосоме. [c.68]     Размеры рибосом, выделенных из различных органелл, варьируют. Митохондриальные рибосомы низших эукариот, таких, как грибы, имеют несколько большие размеры, чем рибосомы Е. соИ. В митохондриях растений рибосомы лишь ненамного меньше, чем в окружающей цитоплазме. Однако в митохондриях млекопитающих и амфибий их размеры еще меньше и составляют 60S. Эти рибосомы характеризуются более низким содержанием РНК (25-31%). Рибосомы хлоропластов приблизительно такого же размера, как и рибосомы бактерий, хотя с более высоким содержанием РНК. [c.104]

    Уже отмечалось выше (раздел 3 этой главы), что в 23S РНК бактерий самый 5 -конец цепи спарен с ее З -концом (совершенная стабильная спираль из 8 нуклеотидных пар). Соответственно, в рибосомах хлоропластов высших растений 5 -конец 23S РНК спарен в такую же спираль с З -концом 4,5S РНК. В рибосомах эукариотических организмов З -конец высокомолекулярной 28S РНК, по-видимому, спарен с самым 5 -концом 5,8S РНК. [c.89]

    Где же в клетке используются хлоропласты и митохондрии Как хлоропласты, так и митохондрии представляют собой относительно крупные тела, окруженные, как и сама клетка, мембраной. Хлоропласты, как мы увидим далее (гл. 7), можно представлять себе по существу маленькими клетками со своим собственным генетическим материалом и рибосомами хлоропласты способны синтезировать специфичные ферменты, необходимые для осуществления фотосинтеза. В свою очередь и митохондрии, ока- [c.10]

    Рибосомы хлоропластов очень сходны с бактериальными рибосомами, тогда как рибосомы митохондрий несколько больше отличаются от последних поэтому проследить происхождение митохондрий сложнее. Однако сходство между белками дает основание предполагать, что те. и другие органеллы произошли от бактерий, вступивших в устойчивый симбиоз (в качестве эндосимбионтов) с какими-то примитивными эукариотическими клетками как полагают, митохондриям дали начало пурпурные бактерии, а хлоропластам (позднее) - цианобактерии или близкие к ним организмы. Хотя многие гены этих древних бактерий все еще используются для синтеза белков органеллы, большая их часть по неясным причинам включилась в ядерный геном, где они кодируют ферменты, которые сходны с бактериальными и синтезируются на рибосомах в цитозоле, а затем переходят в органеллу. [c.502]

    Рибосомы хлоропластов очень сходны с бактериальными рибосомами, тогда как рибосомы митохондрий несколько больше отличаются от последних. Поэтому проследить происхождение митохондрий сложнее. Однако сходство между остальными белками дает основание предполагать, что обе органеллы произошли от бактерий, вступивших в тесный симбиоз с какими-то примитивными эукариотическими клетками как полагают, митохондриям дали начало пурпурные бактерии, а хлоропластам (позднее)-цианобактерии. Хотя многие из генов этих древних бактерий все еще используются для синтеза белков внутри органеллы, большая их часть по неясным причинам включилась в ядерный геном. [c.70]

    Однако хлоропласты и митохондрии эукариотических клеток содержат рибосомы, отличные от 80S типа. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу и практически не отличимы от рибосом эубактерий и синезеленых водорослей по вышеприведенным показателям и по более детальным молекулярным характеристикам. Митохондриальные рибосомы более разнообразны в зависимости от принадлежности организма к тому или иному царству эукариот. Наиболее изучены рибосомы митохондрий грибов и млекопитающих. Митохондриальные рибосомы грибов (Sa haromy es, Neurospora) похожи на прокариотические 70S рибосомы, но, может быть, лишь слегка крупнее (около 75S) и содержат относительно больше белка абсолютное содержание рибосомной РНК в них, повидимому, почти такое же, как в типичных 70S рибосомах. Митохондриальные рибосомы млекопитающих, однако, существенно мельче типичных 70S рибосом, имея также и существенно меньшее абсолютное количество рибосомной РНК на частицу их иногда называют мини-рибосомами . Действительно, коэффициент седиментации рибосом из митохондрий млекопитающих составляет всего около 55S, а тотальная масса рибосомной РНК на частицу более чем на 1/3 меньше, чем в типичных 70S рибосомах. В то же время, митохондриальные рибосомы млекопитающих содержат довольно много белка, так что общие размеры их как будто бы не сильно отличаются от таковых прокариотических рибосом. В целом, несмотря на ряд необычных черт, по ряду своих признаков, и в том числе по функциональному поведению, митохондриальные рибосомы млекопитающих все же близки к прокариотическим 70S рибосомам. [c.54]

    S субчастица рибосомы хлоропластов высших растений имеет 16S РНК приблизительно такого же размера (1490 нуклеотидных остатков у Zea mays). РНК малой рибосомной субчастицы митохондрий грибов и высших растений несколько крупнее (1661 нуклеотидный остаток у дрожжей). Наоборот, минирибосомы митохондрий млекопитающих содержат в малой субчастице относительно короткую РНК, обозначаемую как 12S РНК (954—956 нуклеотидных остатков у человека и мыши, соответственно). [c.69]

    Как и в случае 16S (18S) РНК, довольно протяженная З -концевая последовательность 23S (28S) РНК не входит в состав главных доменов, а лищь образует несколько спиральных шпилек. В 23S РНК бактерий 110-нуклеотидная З -концевая последовательность сложена в три шпильки (две простые и одна составная из двух спиралей, разделенных неспаренным участком, см. рис. 45). В рибосомах хлоропластов высших растений 100-нуклеотидная З -концевая последовательность в цепи 23S РНК отсутствует и представлена в виде отдельной цепочки 4,5S РНК. 4,5S РНК складывается в две шпильки (одна простая и одна составная из двух спиралей), гомологичные (даже почти идентичные) З -концевым шпилькам 23S РНК бактерий. [c.89]

    Рибосомальная РНК хлоропластов стала предметом изучения после того, как независимо друг от друга в 1962 году в лабораториях Сисакяна и Литлтона в хлоропластах были обнаружены рибосомы. Оказалось, что рибосомы хлоропластов и цитоплазмы отличают- [c.68]

    Типичная клетка окружена клеточной мембраной, проницаемой только для некоторых веществ эта мембрана у растений и бактерий укрепляется окружающей пористой клеточной оболочкой, которая определяет форму клетки, но не принимает никакого участия в ее метаболизме. Содержимое клетки обычно подразделяют на цитоплазму и ядро. Цитоплазма не гомогенна, она содержит разного рода частицы митохондрии, ли-зосомы, пероксисомы, рибосомы, хлоропласты, секреторные гранулы , аппарат Гольджи, микротрубочки, центросомы, мио-фибриллы, базальные тельца ресничек или жгутиков, продукты фагоцитоза, жировые капельки и гранулы, состоящие из различных продуктов метаболизма, таких, как гликоген, крахмал, сера, поли-З-гидроксимасляная кислота, оксалат кальция и т.д. кроме того, в цитоплазме имеется так называемый эндоплазма-тический ретикулум, который может быть представлен различными формами. [c.81]

    Литтлтон в 1960 г. [19] обнаружил, что в препаратах рибосом из листьев содержатся два класса рибосом, которые можно разделить путем центрифугирования. Основной класс рибосом имеет коэффициент седиментации 838, что близко к значению, характерному для растительных рибосом вообще. Второй, минорный, класс рибосом из листьев обладает меньшим коэффициентом седиментации. Это и есть рибосомы хлоропластов они могут быть выделены непосредственно из изолированных хлоропластов 19]. Рибосомы хлоропластов шпината имеют коэффициент седиментации 668 после удаления магния они распадаются на две субъединицы с коэффициентами седиментации 478 и 338 соответственно. Литтлтон [19] показал, что рибосомы хлоропластов содержат 44% РНК, напоминая в этом отношении рибосомы цитоплазмы. При исследовании клеток эвглены [5] становится совершенно очевидным, что рибосомы обнаруженной Литтлтоном разновидности действительно являются комнонентом хлоропластов, а не загрязнением или артефактом. Рибосомы хлоропластов эвглены, обладающие [c.28]

    Впоследствии Брауэрман показал, что рибосомы хлоропластов Euglena имеют коэффициент седиментации не 44S, а 60S в отличие от цитоплазматических рибосом, имеющих коэффициент седиментации 70S (J. М. Е i S е п S t а d t, G. В г а w е г m а n, J. Mol. Biol., 1964, 10, 392). [c.28]

    Обработка выросших на свету растений гербицидами, ингибирующими биосинтез каротиноидов, вначале вызывает появление хлоротических симптомов, затем растения погибают, израсходовав весь запас питательных веществ. В результате фотоокисления разрушаются и связанные с мембранами рибосомы хлоропластов, сохраняются только цитоплазматические рибосомы. Распад хлоропластов можно объяснить отсутствием каротиноидов, в нормальных условиях защищающих хлоропласты от фотоокисления. Гербициды подавляют биосинтез окрашенных каротиноидов, образуются только их природные предшественники (фитоин и фитофлуин, являющиеся бесцветными каротиноидами). При интенсивности света выше 15 лк ослабевает и биосинтез фитоина. После обработки растений гербицидами данной группы хлоропласты не содержат гран и рибосом, остается только незначительное количество концентрически расположенных тилакоидов. Следовательно, ультраструктура хлоропластов нарушена. [c.85]

    По современным представлениям [16—19] формирование фо-тосинтетического аппарата растений генетически обусловлено часть систем в хлороиластах детерминирована ядром (ключевые ферменты биосинтеза хлорофилла) [18], часть находится под влиянием ДНК самих хлоропластов (упаковка пигментов в ла-меллах и образование функционально-активных фотосистем опре-де.тяются ламеллярными белками, синтезированными на 70S рибосомах хлоропластов) [17, 18]. [c.157]

    Рибосомы хлоропластов очень напоминают рибосомы Е. соИ как по своей чувствительности к различным антибиотикам (хлорамфениколу, стрептомицину, эритромицину, тетрациклину и др.), так и по структуре. При этом не только поразительно сходны нуклеотидные последовательности рибосомных РНК хлоропластов и Е. oli, но рибосомы хлоропластов способны использовать тРНК бактерий при синтезе белка Во всех этих отношениях рибосомы хлоропластов отличаются от рибосом, находящихся в цитозоле растительных клеток. [c.488]

    Рибосомы хлоропластов очень напоминают рибосомы Е. соИ как по их чувствительности к различным антибиотикам (хлорамфениколу, стрептомицину, эритромицину, тетрациклину и т.п.), так и по структуре. Например, нуклеотидные последовательности рибосомных РНК хлоропластов (из клеток кукурузы) и бактерий Е. соИ поразительно сходны. [c.57]

    Рибосомы хлоропластов способны использовать при синтезе белка бактериальные тРНК. Можно даже создать функционирующую гибридную рибосому, соединив малую субъединицу рибосомы из хлоропласта с больщой из Е. соН. Во всех этих отношениях рибосомы хлоропластов отличаются от рибосом, находящихся в цитоплазме клеток того же растения. [c.58]

    Основные пути транспорта белков показаны на рис 8-12 Практически все белки образуюгтся на рибосомах, расположенных в цитозоле (кроме нескольких, синтезирующихся на митохондриальных рибосомах хлоропластов) Затем их пути расходятся Белки, принадлежащие одной транспортной ветви, после заверщения их синтеза вьщеляются в цитозоль Некоторые из них содержат сигналы сортировки, направляющие их из цитозоля в митохондрии, хлоропласты (у растений), ядро или пероксисомы, другие же - их больщинство - не имеют специфических сигналов сортировки и остаются в цитозоле в качестве постоянных компонентов [c.13]

chem21.info

Рибосомы

   Рибосомы - органеллы белкового синтеза, состоят из рРНК и белка (оттуда название, от лат. Soma - тело). Находятся в прокариотических и эукариотических клетках, за исключением эритроцитов млекопитающих. 3 Учитывая массу и распространения различают два вида рибосом:

 

   (1) малые рибосомы, которые содержатся у прокариот, а также в пластидах и митохондриях эукариот. Они имеют массу в среднем около 2,5 х106 дальтонов (d) и постоянную седиментации Сведберга 70s. Такие рибосомы не подключен к мембранам и имеют диаметр 15 нм;

   (2) большие рибосомы, которые содержатся в цитоплазме клеток эукариотического типа. Их масса составляет 4,8 х106 d, и постоянная седиментации 80s. Такие рибосомы диаметром около 22 нм, обычно связаны с мембранами эндоплазматической сети и составляют вместе с ней гранулярную эндоплазматическая сеть.

 

   Структурная организация рибосом всех названных групп принципиально одинакова. Рибосома состоит из двух субъединиц (субчастицы): большой и малой. В рибосомах эукариот они константу седиментации Сведберга 60s i 40s. В нативном виде не все субчастицы соединяются в целые рибосомы, а находятся в динамическом равновесии: 80s « 60s +40 s.

   Большая субъединица рибосомы имеет вид треугольника, трапеции или ковша с диаметром в 15-18 нм, меньше - напоминает телефонную трубку с диаметром 14-16 нм. Присоединяются обе субъединицы поперечными сторонами с помощью ионов магния (Mg2 +), а между ними остается узкая щель.

 

   Химическая организация рибосом. Рибосомы содержат виcокополимерну рибосомальной РНК (рРНК) и белок: 40-60 % рРНК и 60-40 % белка. В рибосомах находится около 80-90 % всей РНК клетки. Каждая субъединица содержит по одной или две молекуле рРНК в виде клубка или тяжа, плотно упакованного белками, создавая рибонуклеопротеид (РНП). При снижении концентрации ионов магния в растворе может наступить изменение конформации РНК и развертывания тяжа. Кроме этого, в рибосомах обнаружены катионы кальция.

 

   Рибосомальные РНК имеют характерную вторичную структуру, создается за счет особых участков - шпилек, образованных комплементарно связанными нуклеотидами. В состав рибосом входят полиамины (диаминопропан, кадаверин, путресцин). Структурные белки рРНК имеют щелочные свойства, содержат оснóвни аминокислоты, а ферментативные - кислые.

   Полирибосомы (сокращенно, полисомы, от греч. Poli - много и soma - тело) - это комплекс, образованный из иРНК и рибосомы (от 5 до 70), нанизанных на нить информационной РНК (иРНК) толщиной 1,5 нм, которая обеспечивает передачу генетической информации с ДНК на синтез белка. Нетранслюючи, неработающие рибосомы постоянно обмениваются субъединицами. Собираются только в момент работы и формируют полисомы. Итак, полисомы - это структуры временного характера, связанные с периодичностью процессов синтеза белка (рис. 2.19).

   Локализация рибосом (полисом). Рибосомы могут располагаться в цитоплазме клетки одиночно, тогда они функционально неактивны. Сбор рибосом на иРНК происходит в начале синтеза белка. Полисомы могут быть свободно размещенными в цитоплазме или прикрепленными к внешней поверхности эндоплазматической сети и кариолемы. Тогда имела субъединица рибосомы соединяется с иРНК, а большая может присоединяться к мембранам эндоплазматической сети. После завершения синтеза одного полипептида рибосомы могут вновь диссоциировать.

 

   Полисомы НЕ агрегированные с мембраной в клетках с недостаточно развитой эндоплазматической сетью (овоциты), размещаются в один ряд или образуют розетки или спирали. Ядерные рибосомы находятся в сочетании с нитевидными структурами, из которых состоят окончательные хромосомы в интерфазном ядре. Рибосомы обнаружены также в митохондриях и пластидах.

 

   Количество рибосом (полисом) зависит от метаболической активности клетки. Особенно много полисом есть в клетках, которые быстро делятся, и в таких, продуцирующие большое количество белков на экспорт. Количество рибосом в таких клетках может достичь 50 тысяч, что составляет около 25 % массы всей клетки (например, в печеночной клетке).

 

   Функции рибосом - трансляция, то есть считывания кода матричной (инфоромационно) РНК и сбора полипептида. Путем введения меченых аминокислот выявлено, что в рибосомах происходит синтез белков. Полипептидные молекулы белка синтезируются таким образом, что определенные аминокислоты в рибосоме соединяются друг с другом в соответствующей последовательности. Поэтому информационная РНК, которая в виде кодонов (триплетов), кодирует порядок размещения аминокислот, должна перемещаться по рибосоме по мере присоединения очередной аминокислоты к предыдущей. Чем больше рибосом содержит полисома, тем больше молекул полипептидов будет синтезироваться на ней одновременно. На малой субъединицы рибосомы в месте ее контакта с большой находится иРНК - связывающая участок, а также участок, содержащее аминоацил - тРНК. Между двумя участками рибосомы находится центр, который катализирует образование пептидных связей.

 

   Важную роль в синтезе белка играет транспортная РНК (синонимы: тРНК, растворимый РНК, или РНК- переносчик), функция которой состоит в том, чтобы из фонда аминокислот, образованных клеткой, выбрать "нужную" и вместе с ней направиться к рибосомы. Транспортная РНК имеет вид листочка (рис. 2.20), черешок которого в каждой тРНК имеет такой же триплет нуклеотидов - ЦЦА. Этот участок служит для прикрепления аминокислоты, образование аминоацил - тРНК. Второй участок " познает " " свою" аминокислоту, которая и прикрепляется к первому участку тРНК. Третий участок - это антикодон (триплет нуклеотидов), с помощью которого тРНК, нагруженная аминокислотой, помещает ее на соответствующее место - кодон в иРНК, спарюючись с ним, по принципу комплементарности. Четвертый участок тРНК узнает рибосому на иРНК и прикрепляется к ней.

 

   Синтез белка на рибосомах начинается с прикрепления рибосомы (ее малой субъединицы) к определенному участку иРНК. Дальше в рибосому вступает тРНК с аминокислотой (аминоацил - тРНК) и своим антикодоном (триплетом нуклеодитив) контактирует с комплементарным ему кодоном на иРНК. Тогда тРНК отсоединяется и рибосома вместе с аминокислотой перемещается на следующую позицию (движение иРНК и рибосомы является встречным). В рибосоме предыдущей аминокислоты присоединяется следующая в составе аминоацил - тРНК путем образования пептидной связи. На каждом этапе происходит присоединение к рибосомы аминоацил - тРНК опять же по принципу комплементарности - антикодон тРНК к соответствующему кодона иРНК. Как только аминокислоты соединяются между собой, тРНК отпадает. И так процесс синтеза белковой цепочки продолжается и завершается освобождением олиго - или полипептида от рибосомы. Рибосома, которая закончила уборку пептидной цепочки диссоциирует (разъединяется) на субъединицы и может вновь присоединяться на освободившееся место в иРНК.

 

   Считают, размещенные свободно в гиалоплазме полисомы синтезируют белок для нужд самой клетки. Прикрепленные к мембранам гранулярной эндоплазматической сети полисомы синтезируют белок на экспорт для экзоцитоза, т.е. выведение его за пределы клетки (клетка печени синтезирует белки плазмы крови, В- лимфоциты и плазмоциты - g - глобулины). При росте молодых клеток количество рибосом увеличивается. В процессе метаболизма белки цитоплазмы постоянно обновляются, синтезируясь на полисомах. Рибосомы осуществляют также синтез специальных белков, таких как гемоглобин у предшественников эритроцитов.

   Образование рибосом. Рибосомы у эукариот синтезируются в ядрышке. Матрицей для рРНК есть участки ДНК. Выделяют несколько этапов образования рибосом с соответствующими названиями: (1) еосомы (с греч. Eos - ранняя звезда, начало) образуются на начальном этапе, когда в ядрышке на ДНК синтезируется только рРНК; (2) неосомы (с греч. Neos - новый) - это комплексы рРНК - белок, подвергающихся многоступенчатую процедуре созревания и как готовые субъединицы попадают в цитоплазму и там при участии Mg2 + на иРНК соединяются в (3) рибосомы. Нанизываясь на нить иРНК, образуют полирибосомы (полисомы). В прокариот рибосомы образуются в цитоплазме в результате простой агрегации компонентов.

 

   Таким образом, формирование полисом происходит при участии иРНК, которая синтезируется в ядре на еухроматинових участках хромосом и через поровые комплексы попадает в цитоплазму. На ней и нанизываются рибосомы с участием ионов магния. Так формируются комплексы, синтезирующие белок.

worldofscience.ru

Рибосомы размеры и количество в клетке

    Рибосомы — это органоиды размерами от 15 до 20 нм, состоящие из нуклеопротеидов и распределенные по всей цитоплазме. Количество рибосом зависит от возраста клетки и условий ее обитания. Рибосомы могут деградировать или группироваться по нескольку штук в так называемые полирибосомы. Только определенный размер рибосомы и определенное ее состояние могут обеспечить нормальный синтез белка. Наиболее активно происходит синтез белков на рибосомах, когда они объединяются в полирибосомы. [c.26]     Сразу же после появления в 1953 г. гипотезы Уотсона и Крика было высказано предположение, что рибосомная РНК (рРНК), на долю которой в некоторых клетках приходится до 90% общего количества РНК, является переносчиком генетической информации из ядер в цитоплазму. Однако к 1960 г. было показано, что это предположение цеправильно. Так, в частности, несмотря на значительные различия нуклеотидного состава ДНК, размер и нуклеотидный состав РНК в рибосомах различных бактерий оказались весьма близкими (гл. 2, разд. Г, 8) [34]. Кроме того, к этому времени стало ясно, что перенос информации осуществляется при помощи относительно нестабильной, короткоживущей формы РНК, тогда как рибосомная РНК оказалась очень стабильной [35]. [c.199]

    Это предположение было основано на данных о том, что увеличение количества митохондрий в клетке происходит путем их удлинения и деления аналогично тому, как происходит размножение бактерий, которые очень напоминают митохондрии по размерам и форме (но не по внутренней структуре). Более того, были выявлены изменения структуры и функции митохондрий, наследование которых не подчинялось менделевским правилам расщепления, характерным для ядерных генов. Было показано, что генетические факторы, ответственные за эти изменения, находятся в самих митохондриях. Выяснилось также, что изолированные митохондрии способны включать аминокислоты в белки, а впоследствии было установлено, что они содержат такие компоненты белоксинтезирующего аппарата, как рибосомы, тРНК и аминоацил-тРНК — синтетазы. И наконец, в 1963 г. было обнаружено, что митохондрии содержат свою собственную [c.510]

Рис. 15-27. Эта схема показывает, как из одного оогония Drosophila образуется 15 клеток-кормилиц и один ооцит все они связаны между собой цитоплазматическими мостиками. При каждом митозе все клетки однократно делятся нри нервом митозе из клетки 1 образуются клетки 1 и 2, при втором митозе из клетки 1 образуются клетки 1 и 3, а из клетки 2-клетки 2 и 4 и т.д. Поскольку цитоплазматические мостики образуются во всех тех местах, где остатки веретена деления связывали во время телофазы две дочерние клетки, эти мостики соединяют лишь те клетки, которые образовались в результате общего митоза. В яйцеклетку/ превращается только клетка 1 или 2 возможно, это связано с тем, что только эти клетки соединены межклеточными мостиками с четырьмя другими. Необычной особенностью таких делений является то, что размер клетки не удваивается перед митозом, так что с каждым делением клетка становится все меньше и меньше. Позже, во время созревания яйца, клетки-кормилицы становятся чрезвычайно крупными они образуют большие количества макромолекул и таких органелл. как рибосомы и митохондрии, и накачивают их внутрь ооцита по цитоплазматическим мостикам Рис. 15-27. Эта схема показывает, как из одного оогония Drosophila образуется 15 клеток-кормилиц и один ооцит все они <a href="/info/26849">связаны между</a> <a href="/info/1795776">собой</a> <a href="/info/511039">цитоплазматическими мостиками</a>. При каждом митозе все клетки однократно делятся нри нервом митозе из клетки 1 <a href="/info/1397055">образуются клетки</a> 1 и 2, при втором митозе из клетки 1 <a href="/info/1397055">образуются клетки</a> 1 и 3, а из клетки 2-клетки 2 и 4 и т.д. Поскольку <a href="/info/511039">цитоплазматические мостики</a> образуются во всех тех местах, где остатки <a href="/info/510034">веретена деления</a> связывали во время телофазы две <a href="/info/510275">дочерние клетки</a>, эти мостики соединяют лишь те клетки, <a href="/info/1493562">которые образовались</a> в <a href="/info/1578447">результате общего</a> митоза. В яйцеклетку/ превращается <a href="/info/1890249">только клетка</a> 1 или 2 возможно, это связано с тем, что только эти клетки соединены межклеточными мостиками с четырьмя другими. Необычной особенностью таких делений является то, что <a href="/info/24784">размер клетки</a> не удваивается перед митозом, так что с каждым <a href="/info/101568">делением клетка</a> становится все меньше и меньше. Позже, во время созревания яйца, <a href="/info/1339313">клетки-кормилицы</a> становятся чрезвычайно крупными они образуют <a href="/info/472531">большие количества</a> макромолекул и таких органелл. как рибосомы и митохондрии, и накачивают их внутрь ооцита по цитоплазматическим мостикам
    Рибосомы — рибонуклеопротеидные частицы размером 15—20 нм. Их количество в клетке зависит от интенсивности процессов синтеза белка. В быстро растущей клетке Es heri hia oli содержится приблизительно 15 000 рибосом, общая масса которых может составлять примерно 1/4 всей клеточной массы. Отношение РНК/белок в рибосомах Е, oli составляет 2 1, у других прокариот оно может быть несколько сдвинуто в сторону преобладания белка. [c.46]

    Прорастание зооспоры — морфогенез без синтеза белка. Прорастание зооспоры представляет собой особенно интересное явление (рис. 7-9). У зооспоры нет твердой оболочки, и, подобно клеткам животных, она окружена пластичной липопротеиновой мембраной. Ее ядро относительно невелико, к нему прилегает очень большая ядерпая шапочка, содержащая все рибосомы клетки, образующие компактную массу. Единственная гигантская ми гохондрия также находится в контакте с ядром. По всей цитоплазме разбросаны многочисленные мелкие пузырьки, заполненные жидкостыо. На этой стадии клетка не синтезирует ни РНК, ни ДНК, ни белки, ни полисахариды. Она только перерабатывает запасы глюкозы в энергию, необходимую для непрерывного движения (количество энергии по отношению к размеру клетки очень велико). При попадании зооспоры в среду с любой из одновалентных солей ее жгутик быст- [c.119]

chem21.info


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта