Транспирация у растений это. Транспирация и ее регулирование растением.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

ТРАНСПИРАЦИЯ. Транспирация у растений это


Транспирация — Физиология растений | iFREEstore

Транспирация - это испарение воды растением. Основным органом транспирации является лист. Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация). В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев. Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды - температура и движение воздуха.

Транспирация спасает растение от перегрева. Температура сильно транспирирующего листа может примерно на 7 Со быть ниже температуры нетранспирирующего завядшего листа. Кроме того, транспирация участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

Транспирацию обычно выражают в следующих единицах. Интенсивность транспирации - это количество воды, испаряемой растением в г за единицу времени в часах единицей поверхности в дм2. Эта величина колеблется от 0,15 до 1,5. Транспирационный коэффициент - это количество воды в г, испаряемой растением при накоплении им 1 г сухого вещества. Продуктивность транспирации - это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в г, накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация - это отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же период времени. Экономность транспирации - это количество испаряемой воды в мг на 1 кг воды, содержащейся в растении.

Кутикулярная транспирация. Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации. Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной  и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.

Устьичная транспирация. Устьица представляют собой щель в подъустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм2. Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

Транспирация слагается из двух процессов: 1) передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление, 2) испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели. Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Клеточные стенки замыкающих клеток имеют неодинаковую толщину. Внутренняя часть стенки, примыкающая к устьичной щели, более толстая, а внешняя – более тонкая. По мере того как замыкающая клетка осмотически поглощает воду, более тонкая и эластичная часть ее клеточной стенки растягивается и оттягивает внутреннюю часть стенки. Замыкающие клетки принимают полукруглую форму и устьица раскрываются. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается (рис. 3.2). Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н+-насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента -амилазы, что приводит к снижению гидролиза крахмала. По сравнению с низкомолекулярными углеводами крахмал не является осмотически активным веществом, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются.

Рис. 3.2. Устьица в открытом (вверху) и закрытом (внизу) состоянии.

А – двудольного растения, Б – злака (по С. И. Лебедеву).

В отличие от других клеток эпидермиса замыкающие клетки устьиц содержат хлоропласты. Синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

Состояние устьиц зависит от углекислого газа. Если концентрация СО2 в подъустьичной полости падает ниже 0,03 %, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

ifreestore.net

Транспирация и ее регулирование растением.

Одной из важных характеристик процесса является интенсивность транспирации – количество воды, испаряемое растением с единицы листовой поверхности в единицу времени. В некоторых случаях удобнее проводить расчет  на единицу массы листьев. Для большинства сельскохозяйственных растений интенсивность транспирации составляет днем 15250, а ночью 120 г/(мч).

Высокая интенсивность транспирации, которую К.А.Тимирязев называл «необходимым злом», обусловлена тем, что атмосфера характеризуется очень низкими значениями водного потенциала. Водный потенциал связан логарифмической зависимостью с относительной влажностью воздуха:

                            

                                          ,

   Где R газовая постоянная;   T абсолютная температура;   V парциальный мольный объем;   e – давление водяного пара в воздухе;  e давление водяного пара, насыщающего воздух при данной температуре.

Поэтому небольшой перепад относительной влажности приводит к значительной депрессии его водного потенциала. Так, при относительной влажности воздуха 100% водный потенциал равен нулю, при влажности 99,6% 0,5 МПа, при 99 и 97% он составляет соответственно – 1,36 и 4,0 МПа. Относительная влажность воздуха летом наиболее часто не превышает 60%, водный потенциал при этом снижается до – 68 МПа, а во время суховея (влажность 30%) депрессия водного потенциала достигает 200 МПа.

Кутикулярная транспирация. С самого существования наземных растений возникла дилемма: ассимиляция СО

  из атмосферы требует интенсивного газообмена; предотвращение значительной потери воды возможно только при наличии хорошей изоляции от окружающего воздуха, имеющего крайне низкие значения водного потенциала. Главная проблема газообмена, как ее сформулировал О.Штоккер (1923), состоит в «лавировании между жаждой и голодом»

Поддержание водного гомеостаза листа достигается наличием покровной ткани – эпидермиса.

Снаружи эпидермис покрыт кутикулой, в состав которой входят кутин – полимерные эфиры оксимонокарбоновых кислот и пластинки воска.

Кутикулярное диффузное сопротивление в большинстве случаев очень велико. Оно зависит от толщины кутикулы, расположения, плотности и числа прослоек Кутина и воска. Кутикулярная защита от транспирации весьма эффективна. У взрослых листьев кутикулярная транспирация составляет 1020% общего испарения воды.

У кутикулы есть уникальное свойство, обусловленное особенностями ее состава, изменять гидравлическую проводимость в зависимости от оводненности. Таким образом, потеря воды через кутикулу регулируется оводненностью листа. По ночам, например, при более сильном набухании кутикулы кутикулярная транспирация идет интенсивнее, чем днем. Смоченные листья могут поглощать воду через кутикулу.

Устьичная транспирация. Основной путь сообщения мезофилла листа с атмосферой – устьица. Процесс устьичной транспирации можно разделить на несколько этапов.

Первый этап – испарение воды с поверхности клеток в межклетники. Каждая клетка мезофилла хотя бы одной своей стороной граничит с межклеточным пространством. Необходимо отметить, что уже на этом этапе растение способно регулировать транспирацию. Уменьшение испарения достигается двумя механизмами. Первый обусловлен изменениями водоудерживающей способности цитоплазмы путем увеличения осмотического и коллоидного связывания воды, ее компартментации в отдельных органеллах клетки  и снижения  проницаемости мембран. Второй механизм связан с уменьшением оводненности клеточных стенок.

При снижении подачи воды корнем и увеличении водоудерживающей способности цитоплазмы клеток мезофилла клеточные стенки оказываются менее насыщенными водой, водные мениски в капиллярах между фибриллами становятся вогнутыми, что увеличивает силы поверхностного натяжения и затрудняет переход воды в парообразное состояние. Поэтому при открытых устьицах происходит снижение транспирации за счет уменьшения количества водяного пара в межклетниках. Это внеустьичный способ регулирования транспирации, который представляет несомненную выгоду для растения, так как позволяет снижать расход воды без ущерба для ассимиляции диоксида углерода.

Второй этап – выход паров воды из межклетников через устьичные щели. Число устьиц и их размещение сильно варьируют у разных видов растений. У большинства сельскохозяйственных растений устьица расположены в основном с нижней стороны листа. Это одно из приспособлений для снижения расходования воды.

Обычно устьица занимают 13% всей поверхности листа. Однако относительная транспирация, под которой понимают отношение испарения воды листом к испарению с такой же по величине свободной поверхности, составляет 0,5 0,8 и может приближаться к единице. Высокая скорость диффузии через устьица объясняется тем, что испарение из ряда мелких отверстий происходит быстрее, чем из одного крупного той же площади. Это связано с  повышенной краевой диффузией.

При открытых устьицах испарение может быть таким же, как с открытой водной поверхности. Закрывание устьиц наполовину еще мало влияет на интенсивность транспирации. Полное закрывание устьиц сокращает транспирацию примерно  на 90% . Таким образом, изменение степени открытости устьиц – устьичная регулировка – является основным механизмом контроля транспирации растением.

 

Транспирационный коэффициент и коэффициент водопотребления, зависимость от внутренних и внешних условий, способы их снижения.

Эффективность использования воды растением выражается рядом показателей. Количество созданного сухого вещества на 1 литр транспирированной воды характеризует продуктивность транспирации. В зависимости от условий выращивания и видовых особенностей растений она составляет 28, чаще 35 г/л. Величиной, обратной продуктивности транспирации, является транспирационный коэффициент, который показывает, сколько воды растение затрачивает на построение единицы массы сухого вещества.  Транспирационные коэффициенты варьируют от 100 до 500.

Определить продуктивность транспирации или транспирационный коэффициент довольно сложно. Расчет потери воды на транспирацию за вегетационный период на основе данных об интенсивности транспирации по декадам или месяцам дает большую ошибку.

В полевых опытах и агрономической практике для оценки эффективности использования воды определяют коэффициент водопотребления (эватранспирационный), который рассчитывают как отношение эвапотранспирации к созданной биомассе. Под эватранспирацией понимают суммарный расход воды за вегетацию 1 га поверхности почвы (эвапорация) и транспирация.

Коэффициент водопотребления в значительной степени зависит от почвенноклиматических факторов. В засушливые годы он выше,  чем в более влажные. Это объясняется тем, что в засушливых условиях усиление эвапотранспирации не сопровождается увеличением продуктивности растений, чаще она снижается, поэтому эффективность использования воды уменьшается.

Другим метеорологическим фактором, значительно влияющим на эффективность использования воды сельскохозяйственными растениями, является температура. С повышением температуры эвапотранспирация усиливается. Прохладный воздух снижает эвапотранспирацию, но у теплолюбивых культур вызывает также резкое подавление ассимиляционных процессов.

Мощным фактором снижения коэффициента водопотребления является повышение плодородия почвы. Снижение коэффициента водопотребления происходит не только при внесении удобрений, но и в случае любого изменения условий произрастания растений, сопровождающегося повышением урожая, в том числе и улучшения обеспечения их водой.

Водопотребление и урожайность связаны нелинейной зависимостью. При некотором достаточно высоком уровне урожайности ее рост уже не сопровождался повышением водопотребления, так как испарение в посеве или насаждении приближается к испарению со свободной водной поверхности.

     Как оказалось, внешние условия не только регулируют степень открытости устьиц, но и оказывают влияние  непосредственно на процесс транспирации. Зависимость интенсивности испарения  от условий среды подчиняется уравнению Дальтона. Транспирация также подчиняется это формуле, правда, с отклонениями. Согласно уравнению Дальтона:

 

                                          

Где V интенсивность испарения, количество воды, испарившейся с единицы поверхности; K коэффициент диффузии; F упругость паров воды, насыщающих данное пространство; f – упругость паров воды в окружающем пространстве при температуре испаряющейся поверхности; p атмосферное давление в момент опыта.

Из приведенного уравнения видно, что испарение пропорционально разности (Ff), т.е. ненасыщенности атмосферы парами воды, или  дефициту влажности. Чем больше дефицит влажности воздуха, тем ниже ее водный потенциал и тем быстрее будет испарение. Это в целом справедливо и для транспирации. Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, благодаря чему влияние внешних условий сказывается в смягченном виде и транспирация начинает возрастать медленнее, чем это следовало бы, исходя из формулы дальтона. Несмотря на это, общая закономерность зависимости транспирации от насыщенности водой атмосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации.

Сильное влияние на транспирацию оказывает свет. Если влияние влажности и температуры с большей силой сказывается на испарении со свободной водной поверхности, то свет сильнее влияет именно на транспирацию.

На интенсивность процесса транспирации оказывает влияние влажность почвы. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении. Уменьшение воды в растении автоматически снижает процесс транспирации в силу устьичной и внеустьичной регулировки.

Формула Дальтона выведена для спокойной погоды. Однако ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Ветер оказывает влияние и на транспирацию, правда, по сравнению с испарением в несколько ослабленной форме. Поскольку ветер обычно не проникает внутрь листа, то под его влиянием возрастает в основном третий этап транспирации, т.е. перенос насыщенного водой воздуха от поверхности листа. В силу этого при ветре усиливается, прежде всего, кутикулярная транспирация. Большое действие ветер оказывает на транспирацию тех растений, где кутикула развита слабее. Сильнее на интенсивность транспирации сказываются суховеи.  В этом случае ветер сгибает и разгибает листья и  горячий воздух врывается в межклетники. Усиление транспирации уже на первом этапе.

Транспирация зависит от ряда внутренних факторов,  прежде всего от содержания воды  в листьях. Транспирация изменяется в зависимости от концентрации клеточного сока.

Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги. Чем больше  развита листовая поверхность, больше побеги, тем значительнее общая потеря воды.

Интенсивность транспирации зависит и от фазы развития. С  увеличением возраста растений транспирация падает.

Смена дня и ночи, изменение условий в течение суток наложили отпечаток и на процесс транспирации.

Что касается суточного хода  транспирации, то в ночной период суток транспирация резко сокращается. Это связано с изменением внешних факторов , так и с внутренними особенностями. Измерения показывают, что ночная транспирация составляет всего 35% от дневной. При частом измерении транспирации можно заметить, что этому процессу свойственно ритмичное увеличение и уменьшение интенсивности. Повидимому, это связано главным образом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, это, в свою очередь, сокращает интенсивность транспирации. Как следствие, содержание воды растет, и транспирация также возрастает, и так непрерывно.

 

soullife.info

ТРАНСПИРАЦИЯ - это... Что такое ТРАНСПИРАЦИЯ?

  • транспирация — транспирация …   Орфографический словарь-справочник

  • ТРАНСПИРАЦИЯ — (ново лат., от лат. trans чрез, и spirare испарять). Испарина, выпускание кожей влаги через поры. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТРАНСПИРАЦИЯ испарение на поверхности кожи, выделение пота и… …   Словарь иностранных слов русского языка

  • ТРАНСПИРАЦИЯ — (от лат. trans через и spiro дышу, выдыхаю), физиол. испарение воды растением. Главный орган Т. лист, испаряющий воду через устьица (устьичная Т.). Пары воды по межклетникам мезофилла листа попадают в устьичные полости и через устьичные щели… …   Биологический энциклопедический словарь

  • транспирация — и, ж. transpiration f. <н. лат. transpiratio < trans через, сквозь + spiro дышу. 1. устар. То же, что потение. БАС 1. В разсуждении умоначертания или характера народного .. узрим, что холодный климат, возбраняющий действия транспирации, а… …   Исторический словарь галлицизмов русского языка

  • ТРАНСПИРАЦИЯ — (от транс... и лат. spiro дышу выдыхаю), испарение воды растением. Основной орган транспирации лист. Благодаря транспирации в растении возникает ток воды и растворенных в ней минеральных солей от корней к листьям. Расход воды растением на… …   Большой Энциклопедический словарь

  • ТРАНСПИРАЦИЯ — ТРАНСПИРАЦИЯ, у растений потеря влаги в виде испарения воды с поверхности листьев или других частей растения. Большая часть воды, поступающей в растение через корни, теряется при транспирации. Процесс ускоряется на свету, в тепле и сухости.… …   Научно-технический энциклопедический словарь

  • транспирация — сущ., кол во синонимов: 2 • испарение (11) • потение (11) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • транспирация — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN transpiration The loss of water vapour from a plant, mainly through the stomata and to a small extent through the cuticle and lenticels. Transpiration results in a stream of… …   Справочник технического переводчика

  • транспирация — Потеря водяного пара растениями через мельчайшие поры на листьях или других частях растений …   Словарь по географии

  • Транспирация — Сюда перенаправляется запрос «Потометр». На эту тему нужна отдельная статья. Транспирация (от лат. trans и лат. spiro дышу, выдыхаю) это испарение воды растением. Основным органом транспирации является лист. Вода испаряется с… …   Википедия

  • dic.academic.ru


    Смотрите также

    Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта