Сходства клеток животных и растений. Вопрос 8 (в чём сходство и различие растительной и животной клетки?):

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Статья: Черты сходства и различия растительной и животной клетки. Сходства клеток животных и растений


4. Сходства и различия растительной и животной клеток.

Общие признаки:

Единство структурных систем — цитоплазмы и ядра.

Сходства процессов обмена веществ и энергии.

Единство принципа наследственного кода.

Универсальное мембранное строение.

Единство химического состава.

Сходства процессов деления клетки.

Признаки

Растительная клетка

Животная клетка

Пластиды

Хлоропласты

Хромопласты

___________________

Способ питания

Автотрофный

а) Фотосинтезирующий

б) Хемосинтезирующий

Гетеротрофный

а) Сапротрофный

б) Паразитический

Синтез АТФ

(в митохондриях)

Хлоропласты

Митохондрии

Митохондрии

Расщепление АТФ

В хлоропластах и во всех частях клетки, где нужны затраты энергии.

Во всех частях клетки, где нужны затраты энергии.

Клеточный центр

Только у низших растений.

Во всех клетках

Целлюлозная клеточная стенка

Расположена снаружи клеточной мембраны

____________________

Включения

Запасные пит. Вещества в виде зерен белка, крахмала, капель масла. Вакуоли с клеточным соком, кристаллы солей.

Запасные пит. Вещества в виде зерен и капель: белки, жиры, углеводы, гликоген; конечные продукты обмена, кристаллы солей.

Вакуоли

Крупные полости заполенные клеточным соком — водным раствором различных веществ.

Пищеварительные, сократительные, выделительные. Обычно мелкие.

5. Деление клеток: митоз и мейоз. Их сходство и различие.

Митоз — простое деление обычных соматических клеток, перед которым количество хромосом в клетках удваивается путем самовоспроизведения с последующим равномерным распределением генетической информации родительской клетки между двумя дочерними клетками.

Мейоз — особое деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое (редуцированное деление). Этот процесс приводит к образованию гаплоидного набра хромосом в половых клетках, тогда как все остальные соматические клетки организма животного (в том числе и предшественники половых клеток) имеют диплоидный набор хромосом.

Сравнительная хар-ка митоза и мейоза.

Фаза

Митоз

Мейоз

1-е деление

2-е деление

Интерфаза

Набор хромосом 2n, идет синтез белков, АТФ и др. органических веществ. Удваиваются хромосомы, каждая состоит из двух сестринских хроматид, соединенных общей центромерой.

Набор хромосом 2n, те же процессы, но более продолжительные.

Набор хромосом 1n — гаплоидный. Синтез органических веществ — отсутствует.

Профаза

Спирализация хромосом, исчезновение ядерной оболочки, ядрышка, образование веретена деления, хромомеры не видны, гомологичные хромосомы обособлены, хиазм нет, кроссинговера нет.

Более длительна, вначале те же процессы, затем хромомеры видны конъюгация гомологичных хромосом, образование хиазм, возможен кроссинговер

Короткая стадия, те же процессы, что в митозе, но при наборе хромосом 1n.

Метафаза

Дальнейшая спирализация хромосом, расположение центромер по экватору

Аналогично митозу

Аналогично митозу, но при наборе хромосом 1n.

Анафаза

Деление центромер, расхождение к полюсам идентичных сестринских хроматид, каждая из которых становится новой хромосомой

Центромеры не делятся, к полюсам отходит одна из гомологичных хромосом, состоящая из двух хроматид, соединенных общей центромерой.

Аналогично митозу, но при наборе хромосом 1n.

Телофаза

Деление цитоплазмы, образование двух дочерних клеток, каждая с диплоидным набором хромосом. Исчезновение веретена деления, фор-е ядрышек.

Недлительна. Гомологичные хромосомы попадают в разные клетки с гаплоидным набором хромосом, цитоплазма делится не всегда.

Деление цитоплазмы, образование 4-х клток с гаплоидным набором хромосом.

Различия между стадиями митоза и мейоза.

Стадия

Митоз

Мейоз

Профаза

Хромомеры не видны

Хромомеры видны

Гомологичные хромосомы обособлены

Гомологичные хромосомы конъюгируют

Хиазмы не образуются

Хиазмы образуются

Кроссинговера не происходит

Кроссинговер может иметь место

Метафаза

Пара хроматид располагаются на экваторе веретена

Пары хроматид располагаются на экваторе веретена только во 2-м делении

Центромеры выстраиваются в одной плоскости на экваторе веретена

Центромеры в 1 делении мейоза располагаются над и под экватором на одинаковом расстоянии от него

Анафаза

Центромеры делятся

Центромеры делятся только по 2-м делении мейоза

Хроматиды расходятся

Хроматиды расходятся во 2-м делении мейоза, в 1-м делении расходятся целые хромосомы

Расходящиеся хроматиды идентичны

Расходящиеся хромосомы могут оказаться неидентичными в результате кроссинговера

Телофаза

Число хромосом в дочерних клетках то же, что и в родительских

Число хромосом в дочерних клетках вдвое меньше, чем в родительских

Дочерние клетки содержат обе гомологичные хромосомы (у диплоидов)

Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом

Тип делящихся клеток

В гаплоидных, диплоидных и полиплоидных клетках

Только в диплоидных клетках

При образовании соматических клеток и некоторых спор, гамет у растений с чередованием поколений

При гамето - или спорогенезе

studfiles.net

Вопрос 8 (в чём сходство и различие растительной и животной клетки?):

Общее в строении растительных и животных клеток: клетка живая, растет, делится. протекает обмен веществ.

И в растительных, и в животных клетках имеется ядро, цитоплазма, эндоплазматическая сеть, митохондрии, рибосомы, аппарат Гольджи.

Различия между растительными и животными клетками возникли из-за разных путей развития, питания, возможности самостоятельного движения у животных и относительной неподвижности растений.

Клеточная стенка у растений есть ( из целлюлозы )

у животных - нет. Клеточная стенка придает растениям дополнительную жесткость и защищает от потерь воды.

Вакуоль есть у растений, у животных - нет.

Хлоропласты есть только у растений, в которых образуются органические вещества из неорганических с поглощением энергии. Животные потребляют готовые органические вещества, которые получают с пищей.

Резервный полисахарид: у растений – крахмал, у животных – гликоген.

Вопрос 10 (Как организован наследственный материал у про- и эукариот?):

а) локализация (в прокариотической клетке – в цитоплазме, в эукариотической клетке – ядро и полуавтономные органоиды: митохондрии и пластиды), б) характеристика Геном в прокариотической клетке: 1 кольцевидная хромосома – нуклеоид, состоящая из молекулы ДНК (укладка в виде петель) и негистоновых белков, и фрагменты – плазмиды – внехромосомные генетические элементы. Геном в эукариотической клетке – хромосомы, состоящие из молекулы ДНК и гистоновых белков.

Вопрос 11 (Что такое ген и какова его структура?):

Ген (от греч. génos — род, происхождение), элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты — ДНК (у некоторых вирусов — рибонуклеиновой кислоты — РНК). Каждый Г. определяет строение одного из белков живой клетки и тем самым участвует в формировании признака или свойства организма.

Вопрос 12 (Что такое генетический код, его свойства?):

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства генетического кода: 1. универсальность (принцип записи един для всех живых организмов) 2. триплетность (считываются три, рядом расположенные нуклеотида) 3. специфичность (1 триплет соответствует ТОЛЬКО ОДНОЙ аминокислоте) 4. вырожденность (избыточность) (1 аминокислота может кодироваться несколькими триплетами) 5. неперекрываемость (считывание происходит триплет за триплетом без "пробелов" и областей перекрывания, т.е. 1 нуклеотид НЕ может входить в состав двух триплетов).

Вопрос 13 (Характеристика этапов биосинтеза белка у про- и эукариот):

Биосинтез белка у эукариот

Транскрипция ,постранскрипция, трансляция и посттрансляция. 1.Транскрипция заключается в создании "копии одного гена" - молекулы пре-и-РНК (пре-м-РНК).Происходит разрыв водородных связей между азотистыми основаниями, присоединения к гену-промотору РНК полимеразы, которая "подбирает" нуклеотиды по принципу комплементарности, и антипараллельности. Гены у эукариот содержат участки, содержащие информацию, - экзоны и неинформативные участки - экзоны. В результате транскрипции создается "копия" гена, которая содержит как экзоны, так и интроны. Поэтому молекула, синтезирующаяся в результате транскрипции у эукариот - незрелая и-РНК (пре-и-РНК). 2.Период посттранскрипции он называется процессинг, который заключается в созревании и-РНК. Происходит: Вырезание интронов и сшивание (сплайсинг) экзонов ( сплайсинг называется альтернативным, если экзоны соединяются в другой последовательности, чем были изначально в молекуле ДНК). Происходит "модификация концов" пре-и-РНК: на начальном участке - лидере (5') образуется колпачок или кэп - для узнавания и связывания с рибосомой, на конце 3' - трейлере образуется polyА (множество адениловых оснований) - для транспорта и-РНК из мембраны ядра в цитоплазму. Это зрелая м РНК.

3. Трансляция: -Инициация -связывание и-РНК с малой субъединицей рибосомы -попадание стартового триплета и-РНК - АУГ в аминоацильный центр рибосомы -объединение 2-ух субъединиц рибосомы (большой и малой). -Элонгация АУГ попадает в пептидильный центр , а в аминоацильный центр попадает второй триплет, потом две тРНК с определенными аминокислотами поступают в оба центра рибосомы. В случае комплементарности триплетов на и-РНК (кодона) и т-РНК (антикодон, на центральной петле молекулы т-РНК) между ними образуются водородные связи и данные т-РНК с соответствующими АМК "фиксируются" в рибосоме. Между АМК, прикрепленными к двум т-РНК, возникает пептидная связь, а связь между первой АМК и первой т-РНК разрушается. Рибосмома делает "шаг" по и-РНК ("передвигается на один триплет). Таким образом, вторая т-РНК, к которой прикреплены уже две АМК, перемещается в пептидильный центр, а в аминоацильном центре оказывается третий триплет и-РНК, куда из цитоплазмы поступает следующая т-РНК с соответствующей АМК. Процесс повторяется... до тех пор, пока в аминоацильный центр не попадет один из трех стоп-кодонов (УАА, УАГ, УГА), которые не соответствуют ни одной аминокислоте

- Терминация - окончание сборки полипептидной цепи. Результат трансляции - образование полипептидной цепи, т.е. первичной структуры белка. 4. Посттрансляция приобретение молекулой белка соответствующей конформации - вторичной, третичной, четвертичной структур. Особенности биосинтеза белка у прокариот: а) все этапы биосинтеза происходят в цитоплазме, б) отсутствие экзон-интронной организации генов, вследствие чего в результате транскрипции образуется зрелая полицистронная м-РНК, в) транскрипция сопряжена с трансляцией, г) имеется только 1 вид РНК-полимеразы (единый РНК-полимеразный комплекс), тогда как у эукариот 3 вида РНК-полимераз, осуществляющих транскрипцию разных видов РНК.

studfiles.net

Статья: Черты сходства и различия растительной и животной клетки.

При изучении темы «Строение клетки» важно не только рассмотреть вопросы связанные со строением клетки, но и выявить основные черты сходства и различия в строении растительной и животной клетки. Поэтому прежде чем выполнять лабораторную работу, заявленную по программе важно изучить теоретический материал по данной теме.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

У прокариотических клеток есть цитоплазматическая мембрана, также как и эукариотических. У бактерий мембрана двуслойная (липидный бислой), у архей мембрана довольно часто бывает однослойной. Мембрана архей состоит из веществ, отличных от тех, из которых состоит мембрана бактерий. Поверхность клеток может быть покрыта капсулой, чехлом или слизью. У них могут быть жгутики и ворсинки.

Клеточное ядро, такое как у эукариот, у прокариот отсутствует. ДНК находится внутри клетки, упорядоченно свернутая и поддерживаемая белками. Этот ДНК-белковый комплекс называется нуклеоид. У эубактерий белки, которые поддерживают, ДНК отличаются от гистонов, которые образуют нуклеосомы (у эукариот). А у архибактерий гистоны есть, и этим они похожи на эукариот. Энергетические процессы у прокариотов идут в цитоплазме и на специальных структурах - мезосомах (выростах клеточной мембраны, которые закручены в спираль для увеличения площади поверхности, на которой происходит синтез АТФ). Внутри клетки могут находиться газовые пузырьки, запасные вещества в виде гранул полифосфатов, гранул углеводов, жировых капель. Могут присутствовать включения серы (образующейся, например, в результате бескислородного фотосинтеза). У фотосинтетических бактерий имеются складчатые структуры, называемые тилакоидами, на которых идет фотосинтез. Таким образом, у прокариот, в принципе, имеются те же самые элементы, но без перегородок, без внутренних мембран. Те перегородки, которые имеются, являются выростами клеточной мембраны.Самая маленькая бактерия – это паразитическая микоплазма (она живет внутри клеток эукариот). Она имеет размер 0,1 мкм. Самые большие представители прокариот видны невооруженным глазом (граница видимости – 70-80 мкм). Эта спирохета имеет длину 250 мкм. Типичный же представитель прокариот имеет размер 0,5 мкм в ширину и 2 мкм в ширину. Для сравнения приведены размеры вируса герпеса – одного из самых крупных вирусов (имеет размер, сравнимый с размерами паразитической микоплазмы), и вируса желтой лихорадки – одного из самых маленьких вирусов, в пять раз меньше вируса герпеса; а также размеры молекул глобулярных белков и эукариотических одноклеточных организмов (размеры у них намного больше, чем у прокариот).

Форма прокариотических клеток не так уж и разнообразна. Круглые клетки называются кокки. Такую форму могут иметь как археи, так и эубактерии. Стрептококки – это кокки, вытянутые в цепочку. Стафилококки – это «грозди» кокков, диплококки –кокки, объединенные по две клетки, тетрады - по четыре, и сарцины – по восемь. Палочкообразные бактерии называются бациллами. Две палочки – диплобациллы, вытянутые в цепочку – стрептобациллы. Еще выделяют коринеформные бактерии (с расширением на концах, похожим на булаву), спириллы (длинные завитые клетки), вибрионы (коротенькие загнутые клетки) и спирохеты (завиваются не так, как спириллы). Ниже проиллюстрировано все выше сказанное и приведены два представителя архебактерий. Хотя и археи, и бактерии относятся к прокариотическим (безядерным) организмам, строение их клеток имеет некоторые существенные отличия. Как уже было отмечено выше, бактерии имеют липидный бислой (когда гидрофобные концы погружены в мембрану, а заряженные головки торчат с двух сторон наружу), а археи могут иметь монослойную мембрану (заряженные головки имеются с двух сторон, а внутри единая целая молекула; эта структура может быть более жесткой, чем бислой). Ниже представлено строение клеточной мембраны архебактерии.

Бактерии и археи отличаются строением и размером РНК-полимеры. В состав бактериальных РНК-полимераз входит 4-8 белковых субъединиц, в сотав эукариотических РНК-полимераз входит 10-14 белковых субъединиц, а у архей размер промежуточный: 5-11 субъединиц. Рибосомы бактерий меньше рибосом эукариот и меньше, чем рибосомы архей (которые также имеют промежуточные размеры). По образу жизни археи отличаются от бактерий тем, что среди них нет паразитирующих организмов. Кроме того, археи часто живут в экстремальных условиях. Ниже представлен диапазон температур, в которых могут существовать прокариоты (от -10С до 110С). В зависимости от оптимальной температуры роста выделяют психрофилов (любителей холода), мезофилов (средний диапазон температур; к ним относятся все симбионты и паразиты человека) и термофилов (любителей тепла).

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Основными составляющими каждой клетки, как мы уже знаем из курса начальной и средней школы являются органоиды. Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности. К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы. Отдельно следует выделить органоиды движения. Это реснички, жгутики, миофибриллы и псевдоножки. Клетки отличаются размерами и формой, а также своими функциями, но при этом они имеют сходное химическое строение и единый принцип организации. Рассмотрим черты сходства и различия в строении и функции органоидов более подробно.

Черты сходства.

Ядро Данная органелла чрезвычайно важна, поскольку при ее удалении клетки перестают функционировать и погибают. двумембранные органоиды

Ядро имеет двойную мембрану, в которой есть множество пор. При помощи них оно тесно связывается с эндоплазматической сетью и цитоплазмой. Данный органоид содержит хроматин - хромосомы, которые являются комплексом протеинов и ДНК. Учитывая это, можно сказать, что именно ядро является органеллой, которая отвечает за сохранение основного количества генома. Жидкая часть ядра называется кариоплазмой. В ней содержатся продукты жизнедеятельности структур ядра. Наиболее плотная зона - ядрышко, в котором размещаются рибосомы, сложные белки и РНК, а также фосфаты калия, магния, цинка, железа и кальция. Ядрышко исчезает перед делением клеток и формируется снова на последних этапах данного процесса.

Эндоплазматическая сеть (ретикулум). ЭПС - одномембранный органоид. Он занимает половину объема клетки и состоит из канальцев и цистерн, которые связаны между собой, а также с цитоплазматической мембраной и внешней оболочкой ядра. Мембрана данного органоида имеет такую же структуру, что и плазмалема. Данная структура целостная и не открывается в цитоплазму. Эндоплазматический ретикулум бывает гладким и гранулярным (шероховатым). На внутренней оболочке гранулярной ЭПС размещаются рибосомы, в которых проходит синтез протеинов. На поверхности гладкой эндоплазматической сети рибосомы отсутствуют, но здесь проходит синтез углеводов и жиров. Все вещества, которые образуются в эндоплазматической сети, переносятся по системе канальцев и трубочек к местам назначения, где накапливаются и впоследствии используются в различных биохимических процессах. Учитывая синтезирующую способность ЭПС, шероховатый ретикулум размещается в клетках, основная функция которых - образование протеинов, а гладкий - в клетках, синтезирующих углеводы и жиры. Кроме этого, в гладком ретикулуме накапливаются ионы кальция, которые нужны для нормального функционирования клеток или организма в целом. Надо также отметить, что ЭПС является местом образования аппарата Гольджи.

Лизосомы. Лизосомы - это клеточные органоиды, которые представлены одномембранными мешочками округлой формы с гидролитическими и пищеварительными ферментами (протеазы, липазы и нуклеазы). Для содержимого лизосом характерна кислая среда. Мембраны данных образований изолируют их от цитоплазмы, предупреждая разрушение других структурных компонентов клеток. При высвобождении ферментов лизосомы в цитоплазму происходит саморазрушение клетки - автолиз.

Комплекс Гольджи.

Строение органоидов под названием «аппарат Гольджи» довольно простое. В клетках растений они выглядят как отдельные тельца с мембраной, в клетках животных они представлены цистернами, канальцами и пузырями. Структурная единица комплекса Гольджи - это диктиосома, которая представлена стопкой из 4-6 «цистерн» и мелких пузырьков, что отделяются от них и являются внутриклеточной транспортной системой, а также могут служить источником лизосом. Комплекс Гольджи, как правило, размещается около ядра. В животных клетках – возле клеточного центра. Основными функциями этих органелл является следующее: секреция и накопление протеинов, липидов и сахаридов; модификация органических соединений, поступающих в комплекс Гольджи; данный органоид является местом образования лизосом. Следует отметить, что ЭПС, лизосомы, вакуоли, а также аппарат Гольджи вместе образуют канальцево-вакуолярную систему, которая разделяет клетку на отдельные участки с соответствующими функциями. Кроме того, данная система обеспечивает постоянное обновление мембран.

Митохондрии - энергетические станции клетки Митохондрии - двумембранные органоиды палочковидной, шаровидной или нитевидной формы, которые синтезируют АТФ. Они имеют внешнюю гладкую поверхность и внутреннюю мембрану с многочисленными складками, которые называются кристами. Следует отметить, что число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, синтезирующие аденозинтрифосфат. Здесь энергия химических связей превращается в макроэргические связи АТФ. Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза.

Рибосомами называют немембранные органеллы, состоящие из двух фрагментов (малой и большой субъединицы). Их диаметр составляет около 20 нм. Они встречаются в клетках всех типов. Это органоиды животных и растительных клеток, бактерий. Образуются эти структуры в ядре, после чего переходят в цитоплазму, где размещаются свободно или прикрепляются к ЭПС. В зависимости от синтезирующих свойств рибосомы функционируют в одиночку или объединяются в комплексы, образуя полирибосомы. В данном случае эти немембранные органеллы связываются молекулой информационной РНК. Рибосома содержит 4 молекулы р-РНК, которые составляют ее каркас, а также различные белки. Основная задача данного органоида - сбор полипептидной цепи, что является первой стадией синтеза протеинов. Те белки, которые образуются рибосомами эндоплазматического ретикулума, могут использоваться всем организмом. Протеины для потребностей отдельной клетки синтезируются рибосомами, которые размещаются в цитоплазме. Следует отметить, что рибосомы также встречаются в митохондриях и пластидах.

Цитоскелет клетки. Клеточный цитоскелет образуется микротрубочками и микрофиламентами. Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина. Микротрубочки располагаются в гиалоплазме и выполняют следующие функции: создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму; принимают участие в процессе распределения хромосом клетки; обеспечивают перемещение органелл; содержатся в клеточном центре, а также в жгутиках и ресничках. Микрофиламенты - нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки. строение органоидов таблица Клеточный центр (центросома) Данная органелла состоит из 2 центриолей и центросферы. Центриоль цилиндрической формы. Ее стенки образуются тремя микротрубочками, которые сливаются между собой посредством поперечных сшивок. Центриоли располагаются парами под прямым углом друг к другу. Следует отметить, что клетки высших растений лишены данных органоидов. Основная роль клеточного центра - обеспечение равномерного распределения хромосом в ходе клеточного деления. Также он является центром организации цитоскелета.

Органеллы движения. К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками. При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами - это органоиды животной клетки. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. При помощи жгутиков движутся простейшие и сперматозоиды животных. Реснички являются органом движения инфузории-туфельки. У животных и человека они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов). Большинство растений не могут перемещаться в пространстве. Их движения заключаются в росте, перемещениях листьев и изменениях потока цитоплазмы клеток. Клеточный центр

Клеточный центр состоит из двух центриолей (дочерняя, материнская). Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Функция клеточного центра - участие в делении клеток животных и низших растений.

Черты различия.

Вакуоли. Вакуоли - это одномембранные органеллы сферической формы, которые являются резервуарами воды и растворенных в ней органических и неорганических соединений. В образовании данных структур участвует аппарат Гольджи и ЭПС. органоиды синтеза. В животной клетке вакуолей немного. Они мелкие и занимают не более 5% объема. Их основная роль - обеспечение транспорта веществ по всей клетке. Вакуоли растительной клетки большие и занимают до 90% объема. В зрелой клетке есть только одна вакуоль, которая занимает центральное положение. Ее мембрану называют тонопластом, а содержимое - клеточным соком. Основные функции растительных вакуолей - обеспечение напряжения клеточной оболочки, накопление различных соединений и отходов жизнедеятельности клетки. Кроме того, эти органоиды растительной клетки поставляют воду, необходимую для процесса фотосинтеза. .

Пластиды - органоиды растительной клетки Пластиды являются достаточно крупными органеллами. Они присутствуют только в клетках растений и образуются из предшественников – пропластид, содержат ДНК. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран. Пластиды бывают трех типов: Хлоропласты - наиболее многочисленные пластиды, отвечающие за фотосинтез, при котором образуются органические соединения и свободный кислород. Данные структуры имеют сложное строение и способны перемещаться в цитоплазме в сторону источника света. Основное вещество, которое содержится в хлоропластах, - хлорофилл, при помощи которого растения могут использовать энергию солнца. Следует отметить, что хлоропласты подобно митохондриям являются полуавтономными структурами, так как способны к самостоятельному делению и синтезу собственных белков. органоиды животных Лейкопласты - бесцветные пластиды, которые под действием света превращаются в хлоропласты. Данные клеточные компоненты содержат ферменты. При помощи них глюкоза превращается и накапливается в форме крахмальных зерен. У некоторых растений эти пластиды способны накапливать липиды или протеины в виде кристаллов и аморфных телец. Наибольше количество лейкопластов сосредоточено в клетках подземных органов растений. Хромопласты - производные других двух видов пластид. В них образуются каротиноиды (при разрушении хлорофилла), которые имеют красный, желтый или оранжевый цвет. Хромопласты - конечная стадия превращения пластид. Больше всего их в плодах, лепестках и осенних листьях.

Строение клетки живого чрезвычайно сложно - на клеточном уровне протекает множество биохимических процессов, которые в совокупности обеспечивают жизнедеятельность организма.

kopilkaurokov.ru

Различия и сходства растительной и животной клетки

Образование 24 марта 2016

Клетка — это простейший элемент строения какого-либо организма, свойственный как животному, так и растительному миру. Из чего она состоит? Сходства и различия клеток растительного и животного происхождения мы рассмотрим далее.

Растительная клетка

сходства растительной и животной клеткиВсе, чего мы раньше не видели и не знали, всегда вызывает очень сильный интерес. Как часто вы рассматривали клетки под микроскопом? Наверное, не каждый его и в глаза видел. На фото представлена растительная клетка. Основные ее части очень хорошо видны. Итак, растительная клетка состоит из оболочки, пор, мембран, цитоплазмы, вакуоли, ядерной оболочки, ядра, ядрышка и пластид.

Как видно, строение не такое и хитрое. Сразу обратим внимание на сходства растительной и животной клетки относительно строения. Здесь отметим наличие вакуоли. В растительных клетках она одна, а в животной имеется множество мелких, выполняющих функцию внутриклеточного пищеварения. Также заметим, что есть принципиальное сходство в строении: оболочка, цитоплазма, ядро. Строением мембран они тоже не отличаются.

Животная клетка

сходства клетокВ прошлом пункте мы отметили сходства растительной и животной клетки относительно строения, но они не абсолютно идентичны, имеют различия. Например, животная клетка не имеет клеточной стенки. Также отметим наличие органоидов: митохондрии, эндоплазматическая сеть, аппарат Гольджи, лизосомы, рибосомы, клеточный центр. Обязательным элементом является ядро, которое контролирует все функции клеток, включая размножение. Это мы также отмечали, рассматривая сходства растительной и животной клетки.

Видео по теме

Сходства клеток

сходства и различия клетокНесмотря на то что во многом клетки отличаются друг от друга, упомянем основные сходства. Сейчас нельзя точно сказать, когда и как появилась жизнь на земле. Но сейчас мирно сосуществуют многие царства живых организмов. Несмотря на то что все ведут разный образ жизни, имеют разное строение, несомненно, существует множество сходств. Это говорит о том, что все живое на земле имеет одного общего предка. Вот основные признаки сходства:

  • строение клеток;
  • сходство процессов обменных веществ;
  • кодирование информации;
  • одинаковый химический состав;
  • идентичный процесс деления.

Как видно из приведенного перечня, сходства растительной и животной клетки многочисленны, несмотря на такое разнообразие форм жизни.

Различия клеток. Таблица

Несмотря на большое количество сходных черт, клетки животного и растительного происхождения имеют много различий. Для наглядности приводим таблицу:

Отличительные признаки
ПризнакиРастительная клеткаЖивотная клетка
Целлюлозная клеточная стенка+-
Пластиды+-
Основной запас углеводовкрахмалгликоген
Клеточный центр-+
ВакуольОднаМногочисленные
Синтез АТФХлоропластах, митохондрияхМитохондриях
Способ питанияАвтотрофныйГетеротрофный

Основное отличие заключается в способе питания. Как видно из таблицы, растительная клетка имеет автотрофный способ питания, а животная — гетеротрофный. Это связано с тем, что растительная клетка содержит хлоропласты, то есть растения сами синтезируют все необходимые для выживания вещества, используя энергию света и фотосинтез. Под гетеротрофным способом питания понимается попадание в организм необходимых веществ с пищей. Эти же вещества являются и источником энергии для существа.

Отметим, что есть и исключения, например, зеленые жгутиконосцы, которые способны получать необходимые вещества двумя способами. Так как для процесса фотосинтеза необходима солнечная энергия, то автотрофный способ питания они применяют в светлое время суток. Ночью же они вынуждены употреблять уже готовые органические вещества, то есть питаются гетеротрофным способом.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Сравнение растительной и животной клетки: основные черты сходства и отличияОбразование Сравнение растительной и животной клетки: основные черты сходства и отличия

В статье будет проведено сравнение растительной и животной клетки. Эти структуры, несмотря на единство происхождения, имеют значительные отличия.Общий план строения клетокРассматривая сравнение растите...

Сравните растительную и бактериальную клетки: черты сходства и различияОбразование Сравните растительную и бактериальную клетки: черты сходства и различия

Сравните растительную и бактериальную клетки. Сможете ли вы выполнить это задание? Давайте вместе вспомним особенности строения данных клеток, их жизнедеятельности, а также черты сходства и отличия.Функциональ...

Строение растительных и животных клеток: сходства и различияОбразование Строение растительных и животных клеток: сходства и различия

Строение растительных и животных клеток несколько различается. В этой статье мы рассмотрим основные особенности данных структурно-функциональных единиц организма. Будут разобраны сходства и различия растительной и жив...

Различие и сходство растений и животныхОбразование Различие и сходство растений и животных

Различие между растениями и животными является не качественным, а количественным. То есть оно выражается в том, что преобладают определенные особенности строения тех или иных организмов. Нельзя вести речь об исключите...

Что такое органоид? Строение и функции органоидов. Органоиды растительной клетки. Органоиды животной клеткиОбразование Что такое органоид? Строение и функции органоидов. Органоиды растительной клетки. Органоиды животной клетки

Клетка - это уровень организации живой материи, самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме э...

Зеленый лимон от лайма чем отличается? Различия и сходствоЕда и напитки Зеленый лимон от лайма чем отличается? Различия и сходство

Лимоны уже давненько перестали считаться экзотикой даже в северных регионах. Этот фрукт хорошо хранится, а о его пользе просто ходят легенды. Да и в кулинарии он применяется довольно широко. Куда его только не добавля...

Продукты растительного происхождения: список. Продукты растительного происхождения и животного происхождения: сравнение преимуществ и недостатковЕда и напитки Продукты растительного происхождения: список. Продукты растительного происхождения и животного происхождения: сравнение преимуществ и недостатков

Мы то, что мы едим. Эта истина знакома многим. При этом все мы разные, отличаемся по полу и возрасту, а также вкусовым предпочтениям. Наверное, поэтому не утихают споры о том, какие продукты являются наиболее полезным...

Источник белка. Растительный белок и животный белокЕда и напитки Источник белка. Растительный белок и животный белок

Белок – органическое вещество, состоящее из соединенных пептидной связью аминокислот. Белки в организме человека образованы из 20-ти определенных аминокислот, часть из которых является незаменимыми и должна пост...

Растительные белки и животные... Для чего они нужны организму?Здоровье Растительные белки и животные... Для чего они нужны организму?

Красота начинается, прежде всего, со здоровья. А основой хорошего самочувствия является сбалансированное питание и разумные физические нагрузки. В ежедневном меню должны присутствовать те продукты, которые насыщают на...

Растительные жиры и животные. Что нужнее организму?Здоровье Растительные жиры и животные. Что нужнее организму?

О пользе и вреде употребления жиров беспрерывно спорят ученые и диетологи по всему миру. Так, всего за 100 лет несколько раз менялись лаврами вредности между собой растительное масло и сливочное, сало и рыбий жир и та...

monateka.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта