Транспорт минеральных веществ в растении происходит по ксилеме. Как происходит транспорт веществ в растительных огранизмах? Зарание спасибо *-*

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Транспорт воды, минеральных солей и ассимилятов по растению. Транспирация. Транспорт минеральных веществ в растении происходит по ксилеме


Как происходит транспорт веществ в растительных огранизмах? Зарание спасибо *-*

Транспорт у растений

Клетки обмениваются различными веществами с окружающей их средой в результате диффузии. Однако перенос веществ обычной диффузией на большие расстояния неэффективен; возникает необходимость в специализированных системах транспорта . Такой перенос из одного места в другое осуществляется за счёт разности давлений в этих местах. Все переносимые вещества движутся с одинаковой скоростью в отличие от диффузии, где каждое вещество движется со своей скоростью в зависимости от градиента концентрации.

У животных можно выделить четыре основных типа транспорта : пищеварительную, дыхательную, кровеносную и лимфатическую системы. Часть из них были описаны ранее, к другим мы перейдем в следующих параграфах.

У сосудистых растений передвижение веществ осуществляется по двум системам: ксилеме (вода и минеральные соли) и флоэме (органические вещества ). Передвижение веществ по ксилеме направлено от корней к надземным частям растения; по флоэме питательные вещества движутся от листьев.

Одним из важнейших механизмов транспорта веществ в растении является осмос. Осмос – это переход молекул растворителя (например, воды) из областей с более высокой концентрацией в области с более низкой концентрацией через полупроницаемую мембрану. Этот процесс похож на обычную диффузию, но протекает быстрее. Численно осмос характеризуется осмотическим давлением – давлением, которое нужно приложить, чтобы предотвратить осмотическое поступление воды в раствор.

В растениях роль таких полупроницаемых мембран играют плазматическая мембрана и тонопласт (мембрана, окружающая вакуоль) . Если клетка контактирует с гипертоническим раствором (то есть раствором, в котором концентрация воды меньше, чем в самой клетке) , то вода начинает выходить из клетки наружу. Этот процесс называется плазмолизом. Клетка при этом сморщивается. Плазмолиз обратим: если такую клетку поместить в гипотонический раствор (с более высоким содержанием воды) , то вода начнёт поступать внутрь, и клетка снова набухнет. При этом внутренние части клетки (протопласт) оказывают давление на клеточную стенку. У растительной клетки набухание останавливается жесткой клеточной стенкой. У животных клеток жёстких стенок нет, а плазматические мембраны слишком нежны; необходим особый механизм, регулирующий осмос.

далее [ссылка заблокирована по решению администрации проекта] w w.ebio.ru/org12.h t ml

otvet.mail.ru

Ксилемный транспорт

Дальний транспорт

Говоря о перемещении веществ из внешней среды (почвенного раствора) в корень и дальше в отдельные органы используют термины ближний и дальний транспорт. Ближний – это радиальный транспорт веществ по тканям корня до сосудов ксилемы; дальний – это по сосудам ксилемы до соответствующих надземных тканей. Некоторые авторы вводят понятие среднего транспорта. Тогда ближний – это поступление веществ через мембрану в пределах одной клетки и т. д. Первичная загрузка ксилемы наиболее интенсивно происходит в зоне корневых волосков. Механизмы поступления минеральных веществ мы с вами рассмотрели, как и движение по корневым тканям.

Ксилемный транспорт

Ксилемный сок представляет собой довольно простой раствор, который состоит, в основном, из неорганических соединений, но могут присутствовать и органические вещества (табл. 5.3).

Таблица 5.3. Сравнительный состав (в мМ) ксилемного и флоэмного сока у однолетнего люпина

Вещества

Ксилема

Флоэма

Сахароза

450–470

Аминокислоты

0,7–2,6

13,0–15,0

Калий

2,4–4,6

39,0–46,0

Натрий

2,2–2,6

4,4–5,2

Кальций

0,4–1,8

0,5–1,6

Магний

0,3–1,1

3,5–5,8

Нитраты

Следы

0,003

рН

5,9

8,0

Органические компоненты изменяются в зависимости от вида растения и от природы ионов, которые присутствуют в почвенном растворе. Если поместить корни в солевой раствор, из которого катионы поступают лучше, чем анионы (например, в раствор сернокислого калия), то количество поступивших катионов в корнях будет выше количества анионов. Растения компенсируют эту несбалансированность синтезом органических анионов, обычно карбоновых кислот.

При своем движении по сосудам ксилемы минеральные вещества взаимодействуют с клеточными оболочками. В клеточных оболочках, как мы знаем, имеются многочисленные участки с фиксированными отрицательными зарядами, способными связывать катионы, в частности Са2+.

Когда в листе ионы кальция переходят из ксилемы в мезофилл, в клеточных стенках ксилемы некоторые участки освобождаются. Освободившиеся участки через некоторое время занимаются кальцием из участков, размещенных ниже, или Са2+ из ксилемного сока. Поэтому считают, что перемещение Са2+ по ксилеме напоминает восходящее движение по ионообменным участкам.

Кальций слабоподвижный элемент. Его подвижность увеличивается, когда он поступает в виде хелатного или еще какого-либо комплекса.

Нужно отметить, что часть ионов, которая попала в ксилему, не достигает стебля и листьев. Эти ионы выходят из ксилемного сока по пути их движения в побег и листья. Выход ионов наблюдается и в тканях корня, и в тканях стебля и др. (рис. 5.20).

Рис. 5.20. Схема циркуляции воды, неорганических ионов и ассимилятов в растении

Если использовать гуттирующие растения, можно определить какое количество солей, находящихся в ксилемном соке корней, выходит из него за время перемещения сока по побегу. Очень часто концентрация в гутируемой жидкости намного ниже, чем в пасоке, вытекающей из отделенных корней.

После того, как ксилемный сок достигнет мельчайших разветвлений проводящей системы листа, вода и растворенные в ней вещества поступают как в оболочки клеток (апопласт), так и в цитоплазму клеток мезофилла. Большая часть воды испаряется. В результате испарения воды из клеток мезофилла листа возрастает концентрация солей в растворе, заполняющем поры клеточных оболочек. В конечном итоге может возникнуть небольшой градиент концентрации, достаточный для того, чтобы обусловить обратную диффузию в ксилему навстречу массовому потоку.

Вообще, поступление минеральных элементов из апопласта в клетки листа происходит в результате активной работы Н+-помпы. Растущие листья являются мощными акцепторными зонами для минеральных элементов ксилемного сока.

Если вспомнить, что объем воды, испаряемый за день в процессе транспирации, в 5–10 раз превышает объем клеток листа, то станет ясно, что должен существовать какой-то механизм, удаляющий излишек солей, чтобы осмотическое давление клеток не достигло опасного уровня. Существуют три таких механизма:

1. Образование тяжелорастворимых осадков солей.

2. Соль удаляется из листа с той же скоростью, как и поступает.

3. Соль накапливается в специальных клетках – солевых железках.

Большинству растений, которые обитают на незасоленных почвах, присущи два первых механизма. Третий механизм присущ растениям, произрастающим на засоленных почвах. В процессе эволюции у этих растений сформировалось несколько типов солевых желез: в одних случаях соль скапливается в особых пузыревидных клетках; в других, она непрерывно выделяется на поверхность листа через железистые клетки, а затем смывается дождем или сдувается ветром.

Железистые клетки должны обладать чрезвычайно прочными стенками для того, чтобы противостоять огромному гидростатическому давлению (тургору), ибо внутриклеточная концентрация солей может повышаться в 4 раза. Хотя электрохимические измерения на клетках солевых желез не проводились, но можно, с достаточной степенью уверенности сказать, что накопление солей – активный процесс.

Почти все элементы могут также транспортироваться из листьев, достигших спелости и начинающих стареть, в клетки других тканей, а также в сосуды ксилемы. Отток элементов из листьев зависит от их способности проникать во флоэму и перемещаться по ней.

Показано, что основные минеральные элементы (фосфор, калий, натрий, сера, хлор, азот, и др.) перемещаются по флоэме (см. табл. 5.3). Из всех двухвалентных ионов в значительном количестве перемещается по флоэме только магний. Микроэлементы (железо, марганец, цинк, молибден) в небольшой степени перемещаются по флоэме из спелых тканей в неспелые. Поскольку железо при внутриклеточном рН нерастворимо, то оно, вероятно, перемещается в неионной форме или в виде хелатного комплекса. Многие другие элементы также образуют комплексы.

Для того чтобы элементы могли переходить из сосудов ксилемы во флоэму и наоборот, существуют так называемые переходные клетки (клетки-спутники). В этих клетках на поверхности клеточных оболочек, которые находятся со стороны цитоплазмы, образуются выступы и разветвленные гребенчатые выросты.

Из особенностей этих клеток вытекают два вывода, которые можно связать с транспортными функциями. Первый связан с тем, что площадь поверхности плазмалеммы в таких клетках увеличивается, так как она повторяет все изгибы оболочки. Второй вывод связан с глубоким проникновением выростов клеточной оболочки в цитоплазму, благодаря этому любая часть плазмалеммы находится вблизи клеточных органелл (ЭР, митохондрии).

Эти переходные клетки бывают двух типов: А-тип служит мостиком между ксилемой и флоэмой, В-тип ответственен за перенос субстратов, транспортируемых по флоэме, в симпласт паренхимы или в клетки обкладки проводящего пучка (рис. 5.21).

Рис. 5.21. Схематическое представление переходных клеток и главных направлений переноса

Тип циркуляции ионов и метаболитов в большой мере зависит от роста и метаболической активности. Рост любого органа растения порождает потребность в растворенных веществах, обеспечивающих его метаболическую активность и поддерживающих осмотический потенциал при увеличении его объема. Таким образом, скорость роста растения влияет и на скорость поступления ионов и на распределении ионов в данной части растения. Рост растений регулируется целым рядом взаимодействующих факторов. Мы мало знаем не столько о самих факторах, сколько об их взаимодействии.

Известно, что транспорт ионов регулируется гормонами. В этом случае нужно решить: имеет ли место прямое влияние гормона, обуславливающее полярный транспорт, или же это влияние роста, вызванного гормонами.

ИУК влияет на структуру и вязкость мембран, а также на ионный транспорт в растительных клетках. В определенных условиях ИУК избирательно действует на поступление анионов и катионов.

Наиболее интересны данные, касающиеся существования ИУК – регулируемого АТФ-зависимого механизма транспорта протонов и его связи с процессом роста клеток растяжением. ИУК в этом случае действует как активатор протонного насоса, локализованного на плазмалемме.

Кинетин и другие цитокинины обладают способностью замедлять старение тканей и поддерживать нормальную скорость белкового синтеза и других метаболических процессов. Главный эффект данных регуляторов роста сводится к установлению в листе градиента метаболической активности, что сильно влияет на характер перемещения растворенных веществ.

Абсцизовая кислота – гормон «старения» растений, который приводит к опаданию листьев у деревьев, обладает регуляторным действием на мембранные транспортные процессы. Она влияет на проницаемость мембран клеток корня для воды, изменяет K+/Na+ избирательность.

АБК ингибирует поступление K+ в замыкающие клетки, которые необходимо для открывания устьиц.

Многие транспортные процессы связаны также с фитохромной системой. Фитохром – билипротеид, существующих в двух формах (состояниях): Ф660 (Фк) и Ф730 (Фдк). Ф730 – активная форма, ответственная за включение большого числа реакций, называемых фотоморфизмами.



biofile.ru

Транспорт минеральных веществ в растении

Ионы поступают в растение в результате их диффузии из почвенного раствора в клеточные стенки корневых волосков и других эпидермальных клеток. Затем, прежде чем переместиться в другие части растения, они транспортируются в симпласт или апопласт. Если ион поступает в симпласт, пройдя через плазмалемму наружной клетки корня, то его последующее передвижение от клетки к клетке будет происходить по плазмодесмам. Кроме того, он может двигаться по апопласту, пока не достигнет пояска Каспари. Так как ни вода, ни растворенные ионы не могут диффундировать через суберинизированные клеточные стенки, образующие поясок Каспари, все ионы, перед тем как двигаться дальше, должны пройти через цитоплазму клеток эндодермы. Одни ионы могут проникать через мембранные барьеры легче, чем другие. Поэтому свойства плазмалеммы клеток корня важны для контролирования обмена минеральными веществами между почвой и надземными частями растения. Наряду с избирательной проницаемостью мембран большую роль играет также активный транспорт многих ионов. Отрицательно заряженные ионы обычно активно транспортируются в клетку, так как их перемещение в клетку путем диффузии тормозится внутренним отрицательным потенциалом. Избыточное поступление некоторых катионов, например Na+, благодаря диффузии нейтрализуется активным выделением этих ионов из клетки, т. е. они активно выбрасываются растением.

Проникнув в цитоплазму клетки эндодермы, ионы могут продолжить движение по оимпластному пути через плазмодесмы к какой-либо клетке перициклического слоя или, покинув симпласт, они могут достичь посредством диффузии или активного транспорта ксилемы или апопластной зоны стелы. Если ионы продолжают транспортироваться по стеле через симпласт, то в конечном счете они должны будут оставить протопласт и пересечь клеточную мембрану, прежде чем попадут в полость какого-либо мертвого элемента коилемного сосуда. Мы знаем, что ионы накапливаются в ксилемных трубках в те периоды, когда наблюдается слабый водный ток. Поскольку при этом ионы должны перемещаться как внутрь по меньшей мере одной клетки, так и из нее, очевидно, что две стороны некоторых мембран, вероятно, эндодермальных клеток, обращенные к поверхности и внутрь корня, должны обладать разными ионотранспортными свойствами.

Поступив в ксилему, ионы не могут перейти обратно .в сим-пласт, так как их диффузии препятствует избирательная проницаемость клеточных мембран, в то же время их путь в почву через апопласт блокирован пояском Каспари. Накопление ионов в ксилеме увеличивает концентрацию растворенных веществ в ксилемном соке, что может привести к развитию корневого давления, рассмотренного ранее. Ионы в ксилеме, переносимые восходящим транспирационным током, перед проникновением в протопласт живой клетки должны быть вновь поглощены плазмалеммой. Каков бы ни был путь ионов, растение, очевидно, сводит к минимуму число плазмалеммных барьеров, которые данный ион должен пересечь, чтобы достичь своей конечной цели.

Подвижность минеральных ионов

После поступления в ксилему корня большинство ионов транспортируется в надземные части растения, но некоторые попадают во флоэму и переносятся вместе с другими растворенными веществами к потребляющим клеткам в растущем корневом апексе и к зонам запасания питательных веществ. Вновь поглощенные ионы 'свободно перемещаются по растению. Однако использование этих ионов в клетке может быть связано с их включением в какую-нибудь структурную молекулу. Формирующиеся ткани требуют непрерывного снабжения всеми основными минеральными ионами. Бели все они поступают из почвы, то растение не испытывает никаких трудностей. Однако когда какого-либо минерального иона не хватает, его иногда можно получить при распаде сформировавшихся ранее молекул в старых клетках. Так, N, образующийся при расщеплении аминокислот, и Mg2+, возникающий при распаде хлорофилла, передвигаются из более старых частей растения в молодые растущие клетки. Такое перемещение подвижных питательных элементов осуществляется, вероятно, по флоэме. Удаление этих элементов из более старых клеток ускоряет старение и вызывает появление симптомов минеральной недостаточности в более старых частях растения.

geo-plant.ru

Передвижение веществ по флоэме - флоэмный транспорт

Структура флоэмы. Дальний транспорт органических питательных веществ в нис­ходящем направлении осуществляется в основном по флоэме. Это положение получило подтверждение в опытах с мечеными атомами. Так, при нанесении 32С на листья в случае, если флоэму отщепляли от ксилемы и между ними прокла­дывали вощеную бумагу, меченый фосфор обнаруживался только во флоэме. Эти опыты подтвердили, что нисходящий ток как органических, так и минеральных веществ осуществляется именно по флоэме. На протяжении эволюции прово­дящая система растений постепенно изменялась. У мхов для передвижения ассимилятов служат просто удлиненные клетки. У водорослей поперечные стенки клеток перфорированы. По мере дальнейшей эволюции образуются ситовидные трубки, составленные из отдельных члеников. В отличие от ксилемы флоэма представляет собой совокупность живых кле­ток. В ее состав входит несколько типов специализированных клеток: сито­видные трубки или ситовидные клетки (у голосеменных и низших сосудистых растений), клетки-спутницы, передаточные клетки. Ситовидные трубки представляют собой вертикальные ряды вытянутых в большинстве случаев цилиндрических клеток с тонкими клеточными оболочками. Отдельные клетки (членики) отделены друг от друга ситовидными пла­стинками, пронизанными многочисленными порами, через которые проходят цитоплазматические тяжи. Ситовидные трубки образуются из клеток камбия и в первое время не отличаются от других клеток флоэмы. Они содержат подвижную цитоплазму с мно­гочисленными рибосомами, пластиды, митохондрии. В центре имеется вакуоль, окруженная тонопластом. По мере развития структура ситовидных трубок претерпевает значительные изменения: распадается ядро; уменьшаются разме­ры и количество пластид и митохондрий; исчезает тонопласт. На месте вакуоли образуется центральная полость. Цитоплазма располагается в пристенном слое. Отдельные продольные тяжи цитоплазмы пронизывают центральную полость. В полости располагаются сгустки округлой формы, по-видимому, это скопления микротрубочек. Одновременно с этими изменениями в ситовидных пластинках образуются поры, через которые проходят тонкие тяжи цитоплазмы (филаменты). По-видимому, именно в этот период ситовидные трубки служат ме­стом транспорта веществ. По мере старения в порах ситовидных пластинок от­кладывается углевод каллоза. Каллоза, сужая просветы пор, затрудняет передви­жение веществ. Каллоза синтезируется ферментом на плазматической мембране и откладывается между клеточной стенкой и мембраной. Предполагают, что в ак­тивно функционирующих элементах каллоза выполняет защитную роль. Кроме каллозы в порах ситовидных пластинок, а также в пространстве ситовидной трубки обнаружен флоэмный белок (Ф-белок). В зависимости от вида растения и фазы развития белок может быть разной формы (фибриллярным, глобулярным и др.). Синтезируется в клетках-спутницах. Предполагают, что Ф-белок не только участвует в транспорте органических веществ и предохраняет от потери флоэмного сока при повреждении, но и помогает противостоять высокому давлению, которое испытывают ситовидные трубки. У древесных растений отдельные элементы фло­эмы функционируют всего один год. По мере образования новых листьев отток из них идет по вновь образовавшимся ситовидным элементам. К каждой клетке ситовидной трубки примыкает богатая цитоплазмой клеткаспутница (у голосеменных — альбуминовые клетки). Эти клетки содержат крупное ядро и ядрышко, многочисленные митохондрии и рибосомы. Было по­казано, что клетки-спутницы имеют высокую метаболическую активность и снабжают ситовидные трубки АТФ. Клетки- спутницы и ситовидные трубки связаны между собой многочисленными плазмодесмами. В процессе онтогене­за они возникают из одной меристематической клетки. Клетки-спутницы участ­вуют в загрузке флоэмы и в передвижении ассимилятов. Также показано, что они необходимы для дифференциации ситовидных трубок. Ситовидные трубки и клетки-спутницы окружены паренхимными (передаточными) клетками.

Состав флоэмного экссудата. Применение ряда методов позволило опреде­лить, в какой форме вещества передвигаются по флоэме:

1. Большое значение имела разработка метода получения флоэмного сока с помощью сосущих насекомых — афид, которые погружают хоботок в ситовидную трубку. Если тело насекомого отрезать, из хоботка будет вытекать флоэмный сок, который и подвергается анализу.

2. Использование 14С02 позволило проводить анализ меченых соединений непосредственно в проводящих элементах флоэмы.

Концентрация флоэмного эксудата колеблется в пределах от 8 до 20%. 90% или более всех веществ, передвигающихся по флоэме, составляют углеводы. Основной транспортной формой углеводов служит сахароза (С12Н22О11). В опытах А.Л. Курсанова и М.В. Туркиной уже через 5 мин после начала ассимиляции С02 в проводящих пучках обнаруживалась именно сахароза. Вместе с тем у не­которых видов наряду с сахарозой транспортной формой углеводов служат олигосахара (раффиноза, стахиоза), а также некоторые спирты (маннитол, сорбитол). Моносахара (глюкоза и фруктоза) составляют малую долю передвигающихся углеводов. Как уже упоминалось, образование сахарозы происходит в паренхим­ных клетках флоэмы. Сахароза активно, с затратой энергии, секретируется в си­товидные трубки. Ситовидные трубки лишены ферментов, разлагающих саха­розу (инвертазы), что и определяет сохранность этого соединения на всем пути его транспорта. По флоэме и в нисходящем направлении может идти передвижение и других питательных веществ как в виде минеральных, так и органических соединений при их оттоке из стареющих органов в процессе реутилизации. Азотистые вещества при их повторном использовании транспортируются по флоэме и виде аминокислот и амидов. Во флоэмном соке обнаружены также низко­молекулярные белки, органические кислоты, витамины, фитогормоны. Отли­чительной особенностью флоэмного сока является слабощелочная реакция (рН = 8,0—8,5), высокая концентрация АТФ и ионов К+. Продукты фотосинтеза передвигаются к тканям, где они используются. В связи с этим транспорт по флоэме может идти в противоположных направлениях. Наряду с перемещением из листьев к корням (нисходящий ток) ассимиляты передвигаются вверх к точкам роста, цветкам, плодам. Однако большинство не следователей считает, что встречный ток веществ локализован в разных ситовидных элементах.

Скорость передвижения по флоэме. Влияние условий. Скорость передвижения веществ по флоэме определяли, наблюдая за быстротой распространения меченых соединений. Оказалось, что скорость передвижения в ситовидных трубках достаточно высока и составляет в среднем 50—100 см/ч. У разных групп растений этот показатель может несколько варьировать. У одного и того же рас-нч1ия различные органические вещества могут передвигаться с разной скоро­стью.

Значительное влияние на скорость передвижения оказывают условия внешней среды. В отличие от перемещения по ксилеме на транспорт веществ по флоэме влияют все факторы, изменяющие напряженность процессов обмена веществ. Передвижение по флоэме зависит от температуры. Это можно проследить на опытах, в которых пластинки листа погружали в раствор сахарозы, а черешки заключали в специальную муфту и подвергали воздействию различных температур. Оказалось, что оптимальная температура колеблется между 20 и 30°С. Дальнейшее повышение температуры уже тормозит отток ассимилятов из пластинки листа. Отношение к резкому охлаждению флоэмы у разных растений неодинаково. У южных растений (фасоль) полностью приостанавливается транспорт при температуре 1—2°С, тогда как у сахарной свеклы подобное охлаждение лишь замедляет передвижение. Условия минерального питания оказывают заметное влияние на транспорт веществ по флоэме. Особенно много исследований посвящено влиянию бора. Показано, что под влиянием бора скорость передвижения сахарозы заметно возрастает. Возможно, это связано с образованием комплексных соединений бора с углеводами. Скорость передвижения ассимилятов ускоряется также под влиянием фосфора. Фосфорилированные формы Сахаров передвигаются быстрее. Скорость передвижения меняется под влиянием калия. В последнее время появилась гипотеза, согласно которой калий поддерживает мембранный потенциал в ситовидных пластинках и тем самым способствует передвижению ассимилятов. Передвижение веществ по флоэме тормозится в присутствии всех метаболических ингибиторов, таких, как азид натрия, йодацетат, динитрофенол и др. Транспорт по флоэме ускоряется при добавлении АТФ. Все эти данные указывают на тесную связь между передвижением веществ по флоэме и метаболизмом.

Механизм флоэмного транспорта. Этот вопрос представляется наиболее сложным. Еще в 1930 г. Э. Мюнх выдвинул гипотезу «массового тока», согласно которой по ситовидным трубкам из одного членика в другой через поры движется жидкость с растворенными веществами. Движущей силой этого потока является тургорное давление (потенциал давления). Клетки, в которых образуются сахара (донор), характеризуются высокой концентрацией клеточного сока и высоким тургорным давлением, а клетки, в которых сахара потребляются,— низким тургорным давлением (акцептор). Если эти клетки соединены между собой, то жидкость должна перетекать из клеток с высоким давлением в клетки с низким давлением. Все сказанное можно представить в виде схемы. Гипотеза Мюнха в последнее время приобрела сторонников, однако она не согласуется с многими факторами. Далеко не всегда передвижение идет по градиенту тургорного давления (в сторону его уменьшения). Так, эта гипотеза не позволяет объяснить интенсивную переброску ассимилятов из опадающих листьев или завядающих лепестков цветка, которые обладают, естественно, низким тургорным давлением. Расчеты показывают также, что для передвижения раствора сахарозы с той скоростью, которая наблюдается в ситовидных трубках, нужна сила, значительно превосходящая силу тургорного давления, развиваемую в клетках-донорах. Альтернативной является гипотеза, согласно которой передвижение органических веществ идет с затратой энергии. По данным А.Л. Курсанова, существует взаимосвязь между флоэмным транспортом и напряженностью энергетического обмена. Источником энергии для транспорта веществ может быть АТФ, образовавшаяся как в самих ситовидных элементах, так и, главным образом, в клетках-спутницах. Показано, что клетки-спутницы характеризуются исключительно высокой интенсивностью дыхания и окислительного фосфорилирования. Однако механизм активного транспорта веществ, проходящего с затратой энергии, еще не ясен. Высказываются соображения, что периодические сокращения белковых тяжей ситовидных трубок могут способствовать перемещению веществ в определенном направлении. Электронно-микроскопические исследования показали наличие белковых нитей и в порах ситовидных пластинок. Возможно, что эти белковые тяжи способны к перистальтическим сокращениям, что и вы­зывает проталкивание ими раствора или осо­бых гранул-носителей, на которых сконцент­рированы ассимиляты. Конечно, эти пери­стальтические сокращения требуют затраты энергии. Ряд исследователей (Спаннера) придает значение электроосмотическим явлениям. Со­гласно этой гипотезе, на каждой ситовидной пластинке возникает электрический потенци­ал. Возникновение электрического потенциа­ла связано с циркуляцией ионов К+. Предпо­лагается, что К+ активно (с затратой энергии АТФ) поглощается выше ситовидной перего­родки и проникает через нее в нижний членик. По другую сторону перегородки ионы К+ пас­сивно выходят в сопровождающую клетку. Активное поступление К+ с одной стороны ситовидной трубки обеспечивается тем, что ас­симиляционный поток обогащает ситовидную трубку АТФ именно с той стороны, к которой он первоначально подходит. Возникающий на каждой ситовидной пластинке электрический потенциал и является движущей силой потока сахарозы по флоэме. Важно отметить, что флоэма, имеет и вто­рую функцию — распространение импульсов возбуждения, что может являться одним из механизмов, обеспечивающих транспорт (В.А. Опритов). Д. Фенсом выдвинута гипоте­за, что транспорт ассимилятов по флоэме осу­ществляется с помощью нескольких механизмов. Основное значение при этом придается тем механизмам, которые были рассмотрены, т. е. перетеканию рас­твора под давлением, электроосмотической гипотезе и передвижению, свя­занному с перистальтическим сокращением белковых тяжей. Каждый из этих механизмов может осуществляться и усиливаться при отсутствии условий для функционирования других. Важное значение имеет направление движения и распределение ассимиля­тов. Оно во многом определяется интенсивностью использования веществ, потребностями того или иного органа, интенсивностью его роста, иначе говоря, «запросом». Потребляющие ассимиляты органы как бы притягивают к себе питательные вещества, являются аттрагирующими центрами. Значение в распределении питательных веществ в растении имеют фитогормоны. Транспорт питательных веществ идет в направлении к тем органам, которые характеризу­ются большим содержанием фитогормонов, в частности ауксинов и цитокининов. Обработка отдельных органов растений ауксином вызывает усиление притока к ним различных органических веществ. Влияние фитогормонов на пе­редвижение ассимилятов связано с усилением напряженности энергетического обмена (Н.И. Якушкина). Направление передвижения ассимилятов несколько ограничено расположением производящих их органов, а именно листьев. Показано, что листья, расположенные по разные стороны стебля, а также различные но ярусу (верхние и нижние), снабжают продуктами фотосинтеза разные части и органы растения. Так, известно, что плоды томатов и других растений снабжаются ассимилятами, главным образом образовавшимися в листьях, расположен­ных в непосредственной близости от них.

fizrast.ru

Транспорт воды, минеральных солей и ассимилятов по растению

Май 2014

Автор: © ООО «СЕЛЕКЦИОННО-СЕМЕНОВОДЧЕСКАЯ ФИРМА «МАНУЛ»

Почти вся вода, поглощаемая растением, поступает в него через корневые волоски (выросты эпидермальных клеток кончиков корней) под действием осмотических сил, а также за счет активных механизмов, протекающих с затратами энергии дыхания. Пройдя в радиальном направлении через апопласт (совокупность клеточных стенок и межклетников) или симпласт (совокупность протопластов клеток, соединенных цитоплазматическими мостиками – плазмодесмами) и эндодерму, вода поступает в ксилемные проводящие пучки (состоящие из сосудов и трахеид), расположенные по всей длине корня и стебля. Далее по сосудам черешков вода в жидкой фазе поступает в листья. В листьях ксилемные и флоэмные жилки образуют такую густую сеть, что любая клетка оказывается очень близко от поступающей воды. Из ксилемы вода диффундирует в стенки клеток мезофилла (основной ткани) листа. Из межклетников листа через устьица молекулы воды выходят в атмосферу (транспирация). У огурца, мезофитного растения, устьиц много – 300-650 шт. на 1 мм2 на нижней поверхности листа, и 200-350 шт. на 1 мм 2 на верхней поверхности листа.

При участии воды происходят все жизненные процессы. В процессе фотосинтеза из диоксида углерода и воды образуются органические вещества и высвобождается молекулярный кислород. Вода в растениях находится в свободном и связанном состоянии. В процессе транспирации расходуется прежде всего свободная вода.

Из почвы растворенные в воде вещества растения поглощают избирательно (активный транспорт ионов). Минеральные вещества в виде ионов вместе с водой также поглощаются растением через корневые волоски и другие эпидермальные клетки кончика корня и далее по апопласту и симпласту поступают в ксилемные сосуды. В симпласте происходит метаболизация поступаемых элементов – включение их в процессы обмена веществ.

По ксилеме ионный поток направляется в растущие органы растений и включается в процессы метаболизма.

Продукты фотосинтеза из листьев в различные органы растения проходят по другой транспортной сосудистой системе, называемой флоэмой, состоящей из ситовидных трубок и клеток-спутниц. В отличие от мертвых клеток ксилемных сосудов ситовидные клетки являются живыми.

Ксилема и флоэма – две зоны единых проводящих пучков растений. Система проводящих пучков пронизывает все органы растения снизу доверху и представляет собой сложно сплетенную сеть внутри растения, т.к. пучки образуют между собой массу перемычек. Проводящая система стебля огурца представлена девятью открытыми биколлатеральными пучками, расположенными в два круга.

Значение транспирации для растения

Транспирация – испарение воды надземными частями растений. У огурца транспирация происходит через устьица листьев. Биологическое значение транспирации:

- обеспечение работы верхнего концевого двигателя тока воды, благодаря которому происходит поступление в растение питательных веществ;

- поддержание и регулирование насыщенности клеток водой, создавая таким образом оптимальные условия для процессов жизнедеятельности;

- терморегуляция растения.

В солнечные дни температура листа может быть на 10°С выше температуры воздуха. Из-за такой разности температур транспирация усиливается. Усиливается она также и в результате турбулентности воздуха (движение воздуха в теплице, когда форточки открыты). В таких условиях вода из растения может испаряться быстрее, чем корневая система может ее подавать. В растении возникает водный дефицит. (У растений выработаны защитные механизмы экономного расходования воды: так, в жаркие полуденные часы происходит снижение транспирации за счет закрывания устьиц и возрастания водоудерживающей способности тканей). Когда потеря воды листьями в течение определенного времени превышает ее поступление через корни, растения начинают привядать. Первыми начинают привядать нижние листья. Ближе к вечеру транспирация ослабевает, и за счет поглощения воды корнями водный баланс растений восстанавливается. Клетки растений восстанавливают свой тургор – признаки увядания исчезают. В жаркий период такое дневное обратимое увядание может происходить каждый день, даже несмотря на то, что в почве содержится оптимальное количество воды. Такое явление можно наблюдать на тяжелых плотных тепличных грунтах в период интенсивного плодообразования, или при сильном перегреве воздуха в теплице. Если наступает пасмурная погода, признаки увядания исчезают.

Первые признаки увядания – симптом того, что сильно нарушена агротехника, или растения заражены патогенами, поражающими корни, прикорневую часть стебля, или вызывающими закупоривание ксилемных сосудов.

В случае ослабленного роста корней или их поражения и отмирания под действием внезапного сильного стресса или патогенов интенсивность ежедневного увядания листьев будет усиливаться, т.к. надземная часть (в начале угнетения корней) еще продолжает расти, а деятельность корневой системы ослаблена. В дальнейшем и рост стеблей и листьев приостанавливается, урожайность резко снижается. Через некоторое время может произойти необратимое полное увядание – растение погибает.

manul.ru

Транспорт минеральных веществ в растении

    ТРАНСПОРТ МИНЕРАЛЬНЫХ ВЕЩЕСТВ В РАСТЕНИИ [c.234]

    Технико-экономические данные характеризуют экономику производства и транспорта средств X. с. х. Сюда входят главным образом капитальные вложения на строительство заводов и себестоимость производства продуктов. Имеют значение и вложения в смежные и сопряженные объекты (общезаводское хозяйство, сырье, полупродукты, топливо, электроэнергия, тара, транспорт и т. д.). Сопряженные вложения большей частью превышают (иногда в несколько раз) вложения в основные цеха. Характерно преобладание сырьевой, а в некоторых случаях топливно-энергетической слагаемой. Затраты на транспорт имеют особенно большое значение для таких многотоннажных и сравнительно дешевых продуктов, как минеральные удобрения. Поэтому техническая политика в развитии туковой промышленности направлена и на повышение концентрации питательных веществ в удобрениях и на уменьшение перевозок сырья и продуктов путем соответствующего размещения предприятий. Для экономики производства удобрений и особенно средств защиты растений и животных существенное значение имеет создание новых, более эффективных химических средств. Обновление и расширение их ассортимента повышает их экономичность и потому, что это затрудняет приспособление, привыкание с.-х. вредителей и возбудителей болезней к ядохимикатам. [c.363]

    Эти базы служат для приема железнодорожного транспорта, хранения и отгрузки на автотранспорт различных сухих и жидких минеральных удобрений, пылевидных и мелкодробленых известковых материалов, химических средств защиты растений, сильно действующих ядовитых веществ, а также цемента, лакокрасочной продукции и минеральных кормов, предназначенных для снабжения в централизованном порядке коллективных хозяйств и совхозов нескольких примыкающих районов. [c.40]

    Прирельсовые (пристанские) базы выполняют роль перевалочных баз. Они предназначаются для приема с железнодорожного (водного) транспорта, кратковременного хранения, переработки и отгрузки на автотранспорт различных сухих и жидких минеральных удобрений, химических средств защиты растений, сильнодействующих ядовитых веществ для снабжения ими в централизованном порядке колхозов и совхозов нескольких примыкающих районов, а также для выполнения агрохимических работ по договорам с хозяйствами . [c.6]

    Физиология минерального питания включает исследования значения структурных особенностей тканей и отдельных клеток проводящей системы корня, стебля и листа, обеспечивающих поток ионов и молекул в отдельную клетку и весь растительный организм движущих сил ионного и молекулярного транспорта, его регуляции на основе знаний физиологии и биохимии проводящих систем растения. Важный раздел физиологии минерального питания занимается изучением зависимостей между потоком питательных веществ, климатическими и почвенными факторами. [c.149]

    В 1945 г. в растение вводили в виде СОг, и затем вьывляли этот нерадиоактивный изотоп углерода с помощью масс-спектрометрии. Кольцо флоэмы ошпаривали тонкой струей перегретого пара, чтобы убить клетки, и после этого транслокация меченной С-сахарозы через этот участок прекращалась. Транспорт минеральных веществ по ксилеме при такой обработке не страдал. [c.133]

    Пересечь этот барьер ионы могут путем диффузии или путем активного транспорта через плазмалеммы эндодермальных клеток и попадая в их цитоплазму и, возможно, в вакуоли. Таким способом растение контролирует, какие минеральные вещества в конце концов попадают в ксилему. [c.128]

    Образующиеся в листьях продукты фотосинтеза (фотосинта-ты), а также вода и минеральные вещества, поглощенные корнями, потребляются всеми растительными клетками. Дв1ижение . или транслокация, всех этих веществ по растению осуществляется по специализированным транспортным элементам, присутствующим во флоэме и ксилеме. В то время как ксилемный транспорт направлен главным образом от корня к стеблю, флоэмный транспорт может происходить как вверх, так и вниз,.. причем для каждого направления используется свой индивидуальный ряд элементов ситовидных трубок. [c.255]

    Высшие растения имеют две протяженные транспортирующие системы. Одна из них—ксилемная — состоит из непрерывных трубок, образованных мертвыми клетками, по которым вода и растворенные в ней минеральные питательные вещества транспортируются из корней в листья. Вторая система — флоэмпая более сложна и менее изучена в ней с очень небольшой скоростью (не более нескольких сантиметров в час) из взрослых листьев в молодые растущие ткани транспортируются продукты фотосинтеза. По флоэме перемещается концентрированный до 16% раствор универсального энергетического продукта метаболизма растений — сахарозы, а также аминокислоты и белки в значительно меньших концентрациях. Транспорт внутри растений на большие расстояния осуществляется только по этим двум системам и только водорастворимых веществ. [c.54]

    Перемещение вещества по проводящим тканям растений называют транслокацией. У сосудистых растений эти ткани крайне специализированы и представлены ксилемой и флоэмой. По ксилеме осуществляется транслокация в основном воды, растворенных в ней минеральных солей, а также некоторых органических соединений азота и гормонов транспорт при этом направлен от корней к надземным органам растения. Флоэма служит для перемещения прежде всего растворов органических и неорганичесюгх веществ по флоэме вещества движутся главным образом от листьев и запасающих органов к прочим частям растения. [c.99]

    Регуляция роста стебля. Рост растения — комплексный биологический процесс, складывающийся из процессов деления и растяжения клеток, обеспечиваемых дыханием, фотосинтезом, транспортом веществ в растении, поступлением воды и минерального питания. Применение любого фиторегулятора так или иначе влияет на рост. [c.357]

    В традиционных для учебников физиологии растений главах книги, в которых обсуждаются строение клетки, фотосинтез, дыхание и общий метаболизм, транспорт веществ, водообмен и минеральное питание, дана характеристика функциональной и структурной организации всех этих процессов с учетом новейших данных и представлений. Особое внимание обращено на непрерывность энергетического и метаболического взаимодействий между различными органеллами и целыми клетками, а также на симпластный и апопластный транспорт веществ. Восемь нз 16 глав книги посвящены вопросам регуляции жизнедеятельности растения как единого целого с помощью его гормональной системы и света. В этих главах обсуждаются различные аспекты роста растений, тропизмы, быстрые движения, фотопериодизм, ритмы, состояние покоя и старение. Большое внимание авторы уделяют регуляторному действию света на эти процессы. Свет — его интенсивность, спектральный состав и периодичность— рассматривается как необходимое условие, определяющее рост и всю жизнедеятельность растения. Много места в книге отводится применению регуляторов роста и пестицидов. Оценивая влияние на растения экзогенных физиологически активных веществ, авторы на примерах объясняют, что наблюдаемое иногда неблагоприятное действие этих веществ или полное [c.6]

    Благодаря сочетанию ксилемного и флоэмного транспорта по растению циркулирует множество разнообразных веществ, в том числе минеральные элементы, азотистые соединения и растительные гормоны (рис. 8.2). Минеральные ионы, например, сначала поглощаются из почвы, а затем транспортируются в надземную часть растения главным образом по ксилеме. По мере старения листьев из них выводятся некоторые подвижные элементы (такие, как К" , Н2РО4-, Mg2+), которые с потоком транспортируемой сахарозы переносятся по флоэме к акцептору. При недо- [c.245]

    Почва представляет освещаемую твердую поверхность Земли, покрытую растительным покровом, и, начиная с силура, примерно 350-400 млн лет назад, обеспечивает выход растений в аэротоп - слой атмосферы между верхушками растений и поверхностью зем- ли. Как операционное биологическое понятие почву удобнее всего i определить как корнеобитаемый слой земной поверхности . При J этом за пределами определения окажутся лишенные высшей расти- a тельности участки с водорослевой или моховой растительностью и > лишенные органического вещества области первичного почво- f образовательного процесса обнаженные грунты, пески, скалы. Для Г последних удобным обозначением служит обнаженная кора вывет- ривания , обычно заселенная микробными биопленками. В коре вы-1 ветривания доминируют элювиальные процессы выноса. Как био-" косное тело почва отличается от минеральной фазы и грунта сбо- гащением органическим веществом. Органическая почва растет из воздуха. В корнеобитаемом слое появляется структура, обусловлен- ная корневой сетью, и меняется гидрологический режим. Растение пересекает две среды обитания и становится мощным транспорт- [c.246]

    Прослеживая этапы развития физиологии растений, можно видеть, что физиологические функции, которые столетие назад только описывались, в настоящее время детально изучены на биохимическом и молекулярном уровнях роль органоидов, энергетика, ассимиляция СО2, многие участки обмена веществ, механизмы регуляции и наследственности. Близки к разрешению такие процессы, как фотохимические реакции фотосинтеза, механизмы транспорта веществ. В то же время в современной физиологии наряду с молекулярно-биохимическим подходом все более возрастает интерес к растительному организму как целостной системе со всеми ее внутренними и внешними взаимосвязями. Поэтому в предлагаемый читателю учебник включена - глава Систе.мы регуляции и интеграции у растений , которая предшествует обсуждению механизмов, лежащих в основе различных сторон функциональной активности растений. Наряду с традиционными разделами (фотосинтез, дыхание, водный режим, минеральное питание и др.) в учебник введена глава по гетеротрофному способу питания растений, так как незеленые ткани и органы, а при отсутствии света клетки всех частей растения питаются гетеротрофно. В отдельные главы выделены описания таких физиологических функций, как секреция, дальний транспорт веществ, половое и вегетативное размножение, движение. Рост и развитие растений рассматриваются на клеточном уровне (гл. 10) и на уровне целого организма (гл. 11 и 12). В этих процессах ведущую роль играет взаимодействие клеток между собой. [c.8]

    Особенности обмена веществ в корне связаны с его ролью в целом растении. Прежде всего корень — это специализированный орган поглощения воды и минеральных элементов из почвы. Поэтому часть процессов биосинтеза направлена на построение аппарата поглощения и систем транспорта поступивших в корень ионов, органических соединений и воды к местам их потребления. Во-вторых, в корне происходит частичная или полная переработка поступивших ионов и перевод их в транспортную форму восстановление, включение в различные органические соединения. Причем транспортные процессы сопряжены со значительными энергетическими затратами. И наконец, в корне синтезируются физиологически активные вещества — фитогормоны цитокининовой природы и гиббереллины, необходимые для нормального роста и развития всего растения. [c.265]

chem21.info

Поступление минеральных веществ » СтудИзба

Поступление минеральных веществ через корневую систему

  1. Радиальный и ксилемный транспорт элементов минерального питания
  2. Метаболизм корней
  3. Влияние внешних и внутренних факторов на минеральное питание растений

 

Радиальный и ксилемный транспорт элементов минерального питания

Корневая система растений поглощает из почвы как воду, так и питательные минеральные вещества. Клеточные стенки принимают непосредственное участие как в поглощении веществ из почвы, так и в их транспорте. Основной движущей силой поглотительной активности корней является работа ионных насосов (помп), локализованных в мембранах. Радиальный транспорт минеральных веществ от поверхности корня к проводящей системе осуществляется в результате взаимодействия всех тканей зоны поглощения. И завершается загрузкой минеральных веществ и их органических производных в трахеиды и сосуды ксилемы.

В целом процесс минерального питания растения - это сложная цепь биофизических, биохимических и физиологиче­ских процессов со своими обратными и прямыми связями и си­стемой регуляции.

Поглотительная активность корня основывается на механизмах поглотительной активности, присущей любой растительной клетке (избирательное поступление веществ, трансмембранный перенос ионов, определенная роль фазы клеточных стенок).

Путем диффузии и обменных процессов ионы поступают в клеточные стенки ризодермы. Затем через коровую паренхиму перемещаются к проводящим пучкам (радиальный транспорт). Это передвижение происходит как по клеточным стенкам — апопласту, так и по симпласту. Перемещение ионов по апопласту происходит за счет диффузии и обменной адсорбции по градиенту концентрации и ускоряется током воды.

Движение минеральных веществ по симпласту осуществляется благодаря движению цитоплазмы, а также по каналам ЭПС, а между клетками - по плазмодесмам. Направленному движению по симпласту могу! способствовать градиенты концентрации веществ. Большое значение для радиального транспорта имеет неравномерное развитие тканей корня. Позднее всего дифференцируются ткани, лежащие в глубине корня: проводящие, эндодерма, внутренние зоны корневой паренхимы. И поэтому процессы метаболизма в них более активны, чем в закончивших свое развитие наружных тканях, и поглощенные вещества в большей степени подвергаются здесь метаболизации.

Диффузия ионов и молекул по апопласту прерывается на уровне эндодермы. Так как пояски Каспари содержат суберин, обладающий гидрофобными свойствами и служит непреодолимым барьером для передвижения веществ по апопласту. Единственный путь дальнейшего передвижения веществ через эндодерму - по симпласту. Существование в эндодерме пропускных клеток, в которых пояски Каспари недоразвиты или отсутствуют, позволяет незначительной части поглощенных веществ избежать метаболического контроля.

Симпластический транспорт является основным для многих ионов. При этом активной метаболизации подвергаются соединения, содержащие азот, углерод, фосфор, в меньшей степени - серу, кальций, хлор. Другие ионы метаболическому контролю практически не подвергаются. Существенную роль в симпластическом транспорте веществ играют вакуоли. Они конкурирую с сосудами ксилемы за поглощенные вещества и играют роль регулятора поступления веществ в сосуды. Процесс регуляции зависит от степени насыщения вакуолярного сока растворенными веществами. В то же время при снижении концентрации веществ в цитоплазме они могут вновь выходить из вакуолей, представляя, таким образом, запасной фонд питательных веществ. Поглощение ионов вакуолями снижает концентрацию их в симпласте и обеспечивает создание градиента концентрации, необходимого для их транспорта. Поступление ионов в вакуоли может происходить против электрохимического градиента, т. е. за счет активных процессов мембранного транспорта. Далее за счет работы ионных насосов происходит загрузка минеральных веществ в сосуды ксилемы. Вслед за минеральными веществами по законам осмоса входит вода и развивается корневое давление. Транспирация и корневое давление способствуют передвижению элементов минерального питания по ксилеме в другие части растения.

 

Метаболизм корней

Особенности обмена веществ в корне связаны с его ролью в целом растении.

1. Корень - это специализированный орган поглощения воды и минеральных элементов из почвы. Поэтому часть процессов биосинтеза направлена на построение аппарата поглощения и систем транспорта поступивших в корень ионов, органических соединений и воды к местам их потребления.

2. В корне происходит частичная или полная переработка поступивших ионов и перевод их в транспортную форму: восстановление, включение в различные органические соединения.

3. В корне синтезируются физиологически активные вещества - фитогормоны цитокинины и гиббереллины, необходимые для нормального роста и развития всего растения.

Важнейшая особенность метаболизма корня состоит в том, что источником углерода для него служат продукты фотосинтеза, поступающие из надземных органов. Основной транспортной формой ассимилятов служит сахароза. В меньшем количестве из надземных частей поступают аминокислоты и некоторые другие органические соединения (например, тиамин). Сахароза - универсальный источник для синтеза органических соединений в корне. Образующиеся в процессе метаболизации сахарозы соединения используются самим корнем, т. е. на поддержание его роста и функциональной активности, входит в состав корневых выделений или в состав пасоки поступает в надземные органы.

В метаболизме клеток корня используются также поглощенные из окружающей среды минеральные вещества, вода, а также некоторые органические соединения, выделяемые ми­кроорганизмами ризосферы: витамины, аминокислоты.

Поступившая в корень сахароза расщепляется до моносахаров, которые участвуют в образовании полимеров клеточных стенок (целлюлозы, гемицеллюлозы, пектиновых веществ), а также используются на синтез крахмала, откладываются в запас, тратятся на процессы дыхания.

Способность к синтезу аминокислот присуща и воздушным корням. Синтез аминокислот локализован в определенных участках корня. Максимальное количество аминокислот образуется в зоне корневых волосков, а вышележащие участки корня осуществляют их транспорт в надземную часть растения. Синтез аминокислот зависит от возраста растения, достигает максимума в фазу цветения. Существует суточный ритм синтеза аминокислот, в дневное время интенсивность синтетических процессов выше.

В корнях так же синтезируются вещества содержащие азот, порфирины, некоторые витамины (В1, В6, никотиновая и аскорбиновая кислоты), ростовые вещества (цитокинин, АБК, гиббереллины), алкалоиды и др.

 

Влияние внешних и внутренних факторов на минеральное питание растений

Содержание минеральных элементов в растениях значительно варьирует в зависимости от:

- доступности и концентрации минеральных соединений в почве;

- уровня кислотности среды;

- условий влажности, температуры, аэрации в зоне корней;

- возраста растений.

Внешние факторы

Температура. При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пре­делах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза.

Свет. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. На свету в процессе фотосинтеза образуются углеводы, которые необходимы для дыхания, также на свету в процессе фотофосфорилирования образуется АТФ, энергия которой используется на поступление веществ.

Содержание кислорода. При уменьшении содержания кислорода до 2-3% интенсивность поступления солей остается на одном уровне. Лишь снижение концентрации кислорода ниже 3% вызывает падение поглощения минеральных элементов в два раза.

Значение рН также сказывается на поглощении солей. Подкисление почвенного раствора улучшает доступность ионов фосфорной кислоты, а подщелачивание снижает. Резкое изменение значения рН может повредить клеточные мембраны, что в последующем окажет влияние на скорость поглощения минеральных веществ.

Конкуренция ионов. Поглощение одного иона зависит от присутствия других ионов. Ионы с одинаковым зарядом обычно конкурируют между собой.

 

Внутренние факторы

Интенсивность дыхания. Процесс дыхания может оказывать влияние на поступление солей в нескольких направлениях.

1) В процессе дыхания выделяющийся углекислый газ в водной среде диссоциирует на ионы Н+ и НС03-. Адсорбируясь на поверхности корня, эти ионы служат обменным фондом для поступающих катионов и анионов.

2) В процессе переноса ионов через мембрану участвуют специфические белки-переносчики, синтез которых находится в зависимости от интенсивности дыхательного процесса.

3) Энергия, выделяемая в процессе дыхания, непосредственно используется для поступления солей (активное поступление).

Поступление воды и солей во многих случаях идет независимо друг от друга. В условиях высокой влажности воздуха транспирация резко падает, а поступление солей идет с достаточной интенсивностью. Однако в некоторых случаях увеличение интенсивности транспирации может сказаться положительно на поглощении солей. Усиление транспирации приводит к ускорению передвижения восходящего тока воды с растворенными солями, что способствует быстрому освобождению от них клеток корня, а следовательно, косвенно ускоряет поглощение.

Фотосинтез. Увеличение интенсивности фотосинтеза приводит к возрастанию содержания углеводов и, как следствие, к увеличению интенсивности дыхания и поступления солей.

Ростовые процессы. Ускорение темпов роста увеличивает использование питательных веществ и тем самым усиливает их поступление. Наряду с этим быстрый рост корневой системы оказывает прямое влияние на поглощение благодаря увеличению поверхности, соприкасающейся с почвой.

 

studizba.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта