Ткань высших растений флоэма. Флоэма - сложная проводящая ткань. Происхождение, строение, функции элементов флоэмы.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Флоэма - это что? Функции, строение флоэмы, отличие от ксилемы. Ткань высших растений флоэма


Флоэма - это что? Функции, строение флоэмы, отличие от ксилемы

Высшее растение представляет собой сложный организм с четкой дифференциацией тканей и специализацией органов, выполняющих различные жизненно важные функции.

При этом специализированные органы часто удалены друг от друга на значительное. расстояние. Например, фотосинтез происходит главным образом в листьях, поглощение воды и минеральных веществ — в корнях, отложение запасных питательных веществ — в особых запасающих тканях.

Основным условием нормальной жизнедеятельности растения является существование специального аппарата передвижения продуктов метаболизма от одного органа к другому. Передача веществ на большие расстояния осуществляется в растении достаточно экономично и с большой скоростью по специализированным проводящим тканям — флоэме и ксилеме.

Флоэма — ткань, главная функция которой состоит в проведении пластических веществ (нисходящий ток).

Ксилема — ткань, проводящая воду и растворенные в ней вещества (восходящий ток). Обычно обе проводящие ткани объединяются во флоэмно-ксилемные пучки, совокупность которых составляет проводящую систему растения.

Флоэма — сложная ткань, включающая различные по структуре и функциональному значению анатомические элементы. Основным элементом флоэмы являются ситовидные трубки.

Каждая ситовидная трубка состоит из ряда отдельных клеток, соединенных между собой поперечными стенками. Такие трубки обычно тянутся вдоль продольной оси органа, но есть и поперечно идущие ситовидные трубки, входящие в состав анастомозов, тянущихся от одного продольно расположенного сосудисто-волокнистого пучка к другому. Оболочки ситовидных трубок целлюлозные. Лишь к концу вегетации растения некоторые ситовидные трубки одревесневают. В полостях ситовидных трубок весьма долго сохраняется живой протопласт в виде пристенного слоя. Ядро в зрелых ситовидных трубках отсутствует.

Протопласты ситовидных трубок содержат ряд включений. В некоторых ситовидных трубках находили пластиды и митохондрии. Ситовидные трубки предназначены преимущественно для проведения пластических веществ. Особенно важна их роль в проведения азотсодержащих веществ, служащих для построения белков.

Клетки-членики ситовидных трубок живут сравнительно недолго. Как показали электронно-микроскопические исследования, в их протопласте в процессе дифференциации наблюдаются постепенные структурные изменения. В прокамбиальной или камбиальной (меристематической) стадии протопласт молодого ситовидного элемента обладает тонкой структурой, типичной для нормальной клетки. Однако уже на довольно ранней стадии дифференциации в нем происходит заметное разрыхление (разжижение) цитоплазмы. Затем ядро и тонопласт разрушаются, а вакуоля наполняется тонкофибриллярными структурами. Несмотря на отсутствие тонопласта, отделяющего цитоплазму от клеточного сока, митохондрии и пластиды остаются в постенном слое и обычно сохраняются во взрослых ситовидных трубках. Эндоплазматическая сеть и диктиосомы в дифференцированных ситовидных элементах покрытосеменных распадаются на многочисленные пузырьки и теряют свою структуру. У голосеменных эндоплазматическая сеть может некоторое время сохраняться в полостях дифференцированных ситовидных клеток, но в конце концов также разрушается.

Наиболее своеобразной особенностью ситовидных трубок является строение их поперечных стенок, испещренных многочисленными мелкими перфорациями наподобие сита, откуда и сами клетки получили название ситовидных, а поперечные стенки с ситами — ситовидных пластинок. Перфорации обеспечивают непрерывность протопластов элементов ситовидных трубок. Эта непрерывность была показана с помощью электронного микроскопа. Осенью ситовидные пластинки в большинстве случаев затягиваются особым веществом, называемым каллозой. В некоторых ситовидных трубках каллоза закупоривает сита окончательно, а в большинстве трубок она к весне растворяется, открывая сообщение между отдельными члениками.

Ситовидные участки имеются и на продольных стенках. Строение и функция сит на продольных стенках такие же, как и на поперечных. Так как продольные стенки оболочек ситовидных трубок имеют более обширную площадь, чем поперечные, то сита на продольных стенках не занимают всей их поверхности, а собраны в группы, называемые ситовидными полями.

Ситовидные трубки функционально связаны с другими специализированными элементами флоэмы — клетками-спутниками. Ситовидная трубка происходит из той же инициальной клетки, что и сопровождающая ее клетка-спутник.

Инициальная клетка делится продольной перегородкой на две клетки неодинакового диаметра. Более крупная из дочерних клеток дифференцируется как ситовидная трубка, а более мелкая несколько раз делится в поперечном направлении и образует цепочку клеток-спутников. В этих клетках полностью сохраняется живой протопласт с ядрами. Оболочки этих клеток, примыкающие к ситовидным трубкам, тонкие, целлюлозные и имеют простые поры. Связь ситовидных трубок со спутниками настолько прочная, что они не отделяются друг от друга даже при мацерации.

Присутствие в клетках-спутниках ядер и цитоплазмы, а также тесная связь этих клеток с ситовидными трубками, в значительной степени утративших эти атрибуты самостоятельной живой системы, указывают на активную роль спутников в метаболизме флоэмы. Предполагают, что в спутниках с особой интенсивностью вырабатываются различные ферменты, которые передаются в ситовидные трубки.

Ситовидные трубки и спутники соприкасаются не только между собой, но и с клетками лубяной паренхимы. Связь с этими клетками также обеспечивается посредством простых пор. Простые поры, соединяющие продольные стенки ситовидных трубок с паренхимой, собраны группами и со стороны ситовидных трубок вполне напоминают ситовидные пластинки. Клетки паренхимы, соприкасающиеся с ситовидными трубками, более или менее удлинены. Они располагаются среди ситовидных элементов без какого-либо определенного порядка. Эта паренхима называется лубяной. Оболочки таких клеток целлюлозные, тонкие, протопласт содержит ряд пластических веществ, периодически накапливающихся или переходящих в растворенное состояние, как во всякой живой и вполне жизнедеятельной клетке.

У некоторых растений группы ситовидных трубок с клетками-спутниками и лубяной паренхимой перемежаются с группами лубяных волокон. Такая структура особенно характерна для древесных растений (виноградная лоза, липа и др.). Весь комплекс анатомических элементов, состоящий из ситовидных трубок и примыкающих к ним клеток, называется мягким лубом, а пучки лубяных волокон — твердым лубом. Лубяные волокна, как уже говорилось, часто одревесневают и притом весьма рано, элементы же мягкого луба или совсем не одревесневают, или же одревесневают лишь старые элементы (у растения, кончающего свою вегетацию).

Ситовидные трубки не у всех растений хорошо развиты. Особенно широкими ситовидными трубками с ясно выраженной перфорацией отличаются лианы и вообще растения с вьющимися и цепляющимися побегами (тыква, виноградная лоза, глициния) и водные растения (водяной орех, водяная лилия и др.). У многих растений ситовидные трубки очень узкие, перфорации выражены слабо (картофель, лен и др.).

Продолжительность существования ситовидных трубок у различных растений различна и колеблется от одного вегетационного периода до нескольких лет. В общем же ситовидные трубки, лишенные ядер, недолговечны. Срок существования каждой клетки (членика) ситовидной трубки тесно связан с сохранностью ее живого содержимого — протопласта. С разрушением протопласта оболочка каждой клетки ситовидной трубки может одревесневать и сохраняться или же сдавливаться соседними живыми паренхимными клетками. В последнем случае происходит облитерация ситовидной трубки, и она становится трудно различимой.

В редких случаях паренхимные клетки образуют сосочковидные выросты в полость ситовидной трубки. Эти выросты, называемые тиллами, закупоривают ситовидную трубку. Образование тилл в ситовидных трубках можно наблюдать у виноградной лозы в месте срастания привоя и подвоя, причем тиллы в данных случаях имеют неодревесневшие оболочки. Хорошо и часто тиллы развиваются в сосудах.

В общих чертах строение ситовидных трубок у всех растений одинаково, но в деталях имеются различия. Прежде всего, у разных растений различен просвет ситовидных трубок, размеры перфораций и ситовидных полей, составленных из них, очертания ситовидных полей как на поперечных, так и на продольных стенках, и само распределение полей, неодинаковы также толщина оболочек, степень развития каллозы. У голосеменных и папоротникообразных флоэмные элементы имеют ситовидные пластинки только на продольных стенках. Они называются ситовидными клетками.

Даже в одном и том же растении, например, в стеблях виноградной лозы, не все ситовидные трубки построены одинаково. Часть из них не имеет клеток-спутников. Ситовидные трубки, возникшие в начале формирования побега, т. е. первичного происхождения, имеют ситовидные участки только на поперечных стенках, а у ситовидных трубок, возникших позднее (вторичного происхождения), они возникают и на продольных стенках. Тиллы образуются лишь в полостях ситовидных трубок вторичного происхождения. Ситовидные трубки первичного происхождения относительно скоро облитерируются и в дальнейшем, если участок коры, содержащий эти трубки, сохраняется на растении живым, окончательно исчезают, растворяясь соответствующими ферментами.

Поделитесь ссылкой с друзьями

Материалы: http://www.activestudy.info/provodyashhie-tkani-floema/

vekoff.ru

сложная проводящая ткань. Происхождение, строение, функции элементов флоэмы. — КиберПедия

Флоэма - сложная проводящая ткань, по которой осуществляется транспорт продуктов фотосинтеза от листьев к местам их использования или отложения (к конусам нарастания , подземным органам, зреющим семенам и плодам и т.д.).

Первичная флоэма дифференцируется из прокамбия , вторичная флоэма (луб) - производная камбия . В стеблях флоэма находится обычно снаружи от ксилемы , а в листьях она обращена к нижней стороне пластинки. Первичная и вторичная флоэмы, помимо различной мощности ситовидных элементов, отличаются тем, что у первой отсутствуют сердцевинные лучи.

В состав флоэмы входят ситовидные элементы, паренхимные клетки, элементы сердцевинных лучей и механические элементы ( рис. 47 ). Большинство клеток нормально функционирующей флоэмы живые. Отмирает лишь часть механических элементов. Собственно проводящую функцию осуществляют ситовидные элементы. Различают два их типа: ситовидные клетки и ситовидные трубки. Терминальные стенки ситовидных элементов содержат многочисленные мелкие сквозные канальцы, собранные группами в так называемые ситовидные поля. У ситовидных клеток, вытянутых в длину и имеющих заостренные концы, ситовидные поля располагаются главным образом на боковых стенках. Ситовидные клетки - основной проводящий элемент флоэмы у всех групп высших растений , исключая покрытосеменные . Клеток-спутниц у ситовидных клеток нет.

Ситовидные трубки покрытосеменных более совершенны. Они состоят из отдельных клеток - члеников, располагающихся один над другим. Длина отдельных члеников ситовидных трубок колеблется в пределах 150-300 мкм. Поперечник ситовидных трубок составляет 20-30 мкм. Эволюционно их членики возникли из ситовидных клеток.

Ситовидные поля этих члеников находятся главным образом на их концах. Ситовидные поля двух расположенных один над другим члеников образуют ситовидную пластинку. Членики ситовидных трубок формируются из вытянутых клеток прокамбия или камбия . При этом материнская клетка меристемы делится в продольном направлении и производит две клетки. Одна из них превращается в членик, другая - в клетку-спутницу. Наблюдается и поперечное деление клетки-спутницы с последующим образованием двух-трех подобных клеток, расположенных продольно одна над другой рядом с члеником ( рис. 47 ). Предполагается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему и, возможно, способствуют продвижению тока ассимилянтов. При своем формировании членик имеет постенную цитоплазму , ядро и вакуоль . С началом функциональной деятельности он заметно вытягивается. На поперечных стенках появляется множество мелких отверстий-перфораций, образующих канальцы диаметром несколько микрометров, через которые из членика в членик проходят цитоплазматические тяжи. На стенках канальцев откладывается особый полисахарид - каллоза , сужающий их просвет, но не прерывающий цитоплазматические тяжи.

По мере развития членика ситовидной трубки в протопласте образуются слизевые тельца. Ядро и лейкопласты , как правило, растворяются, граница между цитоплазмой и вакуолью - тонопласт - исчезает и все живое содержимое сливается в единую массу. При этом цитоплазма теряет полупроницаемость и становится вполне проницаемой для растворов органических и неорганических веществ. Слизевые тельца также теряют очертания, сливаются, образуя слизевой тяж и скопления около ситовидных пластинок. На этом формирование членика ситовидной трубки завершается.

Длительность функционирования ситовидных трубок невелика. У кустарников и деревьев она продолжается не более 3-4 лет. По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки обычно сплющиваются давящими на них соседними живыми клетками.

Паренхимные элементы флоэмы (лубяная паренхима) состоят из тонкостенных клеток. В них откладываются запасные питательные вещества и отчасти по ним осуществляется ближний транспорт ассимилянтов. У голосеменных клетки-спутницы отсутствуют и их роль выполняют прилегающие к ситовидным клеткам немногочисленные клетки лубяной паренхимы.

Сердцевинные лучи, продолжающиеся во вторичной флоэме, также состоят из тонкостенных паренхимных клеток. Они предназначены для осуществления ближнего транспорта ассимилянтов.

cyberpedia.su

Флоэма Википедия

Флоэ́ма (от греч. φλοῦς — кора) — то же, что и луб — проводящая ткань сосудистых растений, по которой происходит транспорт продуктов фотосинтеза к частям растения, где происходит их использование (подземные части, конусы нарастания) или накопление (зреющие семена, плоды). Вместе с ксилемой (древесиной), обеспечивающей транспорт воды и минеральных солей, образует проводящие пучки.

Морфология

В стеблях большинства растений флоэма располагается снаружи по отношению к ксилеме, a в листьях — обращена к нижней стороне жилок листовой пластинки, в проводящих пучках корней тяжи флоэмы и ксилемы чередуются.

По своему происхождению флоэма делится на первичную, дифференциирующуюся из прокамбия и вторичную, дифференциирующуюся из камбия. Первичная флоэма, в свою очередь, подразделяется на протофлоэму и метафлоэму, в отличие от вторичной флоэмы, у первичной отсутствуют сердцевинные лучи.

Клеточный состав и первичной, и вторичной флоэмы одинаков; они состоят из нескольких типов клеток различной морфологии, выполняющих различные функции:

  • Ситовидные элементы (ситовидные клетки, ситовидные трубки и клетки-спутницы), обеспечивающие основной транспорт
  • Склеренхимные элементы (склереиды и волокна), выполняющие опорную функцию
  • Паренхимные элементы (паренхимные клетки), обеспечивающие ближний радиальный транспорт

Ситовидные элементы являются высокоспециализированными клетками, обеспечивающими флоэмный транспорт ассимилятов. Их особенностью, благодаря которой они получили своё название, являются ситовидные поля (или ситовидные пластинки у покрытосеменных растений), являющихся скоплением специализированных пор в клеточной стенке. Поры ситовидных полей являются видоизменёнными первичными поровыми полями — их поры представляют собой расширенные плазмодесмы — цитоплазматические мостики, соединяющие соседние протопласты, однако если первичное поровое поле обычно пронизано несколькими плазмодесмами, через пору ситовидного поля проходит один цитоплазматический тяж с диаметром до нескольких микрометров, что в десятки раз превышает диаметр плазмодесм. Происхождение такого гигантского по сравнению с плазмодесмами цитоплазматического тяжа неясно, считается, что его образование возможно как путём слияния группы плазмодесм, так расширением единственной плазмодесмы.

Канал поры ситовидного элемента выстлан полисахаридом каллозой, которая у многих растений образует валик у отверстия канала, каллоза накапливается в течение жизни ситовидного элемента.

Ситовидные элементы споровых (хвощей, плаунов, папоротников) и голосеменных растений представлены ситовидными клетками, эти клетки вытянуты в длину, ситовидные поля разбросаны по боковым стенкам.

Флоэмный транспорт

Флоэмный сок представляет собой раствор углеводов (у древесных растений — преимущественно сахарозы), являющихся продуктами фотосинтеза, в достаточно высокой концентрации — 0,2—0,7 моль/литр (7—25 %), а также других ассимилятов и метаболитов (аминокислот и фитогормонов) в значительно более низких концентрациях. Скорость транспорта составляет десятки сантиметров в час, что превышает скорость диффузии.

В отличие от ксилемы, где перемещение содержимого происходит в одном направлении — вверх от корней к листьям, флоэмный транспорт происходит от органов-доноров, в которых происходит фотосинтез к акцепторам — органам или областям, в которых продукты фотосинтеза потребляются или запасаются. Интенсивное потребление ассимилятов происходит в корнях, верхушках побегов, формирующихся листьях, репродуктивных органах; у многих видов растений есть специальные органы запасания — луковицы, клубни и корневища, выступающие в качестве акцепторов.

Эксперименты с радиоактивными метками (14C) показали, что транспорт от донора — например, подкормленного меткой листа — происходит к ближайшим акцепторам, то есть нижние листья обеспечивают углеводами корни, листья побега, расположенные рядом с плодами — плоды и т. п. Следует отметить, что флоэмный транспорт является двусторонним: так, органы запасания могут в зависимости от фазы вегетации выступать как в качестве акцептора — при накоплении крахмала, синтезирующегося из углеводов, поставляемых листьями в конце вегетационного периода — так и в качестве донора при расщеплении запасённого крахмала на углеводы, идущие на построение молодых листьев в начале периода вегетации.

См. также

Литература

  • Гэлстон А., Девис П., Сэттер Р. Жизнь зелёного растения. — М., Мир, 1983.
  • Тейлор Д., Грин Н., Стаут У. Биология. В 3 т. — М., Мир, 2004.

Ссылки

wikiredia.ru

Флоэма — WiKi

В стеблях большинства растений флоэма располагается снаружи по отношению к ксилеме, a в листьях — обращена к нижней стороне жилок листовой пластинки, в проводящих пучках корней тяжи флоэмы и ксилемы чередуются.

По своему происхождению флоэма делится на первичную, дифференциирующуюся из прокамбия и вторичную, дифференциирующуюся из камбия. Первичная флоэма, в свою очередь, подразделяется на протофлоэму и метафлоэму, в отличие от вторичной флоэмы, у первичной отсутствуют сердцевинные лучи.

Клеточный состав и первичной, и вторичной флоэмы одинаков; они состоят из нескольких типов клеток различной морфологии, выполняющих различные функции:

  • Ситовидные элементы (ситовидные клетки, ситовидные трубки и клетки-спутницы), обеспечивающие основной транспорт
  • Склеренхимные элементы (склереиды и волокна), выполняющие опорную функцию
  • Паренхимные элементы (паренхимные клетки), обеспечивающие ближний радиальный транспорт

Ситовидные элементы являются высокоспециализированными клетками, обеспечивающими флоэмный транспорт ассимилятов. Их особенностью, благодаря которой они получили своё название, являются ситовидные поля (или ситовидные пластинки у покрытосеменных растений), являющихся скоплением специализированных пор в клеточной стенке. Поры ситовидных полей являются видоизменёнными первичными поровыми полями — их поры представляют собой расширенные плазмодесмы — цитоплазматические мостики, соединяющие соседние протопласты, однако если первичное поровое поле обычно пронизано несколькими плазмодесмами, через пору ситовидного поля проходит один цитоплазматический тяж с диаметром до нескольких микрометров, что в десятки раз превышает диаметр плазмодесм. Происхождение такого гигантского по сравнению с плазмодесмами цитоплазматического тяжа неясно, считается, что его образование возможно как путём слияния группы плазмодесм, так расширением единственной плазмодесмы.

Канал поры ситовидного элемента выстлан полисахаридом каллозой, которая у многих растений образует валик у отверстия канала, каллоза накапливается в течение жизни ситовидного элемента.

Ситовидные элементы споровых (хвощей, плаунов, папоротников) и голосеменных растений представлены ситовидными клетками, эти клетки вытянуты в длину, ситовидные поля разбросаны по боковым стенкам.

Флоэмный сок представляет собой раствор углеводов (у древесных растений — преимущественно сахарозы), являющихся продуктами фотосинтеза, в достаточно высокой концентрации — 0,2—0,7 моль/литр (7—25 %), а также других ассимилятов и метаболитов (аминокислот и фитогормонов) в значительно более низких концентрациях. Скорость транспорта составляет десятки сантиметров в час, что превышает скорость диффузии.

В отличие от ксилемы, где перемещение содержимого происходит в одном направлении — вверх от корней к листьям, флоэмный транспорт происходит от органов-доноров, в которых происходит фотосинтез к акцепторам — органам или областям, в которых продукты фотосинтеза потребляются или запасаются. Интенсивное потребление ассимилятов происходит в корнях, верхушках побегов, формирующихся листьях, репродуктивных органах; у многих видов растений есть специальные органы запасания — луковицы, клубни и корневища, выступающие в качестве акцепторов.

Эксперименты с радиоактивными метками (14C) показали, что транспорт от донора — например, подкормленного меткой листа — происходит к ближайшим акцепторам, то есть нижние листья обеспечивают углеводами корни, листья побега, расположенные рядом с плодами — плоды и т. п. Следует отметить, что флоэмный транспорт является двусторонним: так, органы запасания могут в зависимости от фазы вегетации выступать как в качестве акцептора — при накоплении крахмала, синтезирующегося из углеводов, поставляемых листьями в конце вегетационного периода — так и в качестве донора при расщеплении запасённого крахмала на углеводы, идущие на построение молодых листьев в начале периода вегетации.

ru-wiki.org

флоэма — Биологический энциклопедический словарь

(от греч. phloios — кора), ткань растений, осуществляющая транспорт продуктов фотосинтеза от листьев к местам потребления и отложения в запас (подземным органам, точкам роста, зреющим плодам и семенам и т. д.). Первичная Ф., к-рую подразделяют на протофлоэму и метафлоэму, дифференцируется из прокамбия, вторичная (луб) — производная камбия. В стеблях Ф. находится снаружи (у нек-рых растений и с внутр. стороны) от ксилемы. В листьях Ф. обращена к ниж. стороне пластинки, в корнях с радиальным проводящим пучком тяжи Ф. чередуются с тяжами ксилемы. Ф. участвует также в отложении запасных веществ, выделении конечных продуктов обмена, создании опорной системы растения. Ф. Состоит из проводящих элементов, клеток флоэмной паренхимы, волокон и склереид. У растений с активным вторичным утолщением имеются радиальные слои паренхимных клеток — лубяные лучи. У архегониальных растений проводящие элементы представлены прозенхимными ситовидными клетками, на боковых стенках к-рых расположены участки с тонкими канальцами — ситовидные поля. Для цветковых растений характерны ситовидные трубки — однорядные тяжи удлинённых клеток (члеников), конечные стенки к-рых, несущие ситовидные поля, наз. ситовидными пластинками. Зрелые ситовидные элементы обычно безъядерные, поэтому для их нормального функционирования важно наличие контактов с живыми паренхимными клетками. У голосеменных это клетки Страсбургера, находящиеся в тяжевой паренхиме или лучах, прилегающих к ситовидным клеткам, у цветковых — сопровождающие клетки, развивающиеся из той же материнской клетки, что и членик ситовидной трубки. Остальные клетки флоэмной паренхимы могут быть крахмалоносными, кристаллоносными, нек-рые из них участвуют в образовании вместилищ выделений (напр., смолы) или склерифицируются, превращаясь в склереиды. Состав элементов Ф., особенности их строения и расположения специфичны для каждого вида растений. (см. корень, стебель) рис. при ст.

Источник: Биологический энциклопедический словарь на Gufo.me

gufo.me

Ткани

Категория: Анатомия растений

Ткани

Тело высших растений состоит из разнородных клеток, специализированных на выполнении различных функций. Физиологические отправления клеток определяют их структуру. Комплексы клеток, сходных по функциям, а большей частью и по строению, имеющих одинаковое происхождение и определенную локализацию в теле растения, называют тканями.

Распределение тканей в органах растений и их структура тесно связаны с выполнением ими определенных физиологических функций.

Ткани, состоящие из живых тонкостенных, интенсивно делящихся клеток, называются образовательными или меристемами. Верхушечные (апикальные) меристемы расположены на верхушках стеблей и в окончаниях корней. Они обусловливают рост этих органов в длину.

Рассмотрение апикальных меристем побега не входит в задачи настоящего курса.

К боковым меристемам относятся камбий и фелло-ген. Камбий обеспечивает утолщение стебля и корня. Феллоген образует пробку.

Ткани, возникающие в результате роста и дифференциации клеток — производных меристем, называют п о-стоянными. Распространенная в настоящее время классификация постоянных тканей основана на их ана-томо-физиологических особенностях.

Покровные ткани защищают внутренние ткани растений от прямого влияния внешней среды, регулируют испарение и газообмен. К ним относятся эпидермис и пробка, состоящие из плотно соединенных клеток. В корнях однодольных и молодых корнях некоторых двудольных растений функцию покровной ткани выполняет экзодерма.

М еханические ткани обусловливают прочность растения. Стенки клеток, слагающих эти ткани, утолщены. К механическим тканям относятся колленхим а, состоящая из паренхимных или несколько удлиненных клеток с неравномерно утолщенными целлюлозными стенками, и склеренхима, клетки которой имеют равномерно утолщенные одревесневшие стенки. Склеренхима может быть представлена волокнами и склереидами изодиаметрической (каменистые клетки), ветвистой и звездчатой форм.

Проводящие ткани обеспечивают проведение воды, почвенных растворов и продуктов ассимиляции, вырабатываемых листьями. Ткань, проводящую воду, называют ксилемой или древесиной (особенно у древесных растений), а ткань, проводящую органические вещества, образованные растением в процессе фотосинтеза,— флоэмой или лубом. В состав ксилемы и флоэмы наряду с собственно проводящими элементами большей частью входят механические и запасающие клетки, поэтому эти ткани называют сложными. Проводящие ткани по происхождению могут быть первичными и вторичными. Первичные возникают из прокамбия — меристематической ткани, закладывающейся на ранних этапах онтогенеза растения. Вторичные ткани образуют камбий, который дифференцируется из прокамбия.

Обычно флоэма и ксилема располагаются рядом, составляя проводящий пучок. В зависимости от взаимного расположения ксилемы и флоэмы различают несколько типов пучков.

Коллатеральные (бокобочные), состоящие из одного тяжа флоэмы, к которому плотно примыкает тяж ксилемы. В стебле флоэма обращена к периферии, в листьях — к нижней стороне пластинки.

Биколлатеральные (двубокобочные), в которых ксилема находится между двумя тяжами элементов флоэмы, наружным и внутренним.

Концентрические, у которых либо ксилема со всех сторон окружает флоэму, либо флоэма окружает ксилему (амфикрибральный пучок).

Сложные радиальные, в которых тяжи флоэмы чередуются с радиальными тяжами ксилемы, образующими на поперечном срезе более или менее звездчатую фигуру. Эти пучки характерны для корней. Пучки, состоящие из какой-либо одной ткани — флоэмы или ксилемы, называют простыми или неполными. Ими заканчиваются, например, мелкие ответвления жилок в листовых пластинках.

Если флоэма и ксилема разделены камбием, в результате деятельности которого возникают вторичные проводящие ткани, пучок называют открытым, т. е. способным к дальнейшему образованию клеток. Открытые пучки свойственны стеблям и корням двудольных и голосеменных растений, они могут быть коллатеральными и биколлатеральными. Закрытые проводящие пучки, не имеющие камбия, характерны для стеблей и корней папоротникообразных и однодольных растений и для большинства листьев. Закрытые пучки представлены концентрическими, коллатеральными и радиальными пучками. Проводящие пучки нередко армированы склеренхимой, которая окружает пучок со всех сторон либо образует тяжи со стороны флоэмы или древесины. Такие пучки нередко называют сосудисто-волокнистыми.

Ткани, состоящие из однородных паренхимных клеток, которые заполняют пространства между другими тканями, называют основными. Живые клетки основной паренхимы находятся в состоянии тургора и в контакте с другими тканями увеличивают механическую прочность растения. Основная паренхима может специализироваться на выполнении различных функций. К системе основных тканей относятся запасающие, в которых откладывается запас питательных веществ; ассимиляционные, в которых происходит фотосинтез; выделительные, содержащие продукты отброса; ткани поглощения воды и почвенных растворов. К последним относится эпиблема или ризодер-м а. Она расположена на самой периферии молодого корня и наряду со своей основной функцией играет роль покровной ткани.

В растениях выделяют систему проветривания, которая представлена устьицами, расположенными в эпидермисе, чечевичками, находящимися в перидерме, воздухоносными полостями и межклетниками.

Изучение строения тканей целесообразно начать с рассмотрения покровных, механических и проводящих.

Разнообразие тканей в стебле тыквы обыкновенной (Cucurbita реро L.)

Кусочки стеблей длиной 2—3 см, вырезанные из междоузлий с небольшой внутренней воздушной полостью, фиксируют спиртом в конце вегетационного периода (в августе — сентябре).

Рис. 1. Схема поперечного среза стебля тыквы: эп — эпидермис, кол — колленхима, п — паренхима, скл — склеренхима, фл — флоэма, кмб — камбий, кс — ксилема, в. п. — воздушная полость

Стебель тыквы в очертании округлый или округло-пятиугольной, с пятилучевой воздушной полостью (рис. 1). Между лучами полости расположены пять крупных проводящих пучков, которые хорошо видны невооруженным глазом. Против лучей полости, немного ближе к периферии стебля, находится второе кольцо из пяти таких же, но более мелких пучков.

Внутреннее строение стебля изучают на продольном и поперечном срезах. Поперечный срез должен захватИть не менее половины сечения стебля. Если такой срез не получается достаточно тонким, то для работы с большим увеличением микроскопа следует приготовить еще один как можно более тонкий срез, на котором должны быть наружная часть стебля и хотя бы один крупный проводящий пучок. Продольный радиальный срез, проходящий посередине крупного пучка, лучше делать с междоузлий толстых стеблей. Перед изготовлением среза стебель разрезают вдоль по диаметру. Ткани, расположенные снаружи от пучка, можно удалить. Чтобы срезы не были очень длинными, поверхность, с которой их делают, подсекают бритвой на расстоянии 0,5 см от верхнего края кусочка. Наиболее удачные срезы кладут в раствор иода в водном растворе иоди-стого калия и накрывают покровным стеклом. Некоторые срезы можно последовательно обрабатывать фло-роглюцином и соляной кислотой и рассматривать их в глицерине.

Общий план расположения тканей изучают на поперечном срезе стебля при малом увеличении микроскопа, строение отдельных тканей рассматривают при большом увеличении на поперечном и продольном срезах.

Стебель покрыт эпидермисом, на поверхности которого хорошо видна тонкая светлая пленка — кутикула. Эпидермис состоит из одного слоя плотно сомкнутых живых клеток с утолщенной наружной стенкой. Некоторые клетки образуют многоклеточные волоски.

Под эпидермисом расположены участки механической ткани — колленхимы. Наиболее крупные из них находятся в ребрах стебля. Колленхима состоит из живых многоугольных клеток с неравномерно утолщенными стенками. Стенки утолщены в углах, т. е. в местах соединения нескольких клеток. Такая колленхима называется уголковой (рис. 2, А). На поперечном срезе утолщения имеют вид треугольников, если соединяются три клетки, или ромбов, если соединяются четыре клетки. Утолщенные оболочки вследствие сильного преломления света выглядят блестящими, они хорошо заметны вокруг округлых, более гемных, заполненных содержимым полостей клеток. На продольном срезе клетки колленхимы удлинены.

По времени возникновения колленхима —самая ранняя механическая ткань, оболочки ее клеток эластичны, поэтому колленхима может растягиваться вместе с ростом стебля. Механическую роль эта ткань выполняет только в состоянии тургора, так как неутолщенные места оболочек при подвядании спадаются.

Между участками колленхимы, непосредственно под ней и между другими специализированными тканями и проводящими пучками расположены тонкостенные живые, почти округлые клетки с небольшими межклетниками. Это паренхима. Размеры клеток паренхимы в разных частях стебля неодинаковы.

Рис. 2. Механические ткани стебля тыквы. А — уголковая колленхима; Б — склеренхима: л — паренхимные клетки, у. о. — утолщения оболочки, пл — пластиды, Ч — цитоплазма, в — вакуоль, скл — склеренхима, п. к. — полости клеток

В некоторых паренхимных клетках откладывается запасной крахмал. В периферических слоях стебля клетки основной паренхимы содержат хлороплаеты и поэтому выполняют ассимиляционную функцию.

Паренхима, подстилающая участки колленхимы, граничит с несколькими рядами плотно сомкнутых многоугольных клеток с равномерно утолщенными одревесневшими стенками. Это склеренхима (рис. 2, Б). Оболочки ее клеток после взаимодействия с иодом приобретают ярко-оранжевый цвет, а после флороглюциновой реакции они становятся малиново-красными. На поперечном срезе склеренхима располагается кольцом. В старых стеблях клетки склеренхимы мертвые, в более молодых стеблях в ее клетках видны остатки содержимого. Склеренхима представлена сильно вытянутыми, заостренными на концах волокнами, которые хорошо видны на продольном срезе.

Склеренхима выполняет механическую функцию. Она образуется позднее колленхимы. Одревеснение стенок склеренхимных волокон начинается по окончании роста стебля в длину. Так как одревесневшие стенки теряют эластичность, при утолщении стебля кольцо склеренхимы нередко разрывается. Разрывы заполняются парен-химной тканью.

Расположение механических тканей — колленхимы и склеренхимы — на периферии стебля повышает сопротивление стебля изгибу, сжатию и растяжению, которым подвергаются главным образом наружные зоны органа.

Кроме наиболее распространенной уголковой колленхимы у растений нередко встречается колленхима иного строения. Так, в стеблях с сильным вторичным утолщением развивается колленхима, у которой утолщены тангентальные стенки клеток, т. е. стенки, параллельные поверхности органа. Радиальные стенки остаются тонкими. Такую колленхиму называют пластинчатой (рис. 28, А). Ее можно видеть в стебле подсолнечника, в побегах многих древесных растений.

Рис. 3. Поперечный срез колленхимы. А — пластинчатая; Б — рыхлая: п. о. первичная оболочка, у. о.—утолщенная оболочка, п. к. — полости клеток с содержимым, пл — пластиды, мж — межклетники

Колленхима, в которой есть межклетники, называется рыхлой (рис. 28, Б). В ней сильно утолщены стенки, ограничивающие межклетник. Утолщенные участки оболочек имеют вид колец. На срезах, обработанных раствором иода в водном растворе иодистого калия, межклетники хорошо отличаются от полостей клеток отсутствием содержимого. Рыхлая колленхима характерна для черешков ревеня (Rheum), стеблей горца (Polygonum), мари белой (Chenopodium album L.)

Строение проводящих пучков в стебле тыквы (Cucurbita реро L.)

Все десять пучков стебля тыквы устроены одинаково, поэтому можно ограничиться рассмотрением одного крупного пучка.

В средней части пучка расположена ксилема, или древесина. В ней даже невооруженным глазом хорошо заметны крупные округлые полости клеток с одревесневшими оболочками. Это сосуды, или трахеи, — элементы, проводящие воду.

Наружная и внутренняя части пучка состоят из довольно мелких неодревесневших элементов, совокупность которых составляет флоэму, или луб. Между наружной флоэмой и ксилемой лежат живые тонкостенные клетки образовательной ткани — камбия. Такой пучок называется открытым биколлатераль-н ы м.

Ознакомившись с общим планом расположения проводящих тканей в пучке, следует перейти к их детальному изучению при большом (400—600 раз) увеличении микроскопа.

Флоэма

Флоэма, или луб, представляет собой сложную ткань, в состав которой наряду с проводящими элементами могут входить клетки паренхимы и флоэмные волокна (у тыквы волокон нет).

Проводящие элементы флоэмы — ситовидные трубки — образуются из удлиненных, составляющих вертикальный ряд клеток, принадлежащих прокамбию или возникших вследствие деления клеток камбия. Каждая клетка этого ряда делится продольной перегородкой. Одна из сестринских клеток разрастается в ширину, в ее поперечных стенках появляются мелкие сквозные отверстия — перфорации, или прободения, через которые проходят тяжи цитоплазмы, соединяющие протопласты соседних по вертикали клеток.

Перегородки со сквозными отверстиями получили название ситовидных пластинок. Вертикальный ряд клеток (члеников) с ситовидными пластинками составляет ситовидную трубку. Оболочки ситовидных трубок неодревесневшие, сравнительно тонкие. Содержимое представлено постенным слоем цитоплазмы и слизистым клеточным соком. В функционирующих трубках ядра обычно разрушаются.

Вторая клетка, отделявшаяся от материнской одновременно с клеткой-члеником ситовидной трубки, остается узкой: чаще всего она делится несколько раз поперечными перегородками, образуя тяж сопровождающих клеток, или клеток-спутниц. В течение всей жизни сопровождающие клетки сохраняют ядро и густую цитоплазму.

Для полного представления о строении флоэмы необходимо рассмотреть не только поперечные, но и продольные срезы. Структура наружной и внутренней флоэмы у тыквы одинакова. На поперечном срезе флоэмы ситовидные трубки наиболее широкопросветные, в очертании округлые или округло-многоугольные. Если ситовидные трубки перерезаны на уровне ситовидной пластинки, то на поперечном срезе эта пластинка со сквозными отверстиями видна в плане, а сопровождающие клетка большей частью не видны. Если ситовидная трубка перерезана посередине членика, то тогда очень хорошо видны плотно примыкающие к ситовидным трубкам мелкие сопровождающие клетки с густым зернистым содержимым.

Ситовидные пластинки в ситовидных трубках могут быть горизонтальными или слегка наклонными. На строго радиальном срезе стебля тыквы ситовидные пластинки обычно расположены почти на одном уровне, так как членики ситовидных трубок, находящихся в одном радиальном ряду, являются производными одной камбиальной клетки. В перерезанных ситовидных пластинках видны тонкие сквозные каналы. На боковых стенках ситовидных трубок встречаются небольшие округлые ситовидные поля, через которые проходят тончайшие цитоплазматические тяжи, соединяющие протопласты двух рядом расположенных трубок. Полости ситовидных трубок обычно заполнены свернувшимся при фиксации содержимым. В нем много белков, поэтому после обработки срезов йодным раствором содержимое становится желто-оранжевым. На продольном срезе содержимое ситовидных трубок имеет вид тяжей, пересекающих клетки и расширяющихся у ситовидных пластинок.

Рис. 4. Поперечный срез флоэмы и камбиальной зоны стебля тыквы: с. т. — ситовидные трубки, с. пл. — ситовидная пластинка, с. «. — сопровождающая клетка, л. л.—лубяная паренхима, с. о. — ситовидные отверстия, з. с. о. — закупоренные каллозой ситовидные отверстия, сд — содержимое ситовидной трубки, к. з. — камбиальная зона, с. с. — стенка сосуда

Если срез прошел косо по отношению к продольной оси стебля, то ситовидные пластинки имеют вид эллипса с овальными сквозными отверстиями, а перерезанные тяжи свернувшегося содержимого заметны как темные сгустки лишь у ситовидных пластинок.

По мере старения ситовидных трубок ситовидные прободения постепенно закупориваются особым веществом — каллозой, при этом отверстия сужаются и на поперечном срезе фпоэмы имеют вид небольших точек. К концу вегетационного периода каллоза образует мозолистые тела, которые представляют собой сильно преломляющие свет блестящие утолщения на обеих сторонах ситовидной пластинки.

Рис. 5. Продольный срез флоэмы и камбиальной зоны стебля тыквы: с. т. — ситовидные трубки с тяжами содержимого, с. пл. — ситовидные пластинки, с. о.— ситовидные отверстия, б. с. п.— ситовидные поля на боковых стенках, с. к. — сопровождающие клетки, ф. п. — флоэмная паренхима, моз. т. — мозолистое тело, к. з. — камбиальная зона, я — ядро

Мозолистые тела особенно хорошо заметны на продольных срезах старой флоэмы, наиболее удаленной от камбия.

Вдоль членика ситовидной трубки, плотно прилегая к нему, расположена одна длинная или тяж из нескольких коротких сопровождающих клеток.

Заостренные концы краевых клеток тяжа находятся на уровне ситовидных пластинок, что указывает на общность происхождения сопровождающих клеток и члеников ситовидных трубок.

Живые паренхимные клетки, входящие в состав флоэмы, отличаются от члеников ситовидных трубок меньшими размерами и отсутствием сит, но они значительно крупнее сопровождающих клеток, сильнее вакуо-лизированы и кажутся более светлыми.

Камбиальная зона

В проводящем пучке между наружной флоэмой и ксилемой находятся живые тонкостенные клетки, составляющие камбиальную зону. Клетки расположены правильными радиальными рядами.

Все клетки этой зоны возникают в результате деления клеток однорядного слоя образовательной ткани — камбия.

Клетки камбия делятся продольными тангентальны-ми (т. е. параллельными поверхности органа) перегородками, откладывая клетки наружу, в сторону флоэмы, и внутрь, в сторону ксилемы.

Чем интенсивнее деление камбия, тем шире камбиальная зона.

На поперечном срезе клетки этой зоны имеют почти прямоугольные очертания. Тангентальные стенки клеток, находящихся в соседних радиальных рядах, обычно не совпадают.

На продольном срезе (рис. 30) клетки расположены ярусами. Они вытянуты в длину и имеют слабо заостренные или слегка закругленные окончания, находящиеся на одном уровне. Продольные стенки клеток одного яруса вклиниваются между стенками клеток соседнего по вертикали яруса. В клетке видны цитоплазма и ядро.

Периферические клетки камбиальной зоны впоследствии дифференцируются в элементы вторичной флоэмы. На удачно сделанных продольных радиальных срезах можно видеть, что длина клеток камбиальной зоны почти равна длине члеников ситовидных трубок. Из внутренних клеток камбиальной зоны формируются элементы вторичной ксилемы.

Ксилема

Ксилема (древесина) состоит из сосудов (трахей) с довольно толстой одревесневшей оболочкой. Наиболее широкопросветные сосуды видны даже невооруженным глазом. Между сосудами расположены мелкие клетки, в очертании многоугольные.

Задание. 1. При малом увеличении микроскопа зарисовать схему строения поперечного среза стебля тыквы, отметив на ней эпидермис, участки колленхимы, паренхиму, кольцо склеренхимы, биколлатеральные пучки с их тканями и центральную воздушную полость. При зарисовке схемы необходимо соблюдать масштаб. Лучше всего начинать схему с очертаний воздушной полости и контуров проводящих пучков. Это можно сделать, рассматривая срез под лупой. Очертания остальных тканей отмечают, рассматривая срез при малом увеличении микроскопа, передвигая препарат. Чтобы схема была наглядной, для каждой ткани выбирают условные обозначения (точки, одностороннюю или двустороннюю штриховку и т. п.). Можно пользоваться и цветными карандашами. Основную ткань не закрашивают, флоэму можно обозначить синим, ксилему — красным цветом, кружками в ней показывают наиболее крупные сосуды. Схема должна быть снабжена пояснительными надписями. Линии, выносящие надписи, желательно делать горизонтальными; если это почему-либо невозможно, нужно стараться не перекрещивать линии.2. При большом увеличении микроскопа с поперечного среза детально зарисовать клетки эпидермиса, колленхимы, склеренхимы, флоэмы и камбиальной зоны. Во флоэме изобразить перерезанную ситовидную трубку с внутренним содержимым, ситовидную пластинку в плане, сопровождающие и паренхимные клетки.3. С продольного среза зарисовать при большом увеличении микроскопа: а) ситовидную трубку с сопровождающими клетками, отметив в ней перерезанную ситовидную пластинку, тяжи свернувшегося содержимого, мозолистое тело, ситовидные поля на боковых стенках; б) клетки камбиальной зоны.

Строение проводящих элементов ксилемы в стебле подсолнечника однолетнего (Helianthus annuus L.)

Ксилема, или древесина, так же как и флоэма, представляет собой сложную ткань, состоящую не только из элементов, проводящих воду с растворенными в ней минеральными веществами, но и из клеток, выполняющих механическую и запасающую функции.

К проводящим элементам ксилемы относятся сосуды, или трахеи, и трахеиды. Трахеиды — это длинные прозенхимные клетки с сильно скошенными концами и многочисленными окаймленными порами на боковых стенках. Сосуды — полые трубки, представляющие собой вертикальный ряд удлиненных клеток (члеников). Смежные стенки, отделяющие одну клетку вертикального ряда от другой, в процессе развития сосудов разрушаются, на их месте возникают сквозные отверстия — перфорации. Боковые стенки члеников утолщаются и одревесневают, протопласты клеток отмирают.

Особенности строения проводящих элементов лучше всего видны на продольных срезах.

Кусочки стебля подсолнечника толщиной около 1 см, вырезанные из междоузлий и фиксированные спиртом, разрезают вдоль по радиусам и очищают от паренхимных клеток сердцевины. Затем делают тонкие радиальные срезы твердой части стебля или серию тангентальных срезов, внутренней зоны древесины, граничащей с сердцевиной. Срезы сначала обрабатывают спиртовым раствором флороглюцина, а затем крепкой соляной кислотой и заключают в глицерин. Их рассматривают при большом увеличении микроскопа.

Сосуды, расположенные близ сердцевины, имеют тонкую первичную целлюлозную оболочку и одревесневшую вторичную оболочку в виде отдельных колец. После проведения реакции на одревеснение кольца хорошо заметны благодаря красной окраске. Эти сосуды называют кольчатыми.

Рядом с ними, ближе к периферии стебля, находятся сосуды со вторичным утолщением оболочки в виде одинарной или двойной спирали. Это спиральные сосуды. Завитки спиралей отдельных клеток-члеников, слагающих сосуд, соединяясь концами, образуют единую

сплошную спираль. На препаратах спиральные и кольчатые сосуды могут быть разрезаны вдоль, тогда их утолщения имеют вид полуколец. Иногда в одном сосуде спиральные утолщения чередуются с кольчатыми. Этот промежуточный тип сосудов называют кольчато-спиральным.

Рис. 6. Сосуды на продольном срезе стебля подсолнечника: с. к. с. — спирально-кольчатый сосуд, с. с. — спиральный сосуд, с. с. р. — спиральный сосуд в разрезе, л. с. — лестничный сосуд, пор. с. — пористый сосуд, п. о. — первичная оболочка, в. о. — вторичная оболочка, о. п. — окаймленные поры, г. чл. — граница членика сосуда

Кольчатые, спиральные и спирально-кольчатые сосуды возникают в онтогенезе стебля очень рано, когда рост органа в длину еще не закончен. Они формируются из клеток прокамбия и принадлежат протоксилеме. По мере роста стебля неутолщенная первичная оболочка этих сосудов растягивается, а кольчатые утолщения и завитки спиральных утолщений раздвигаются. Впоследствии под давлением соседних клеток неутолщенные стенки кольчатых сосудов сдавливаются, их диаметр в этих местах уменьшается.

К периферии от спиральных сосудов расположены сосуды с более сильно утолщенной оболочкой, не способной к растяжению. Те из них, которые развиваются из прокамбия, относятся к метаксилеме. Протоксилема и метаксилема составляют первичную ксилему. Сосуды, образующиеся позднее, в результате деятельности камбия, входят в состав вторичной ксилемы. Сосуды метаксилемы и вторичной ксилемы имеют лестничные и сетчатые утолщения боковых стенок.

Формированию лестничного сосуда предшествует образование спиральных утолщений вторичной оболочки, причем отдельные обороты спиралей настолько сближены, что в некоторых местах они соединяются. Узкие пространства между несоединенными участками спиральных утолщений представляют собой поры. В плане они имеют вид вытянутых по ширине сосуда продолговатых или почти щелевидных участков, расположенных вертикальными рядами, как ступени в лестнице. Такой тип поровости стенок сосуда называется лестничным.

При сетчатом утолщении поры в стенках сосуда округлые или овальные в очертании и расположены в один или несколько рядов. В стебле подсолнечника эти сосуды находятся снаружи от лестничных. Многочисленные, очень мелкие, плотно примыкающие одна к другой поры можно было видеть в сосудах тыквы.

Строение пор сосудов отличается от строения простых пор в оболочках паренхимных клеток наличием окаймления. Окаймлением называется приподнятость вторичных слоев оболочки над поровым каналом (подробнее о строении окаймленных пор см. в разделе «Древесина хвойных растений»). Поры на продольных стенках сосудов служат для проведения воды в горизонтальном направлении. Если сосуд в поперечном сечении многоугольный, то на продольном срезе на его стенке заметны вертикальные полосы.

Большая длина как следствие разрушения поперечных стенок между клетками, утолщенные одревесневшие боковые стенки, обеспечивающие прочность, отсутствие живого содержимого характеризует сосуды как наиболее высокоорганизованный тип проводящих элементов, наилучшим образом выполняющих функцию проведения воды.

Кроме сосудов в состав ксилемы входят живые тонкостенные паренхимные клетки, располагающиеся между сосудами, а также сильно одревесневшие волокна, сходные по строению с волокнами склеренхимы.

Задание. При большом увеличении микроскопа зарисовать кольчатые, спиральные, лестничные и пористые сосуды. Обратить внимание на характер утолщений стенок, очертание и расположение пор, отметить перфорацию.

Анатомия растений - Ткани

gardenweb.ru

Флоэма - это... Что такое Флоэма?

Флоэ́ма (от греч. φλοῦς — кора) — то же, что и луб — проводящая ткань сосудистых растений, по которой происходит транспорт продуктов фотосинтеза к частям растения, где происходит их использование (подземные части, конусы нарастания) или накопление (зреющие семена, плоды). Вместе с ксилемой (древесиной), обеспечивающей транспорт воды и минеральных солей, образует проводящие пучки.

Морфология

В стеблях большинства растений флоэма располагается снаружи по отношению к ксилеме, a листьях — обращена к нижней стороне жилок листовой пластинки, в проводящих пучках корней тяжи флоэмы и ксилемы чередуются.

По своему происхождению флоэма делится на первичную, дифференциирующуюся из прокамбия и вторичную, дифференциирующуюся из камбия. Первичная флоэма, в свою очередь, подразделяется на протофлоэму и метафлоэму, в отличие от вторичной флоэмы, у первичной отсутствуют сердцевинные лучи.

Клеточный состав и первичной, и вторичной флоэмы одинаков; они состоят из нескольких типов клеток различной морфологии, выполняющих различные функции:

  • Ситовидные элементы (ситовидные клетки, ситовидные трубки и клетки-спутницы), обеспечивающие основной транспорт
  • Склеренхимные элементы (склереиды и волокна), выполняющие опорную функцию
  • Паренхимные элементы (паренхимные клетки), обеспечивающие ближний радиальный транспорт

Ситовидные элементы являются высокоспециализированными клетками, обеспечивающими флоэмный транспорт ассимилятов. Их особенностью, благодаря которой они получили своё название, являются ситовидные поля (или ситовидные пластинки у покрытосеменных растений), являющихся скоплением специализированных пор в клеточной стенке. Поры ситовидных полей являются видоизменёнными первичными поровыми полями — их поры представляют собой расширенные плазмодесмы — цитоплазматические мостики, соединяющие соседние протопласты, однако если первичное поровое поле обычно пронизано несколькими плазмодесмами, через пору ситовидного поля проходит один цитоплазматический тяж с диаметром до нескольких микрометров, что в десятки раз превышает диаметр плазмодесм. Происхождение такого гигантского по сравнению с плазмодесмами цитоплазматического тяжа неясно, считается, что его образование возможно как путём слияния группы плазмодесм, так расширением единственной плазмодесмы.

Канал поры ситовидного элемента выстлан полисахаридом каллозой, которая у многих растений образует валик у отверстия канала, каллоза накапливается в течение жизни ситовидного элемента.

Ситовидные элементы споровых (хвощей, плаунов, папоротников) и голосеменных растений представлены ситовидными клетками, эти клетки вытянуты в длину, ситовидные поля разбросаны по боковым стенкам.

Флоэмный транспорт

Флоэмный сок представляет собой раствор углеводов (у древесных растений — преимущественно сахарозы), являющихся продуктами фотосинтеза, в достаточно высокой концентрации — 0,2—0,7 моль/литр (7—25 %), а также других ассимилятов и метаболитов (аминокислот и фитогормонов) в значительно более низких концентрациях. Скорость транспорта может достигать 20 м/час, что превышает скорости диффузии.

В отличие от ксилемы, где перемещение содержимого происходит в одном направлении — вверх от корней к листьям, флоэмный транспорт происходит от органов-доноров, в которых происходит фотосинтез к акцепторам — органам или областям, в которых продукты фотосинтеза потребляются или запасаются. Интенсивное потребление ассимилятов происходит в корнях, верхушках побегов, формирующихся листьях, репродуктивных органах; у многих видов растений есть специальные органы запасания — луковицы, клубни и корневища, выступающие в качестве акцепторов.

Эксперименты с радиоактивными метками (14C) показали, что транспорт от донора — например, подкормленного меткой листа — происходит к ближайшим акцепторам, то есть нижние листья обеспечивают углеводами корни, листья побега, расположенные рядом с плодами — плоды и т. п. Следует отметить, что флоэмный транспорт является двусторонним: так, органы запасания могут в зависимости от фазы вегетации выступать как в качестве акцептора — при накоплении крахмала, синтезирующегося из углеводов, поставляемых листьями в конце вегетационного периода — так и в качестве донора при расщеплении запасённого крахмала на углеводы, идущие на построение молодых листьев в начале периода вегетации.

См. также

Литература

  • Гэлстон А., Девис П., Сэттер Р. Жизнь зелёного растения. — М., Мир, 1983.
  • Тейлор Д., Грин Н., Стаут У. Биология. В 3 т. — М., Мир, 2004.

Ссылки

dal.academic.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта