Схема клетки растения. Наружный слой клетки. Биология: строение растительной клетки, схема

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Особенности строения и основные органеллы животных клеток. Схема клетки растения


Основные отличия строения растительных и животных клеток

Клетки животных и растений схожи между собой, поскольку они являются эукариотическими клетками, имеющими истинное ядро, которое содержит ДНК и отделено от других клеточных структур ядерной мембраной. Оба типа клеток имеют сходные процессы размножения (деления), которые включают митоз и мейоз.

Животные и растительные клетки получают энергию, используемую ими для роста и поддержания нормального функционирования в процессе клеточного дыхания. Также, характерным для обоих типов клеток является наличие клеточных структур, известных как органеллы, которые специализированы для выполнения конкретных функций, необходимых для нормальной работы. Животные и растительные клетки объединяет наличие ядра, комплекса Гольджи, эндоплазматического ретикулума, рибосом, митохондрий, пероксисом, цитоскелета и клеточной (плазматической) мембраны. Несмотря на схожие характеристики животных и растительных клеток, они также имею множество различий, которые рассмотрены ниже.

Основные различия в клетках животных и растений

Схема строения животной и растительной клеток

  • Размер: клетки животных, как правило, меньше, чем растительные клетки. Размер животных клеток колеблются от 10 до 30 микрометров в длину, а клеток растений — от 10 до 100 микрометров.
  • Форма: клетки животных бывают разных размеров и имеют округлые или неправильные формы. Растительные клетки более схожи по размеру и обычно имеют форму прямоугольника или куба.
  • Хранение энергии: животные клетки хранят энергию в виде сложного углеводного гликогена. Растительные клетки хранят энергию в виде крахмала.
  • Белки: из 20 аминокислот, необходимых для синтеза белков, только 10 производятся естественным образом в клетках животных. Другие так называемые незаменимые аминокислоты получаются из пищи. Растения способны синтезировать все 20 аминокислот.
  • Дифференциация: у животных только стволовые клетки способны превращаться в другие типы клеток. Большинство типов растительных клеток способны дифференцироваться.
  • Рост: клетки животных увеличиваются в размерах, увеличивая число клеток. Растительные клетки в основном увеличивают размер клеток, становясь более крупными. Они растут, накапливая больше воды в центральной вакуоли.
  • Клеточная стенка: у клеток животных нет клеточной стенки, но есть клеточная мембрана. Клетки растений имеют клеточную стенку, состоящую из целлюлозы, а также клеточной мембраны.
  • Центриоли: клетки животных содержат эти цилиндрические структуры, которые организуют сборку микротрубочек во время деления клеток. Клетки растений обычно не содержат центриоли.
  • Реснички: встречаются в клетках животных, но, как правило, отсутствуют в растительных клетках. Реснички — это микротрубочки, которые обеспечивают клеточную локомоцию.
  • Цитокинез: разделение цитоплазмы при делении клеток, происходит в клетках животных, когда образуется спайная борозда, которая зажимает клеточную мембрану пополам. В цитокинезе растительных клеток образуется клеточная пластинка, разделяющая клетку.
  • Гликсисомы: эти структуры не встречаются в животных клетках, но присутствуют в растительных. Гликсисомы помогают расщеплять липиды на сахара, особенно в прорастающих семенах.
  • Лизосомы: клетки животных обладают лизосомами, которые содержат ферменты, переваривающие клеточные макромолекулы. Растительные клетки редко содержат лизосомы, поскольку вакуоль растения обрабатывает деградацию молекулы.
  • Пластиды: в животных клетках нет пластид. Растительные клетки имеют такие пластиды, как хлоропласты, необходимые для фотосинтеза.
  • Плазмодесмы: клетки животных не имеют плазмодесм. Растительные клетки содержат плазмодесмы, которые представляет собой поры между стенками, позволяющие молекулам и коммуникационным сигналам проходить между отдельными клетками растений.
  • Вакуоль: животные клетки могут иметь много маленьких вакуолей. Клетки растений содержат большую центральную вакуоль, которая может составляет до 90% объема клетки.

Читайте также: Эукариотические и прокариотические клетки: функции, строение и отличия.

Прокариотические клетки

Эукариотические клетки животных и растений также отличаются от прокариотических клеток, таких как бактерии. Прокариоты обычно являются одноклеточными организмами, тогда как животные и растительные клетки обычно многоклеточные. Эукариоты более сложны и больше, чем прокариоты. К клеткам животных и растений относятся многие органеллы, не обнаруженные в прокариотических клетках. Прокариоты не имеют истинного ядра, поскольку ДНК не содержится в мембране, а свернута в области цитоплазмы, называемой нуклеоидом. В то время как животные и растительные клетки размножаются митозом или мейозом, прокариоты чаще всего размножаются с помощью деления или дробления.

Другие эукариотические организмы

Клетки растений и животных не являются единственными типами эукариотических клеток. Протесты (например, эвглена и анеба) и грибы (например, грибы, дрожжи и плесень) — два других примера эукариотических организмов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

характеристика, строение и основные органеллы

Клетки животных являются типичными эукариотическими клетками, заключенными в плазматическую мембрану и содержат окруженное мембраной ядро ​​и органеллы. В отличие от эукариотических клеток растений и грибов, клетки животных не имеют клеточной стенки. Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили царство животные. Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Читайте также: Основные отличия строения клеток растений и животных.

Клетки были обнаружены в 1665 году британским ученым Робертом Гуком, который впервые наблюдал их в своем грубом (по сегодняшним меркам) оптическом микроскопе XVII века. Фактически, Гук придумал термин «клетка» в биологическом контексте. Микроскоп является фундаментальным инструментом в области клеточной биологии и часто используется для наблюдения или изучения клеток различных организмов.

Особенности животных и их клеток

Отсутствие жесткой клеточной стенки позволило животным развить широкое разнообразие типов клеток, тканей и органов. Специализированные клетки, образовавшие нервы и ткани мышц, которые невозможно развить растениям, способствовали мобильности этих организмов. Способность двигаться с помощью специализированных мышечных тканей является отличительной чертой животного мира, хотя некоторые животные, в первую очередь губки, не обладают дифференцированными тканями. Примечательно, что простейшие могут передвигаться, но только через немышечные движение, а при помощи псевдоподий, ресничек и жгутиков.

Животное царство уникально среди эукариотических организмов, потому что большинство тканей животных связаны во внеклеточном матриксе тройной спиралью белка, известной как коллаген. Растительные и грибковые клетки связаны в тканях или агрегатах другими молекулами, такими как пектин. Тот факт, что никакие другие организмы не используют коллаген таким образом, является одним из признаков того, что все животные возникли от одного одноклеточного предка. Кости, раковины, спикулы и другие упрочненные структуры образуются, когда коллагенсодержащий внеклеточный матрикс между животными клетками становится кальцифицированным.

Животные — большая и невероятно разнообразная группа организмов. Будучи мобильным, они способны воспринимать и реагировать на окружающую среду, обладают гибкостью при поиске пищи, защите и размножении. Однако, в отличие от растений, животные не могут производить свою пищу, и поэтому всегда прямо или косвенно зависят от растительной жизни.

Большинство клеток животных диплоидны, что означает, что их хромосомы существуют в гомологичных парах. Известно, что иногда встречаются различные хромосомные плоиды. Распространение животных клеток происходит разными путями. В случаях полового размножения сначала необходим клеточный процесс мейоза, так что могут быть получены гаплоидные дочерние клетки или гаметы. Затем две гаплоидные клетки сливаются с образованием диплоидной зиготы, которая развивается в новый организм, путем деление клеток в процессе митоза.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое массовое вымирание закончилось этим периодом, но в течение последующего кембрийского периода, взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что позвоночные животные появились до раннего ордовикского периода (505-438 миллионов лет назад).

Строение животных клеток

Схема строения клетки животных

Используйте приведенные ниже ссылки, чтобы получить более подробную информацию о различных органеллах, которые содержатся в клетках животных.

  • Центриоли — самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.
  • Реснички и Жгутики — необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для передвижения клетки или группы клеток.
  • Эндоплазматический ретикулум — сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой.
  • Эндосомы — мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как эндоцитоз, и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время экзоцитоза или клеточной секреции.
  • Комплекс (аппарат) Гольджи — отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты — широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов цитоскелета. Они функционируют как элементы, которые помогают поддерживать форму и жесткость клетки.
  • Лизосомы — осуществляют пищеварительные функции, перерабатывая клеточные отходы.
  • Микрофиламенты — нити из глобулярных белков, называемые актином. Эти филаменты являются преимущественно структурными по своей функции и важным компонентом цитоскелета.
  • Микротрубочки — прямые, полые цилиндры, присутствующие в цитоплазме всех эукариотических клеток (у прокариот их нет) и выполняющие различные функции, от транспортировки до структурной поддержки.
  • Митохондрии — продолговатые органеллы, которые находятся в цитоплазме каждой эукариотической клетки. В клетке животных они являются основными генераторами энергии, превращая кислород и питательные вещества в энергию.
  • Ядро — высокоспециализированная органелла, которая служит в качестве информационно-административного центра клетки. Эта органелла имеет две основные функции: 1) хранение наследственного материала клетки или ДНК; 2) координиция деятельность клетки, которая включает в себя рост, посредственный метаболизм, синтез белка и размножение (деление клеток).
  • Пероксисомы — группа связанных одной мембраной сферических органелл, встречающиеся в цитоплазме.
  • Плазматическая мембрана — защитный слой клетки, который также регулируют прохождение молекул внутрь и из клеток.
  • Рибосомы — крошечные органеллы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы состоят из четырех нитей РНК. В прокариотах они включают три нити РНК.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Строение животной и растительной клетки

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Строение животной (слева) и растительной (справа) клеток

Строение животной (слева) и растительной (справа) клеток

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10—20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому.

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы.

Строение клетки по данным электронной микроскопии

Строение клетки по данным электронной микроскопии

Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100—120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках животных и низших растений — центросома, животных — лизосомы, у растений — пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Центриоли (клеточный центр) состоит из двух компонентов: триоли и центросферы — особым образом дифференцированного участка цитоплазмы. Центриоли состоят из двух мелких округлых колец. В электронном микроскопе видно, что эти тельца представляют собой систему строго ориентированных трубочек.

Митохондрии в клетках бывают разной формы: палочковидные, нулообразные и др. Полагают, что форма их может изменяться зависимости от функционального состояния клетки. Размеры митохондрии варьируют в значительных пределах: от 0,2 до 2—7 мк. клетках разных тканей они располагаются или равномерно по цитоплазме, или с большей концентрацией в определенных участках. Установлено, что митохондрии принимают участие в окислительных процессах обмена веществ клетки. Митохондрии состоят белков, липидов и нуклеиновых кислот. В них найден ряд ферментов, участвующих в аэробном окислении, а также связанных реакцией фосфорилирования. Полагают, что в митохондриях происходят все реакции цикла Кребса: большая часть освобождаются при этом энергии расходуется на работу клетки.

Строение митохондрий оказалось сложным. Поданным электрон-микроскопических исследований, они представляют собой тельца, суженные гидрофильным золем заключенные в избирательно проницаемую оболочку — мембрану, толщина которой около 80 Å. Митохондрии имеют слоистую структуру в виде системы утренних гребней-кристаллов, толщина которых 180—200 Å. Они отходят от внутренней поверхности мембран, образуя кольцобразные диафрагмы. Предполагается, что митохондрии размножаются путем деления. При делении клетки распределение их по крайним клеткам не подчиняется строгой закономерности, так как % по-видимому, могут быстро размножаться до необходимого клетки количества. По форме, величине и роли в биохимических процессах митохондрии являются характерными для каждого типа ни и вида организма.

При биохимических исследованиях цитоплазмы в ней найдены микросомы, которые представляют собой фрагменты мембран с структурой эндоплазматической сети.

В значительном количестве в цитоплазме находятся рибосомы размерам они варьируют от 150 до 350 Å и в световом микроскопе невидимы. Особенностью их является высокое содержание РНК и белков: около 50% всей клеточной РНК находится в рибосомах, что указывает на большое значение последних в деятельности клетки. Установлено, что рибосомы участвуют в синтезе клеточных белков под контролем ядра. Репродукция самих рибосом также контролируется ядром; в отсутствии ядра они теряют способность синтезировать цитоплазматические белки и исчезают.

В цитоплазме имеется также аппарат Гольджи. Он представляет систему гладких мембран и канальцев, располагающихся вокруг ядра или полярно. Предполагают, что этот аппарат обеспечивает выделительную функцию клетки. Тонкое строение его остается еще не выясненным.

Органоидами цитоплазмы являются также лизосомы — литические тела, выполняющие функцию пищеварения внутри клетки. Они открыты пока только в животных клетках. Лизосомы содержат активный сок — ряд ферментов, способных расщеплять белки, нуклеиновые кислоты и полисахариды, поступающие в клетку. В случае если мембрана лизосомы разрывается и ферменты переходят в цитоплазму, то они «переваривают» другие элементы, цитоплазмы и приводят к растворению клетки — «самопоеданию».

Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов, а также белков, липидов и нуклеиновых кислот. По окраске и выполняемой функции пластиды могут быть разделены на три группы: лейкопласты, хлоропласты и хромопласты. Лейкопласты — бесцветные пластиды, участвующие в синтезе крахмала из сахаров. Хлоропласты представляют белковые тела более плотной консистенции, чем цитоплазма; наряду с белками они содержат много липидов. Белковое тело (строма) хлоропластов несет пигменты, в основном — хлорофилл, чем и объясняется их зеленая окраска, хлоропласты осуществляют фотосинтез. Хромопласты содержат пигменты — каротиноиды (каротин и ксантофилл).

Пластиды размножаются путем прямого деления и, по-видимому, не возникают в клетке заново. До сих пор нам не известен принцип их распределения по дочерним клеткам при делении. Возможно, что строгого механизма, обеспечивающего равное распределение, не существует, так как необходимое число их может быстро восстанавливаться. При бесполом и половом размножении растений через материнскую цитоплазму могут наследоваться признаки, определяемые свойствами пластид.

Здесь мы не будем останавливаться на особенностях изменений отдельных элементов клетки в связи с выполняемыми ими физиологическими функциями, так как это входит в область изучения цитологии, цитохимии, цитофизики и цитофизиологии. Однако следует отметить, что в последнее время исследователи приходят к очень важному выводу в отношении химической характеристики органелл цитоплазмы: ряд из них, такие как митохондрии, пластиды и даже центриоли, имеет собственную ДНК. Какова роль ДНК и каково состояние, в котором она находится, остается пока неясным.

Мы познакомились с общей структурой клетки лишь для того, чтобы в последующем оценить роль отдельных ее элементов в обеспечении материальной преемственности между поколениями, т. е. в наследственности, ибо все структурные элементы клетки принимают участие в ее сохранении. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Биология: клетки. Строение, назначение, функции

Биология клетки в общих чертах известна каждому из школьной программы. Предлагаем вам вспомнить изученное когда-то, а также открыть для себя что-то новое о ней. Название "клетка" было предложено еще в 1665 году англичанином Р. Гуком. Однако лишь в 19 веке ее начали изучать систематически. Ученых заинтересовала, среди прочего, и роль клетки в организме. Они могут быть в составе множества различных органов и организмов (икринок, бактерий, нервов, эритроцитов) или же быть самостоятельными организмами (простейшими). Несмотря на все их многообразие, в функциях и строении их обнаруживается много общего.

Функции клетки

Все они различны по форме и зачастую по функциям. Могут отличаться довольно сильно и клетки тканей и органов одного организма. Однако биология клетки выделяет функции, которые присущи всем их разновидностям. Именно здесь всегда происходит синтез белков. Этот процесс контролируется генетическим аппаратом. Клетка, которая не синтезирует белки, в сущности мертва. Живая клетка - это та, компоненты которой все время меняются. Однако основные классы веществ при этом остаются неизменными.

Все процессы в клетке осуществляются с использованием энергии. Это питание, дыхание, размножение, обмен веществ. Поэтому живая клетка характеризуется тем, что в ней все время происходит энергетический обмен. Каждая из них обладает общим важнейшим свойством – способностью запасать энергию и тратить ее. Среди других функций можно отметить деление и раздражимость.

Все живые клетки могут реагировать на химические или физические изменения среды, окружающей их. Это свойство называется возбудимостью или раздражимостью. В клетках при возбуждении меняется скорость распада веществ и биосинтеза, температура, потребление кислорода. В таком состоянии они выполняют функции, свойственные им.

Строение клетки

биология клетки

Ее строение довольно сложно, хотя она считается самой простой формой жизни в такой науке, как биология. Клетки расположены в межклеточном веществе. Оно обеспечивает им дыхание, питание и механическую прочность. Ядро и цитоплазма – основные составные части каждой клетки. Каждая из них покрыта мембраной, строительный элемент для которой - молекула. Биология установила, что мембрана состоит из множества молекул. Они расположены в несколько слоев. Благодаря мембране вещества проникают избирательно. В цитоплазме находятся органоиды – мельчайшие структуры. Это эндоплазматическая сеть, митохондрии, рибосомы, клеточный центр, комплекс Гольджи, лизосомы. Вы лучше поймете, как выглядят клетки, изучив рисунки, представленные в этой статье.

Мембрана

части клетки

При рассмотрении клетки растения в микроскоп (к примеру, корешка лука) можно заметить, что ее окружает довольно толстая оболочка. У кальмара имеется гигантский аксон, оболочка у которого совсем другой природы. Однако не она решает, какие вещества следует или не следует пускать в аксон. Функция оболочки клетки состоит в том, что она является дополнительным средством защиты клеточной мембраны. Мембрану называют "крепостной стеной клетки". Однако это справедливо лишь в том смысле, что она защищает и ограждает ее содержимое.

И мембрана, и внутреннее содержимое каждой клетки состоят обыкновенно из одних и тех же атомов. Речь идет об углероде, водороде, кислороде и азоте. Эти атомы находятся в начале таблицы Менделеева. Мембрана представляет собой молекулярное сито, очень мелкое (толщина ее в 10 тысяч раз меньше толщины волоса). Ее поры напоминают узкие длинные проходы, сделанные в крепостной стене какого-нибудь средневекового города. Их ширина и высота меньше длины в 10 раз. Кроме того, отверстия в этом сите очень редки. У некоторых клеток поры занимают лишь одну миллионную долю от всей площади мембраны.

Ядро

живая клетка

Биология клетки интересна также с точки зрения ядра. Это самый большой органоид, первым привлекший внимание ученых. В 1981 году клеточное ядро было открыто Робертом Брауном, шотландским ученым. Этот органоид является своеобразной кибернетической системой, где происходит хранение, переработка, а затем передача в цитоплазму информации, объем которой очень велик. Ядро очень важно в процессе наследственности, в котором оно играет главную роль. Кроме того, оно выполняет функцию регенерации, то есть способно восстанавливать целостность всего клеточного тела. Этот органоид регулирует все важнейшие отправления клетки. Что касается формы ядра, чаще всего она бывает шарообразной, а также яйцевидной. Хроматин – важнейшая составная часть этого органоида. Это вещество, которое хорошо окрашивается особыми ядерными красками.

Двойная мембрана отделяет ядро от цитоплазмы. Эта мембрана связана с комплексом Гольджи и с эндоплазматической сетью. На ядерной мембране имеются поры, через которые одни вещества легко проходят, а другим это сделать труднее. Таким образом, проницаемость ее избирательна.

Ядерный сок – это внутреннее содержимое ядра. Он заполняет пространство, находящееся между его структурами. Обязательно в ядре присутствуют ядрышки (одно или несколько). В них образуются рибосомы. Имеется прямая связь между размером ядрышек и активностью клетки: ядрышки тем крупнее, чем активнее происходит биосинтез белка; и, напротив, в клетках с ограниченным синтезом они или вовсе отсутствуют, или невелики.

В ядре находятся хромосомы. Это особые нитевидные образования. Кроме половых, в ядре клетки человеческого тела имеется по 46 хромосом. В них записана информация о наследственных задатках организма, которая передается потомству.

У клеток обычно имеется одно ядро, однако есть и многоядерные клетки (в мышцах, в печени и др.). Если удалить ядра, оставшиеся части клетки сделаются нежизнеспособными.

Цитоплазма

как выглядят клетки

Цитоплазма представляет собой бесцветную слизистую полужидкую массу. В ней содержится около 75-85 % воды, примерно 10-12 % аминокислот и белков, 4-6 % углеводов, от 2 до 3 % липидов и жиров, а также 1 % неорганических и некоторых других веществ.

Содержимое клетки, находящееся в цитоплазме, способно двигаться. Благодаря этому органоиды размещаются оптимально, а биохимические реакции протекают лучше, как и процесс выделения продуктов обмена. Разные образования представлены в слое цитоплазмы: поверхностные выросты, жгутики, реснички. Цитоплазму пронизывает сетчатая система (вакуолярная), состоящая из уплощенных мешочков, пузырьков, канальцев, сообщающихся между собой. Они связаны с наружной плазматической мембраной.

Эндоплазматическая сеть

тест по биологии клетка

Этот органоид был назван так из-за того, что он находится в центральной части цитоплазмы (с греческого языка слово "эндон" переводится как "внутри"). ЭПС – очень разветвленная система пузырьков, трубочек, канальцев различной формы и величины. Они отграничены от цитоплазмы клетки мембранами.

Различаются два вида ЭПС. Первый – гранулярная, которая состоит из цистерн и канальцев, поверхность которых усеяна гранулами (зернышками). Второй вид ЭПС – агранулярная, то есть гладкая. Гранами являются рибосомы. Любопытно, что в основном гранулярная ЭПС наблюдается в клетках зародышей животных, тогда как у взрослых форм она обычно агранулярная. Как известно, рибосомы являются местом синтеза белка в цитоплазме. Исходя из этого, можно сделать предположение, что гранулярная ЭПС бывает преимущественно в клетках, где происходит активный синтез белка. Агранулярная сеть, как считается, представлена в основном в тех клетках, где протекает активный синтез липидов, то есть жиров и различных жироподобных веществ.

И тот и другой вид ЭПС не просто принимает участие в синтезе органических веществ. Здесь эти вещества накапливаются, а также транспортируются к необходимым местам. ЭПС также регулирует обмен веществ, который происходит между окружающей средой и клеткой.

Рибосомы

Это клеточные немембранные органоиды. Они состоят из белка и рибонуклеиновой кислоты. Эти части клетки до сих пор не до конца изучены с точки зрения внутреннего строения. В электронном микроскопе рибосомы выглядят как грибовидные или округлые гранулы. Каждая из них разделена на маленькую и большую части (субъединицы) с помощью желобка. Несколько рибосом часто объединяются нитью особой РНК (рибонуклеиновой кислоты), называемой и-РНК (информационной). Благодаря этим органоидам из аминокислот синтезируются белковые молекулы.

Комплекс Гольджи

биология состав клетки

В просветы канальцев и полостей ЭПС поступают продукты биосинтеза. Здесь они концентрируются в особый аппарат, называемый комплексом Гольджи (на рисунке выше обозначен как golgi complex). Этот аппарат находится вблизи ядра. Он принимает участие в переносе продуктов биосинтеза, которые доставляются к поверхности клетки. Также комплекс Гольджи участвует в их выведении из клетки, в образовании лизосом и т. д.

Этот органоид был открыт Камилио Гольджи, итальянским цитологом (годы жизни – 1844-1926). В честь него в 1898 году он был назван аппаратом (комплексом) Гольджи. Выработанные в рибосомах белки поступают в этот органоид. Когда они нужны какому-то другому органоиду, отделяется часть аппарата Гольджи. Таким образом, белок транспортируется в требуемое место.

Лизосомы

Рассказывая о том, как выглядят клетки и какие органоиды входят в их состав, необходимо обязательно упомянуть и о лизосомах. Они имеют овальную форму, их окружает однослойная мембрана. В лизосомах имеется набор ферментов, разрушающих белки, липиды, углеводы. Если лизосомная мембрана повреждена, ферменты расщепляют и разрушают содержимое, находящееся внутри клетки. В результате этого она гибнет.

Клеточный центр

Он имеется в клетках, которые способны делиться. Клеточный центр состоит из двух центриолей (палочковидных телец). Находясь возле комплекса Гольджи и ядра, он участвует в формировании веретена деления, в процессе деления клетки.

Митохондрии

молекула биология

К энергетическим органоидам относятся митохондрии (на фото выше) и хлоропласты. Митохондрии – это своеобразные энергетические станции каждой клетки. Именно в них извлекается энергия из питательных веществ. Митохондрии имеют изменчивую форму, однако чаще всего это гранулы или нити. Число и размеры их непостоянны. Это зависит от того, какова функциональная активность той или иной клетки.

Если рассмотреть электронную микрофотографию, можно заметить, что митохондрии имеют две мембраны: внутреннюю и наружную. Внутренняя образует выросты (кристы), устланные ферментами. Благодаря наличию крист общая поверхность митохондрий увеличивается. Это важно для того, чтобы деятельность ферментов протекала активно.

В митохондриях ученые обнаружили специфические рибосомы и ДНК. Это позволяет этим органоидам самостоятельно размножаться в процессе деления клетки.

Хлоропласты

Что касается хлоропластов, то по форме это диск или шар, имеющий двойную оболочку (внутреннюю и наружную). Внутри этого органоида также имеются рибосомы, ДНК и граны - особые мембранные образования, связанные как с внутренней мембраной, так и между собой. Хлорофилл находится именно в мембранах гран. Благодаря ему энергия солнечного света превращается в химическую энергию аденозинтрифосфат (АТФ). В хлоропластах она используется для синтеза углеводов (образуются из воды и углекислого газа).

Согласитесь, представленную выше информацию нужно знать не только для того, чтобы сдать тест по биологии. Клетка - это строительный материал, из которого состоит наш организм. Да и вся живая природа - сложная совокупность клеток. Как вы видите, в них выделяется множество составных частей. На первый взгляд может показаться, что изучить строение клетки - непростая задача. Однако если разобраться, эта тема не так уж и сложна. Ее необходимо знать, чтобы хорошо разбираться в такой науке, как биология. Состав клетки - одна из основополагающих ее тем.

fb.ru

Наружный слой клетки. Биология: строение растительной клетки, схема

Клетки, которые формируют ткани представителей флоры и фауны, имеют существенные отличия по размерам, форме, составным элементам. Однако у всех них обнаруживается сходство в основных чертах роста, обмена, жизнедеятельности, раздражимости, способности к изменчивости, развитии. Далее рассмотрим подробнее строение растительной клетки (таблица основных компонентов будет приведена в конце статьи). наружный слой клетки

Краткая историческая справка

При помощи осмотического удара в 1925-м году Грендель и Гортер получили пустые оболочки эритроцитов, их так называемые "тени". Их сложили в стопку, определив площадь их поверхности. С использованием ацетона были выделены липиды. Также было определено их количество на единицу площади эритроцитов. Несмотря на погрешности в расчетах, был выведен случайно верный результат и открыт липидный бислой.

Общая информация

Изучением развития и роста элементов тканей представителей флоры и фауны занимается биология. Строение растительной клетки представляет собой комплекс трех неразрывно связанных друг с другом компонентов:

  • Ядро. Оно отделено от цитоплазмы при помощи пористой мембраны. В нем содержится ядрышко, ядерный сок и хроматин.
  • Цитоплазма и комплекс специализированных структур – органоидов. К последним, в частности, относят пластиды, митохондрии, лизосомы и комплекс Гольджи, клеточный центр. Органоиды присутствуют постоянно. Кроме них, имеются и временные образования, именуемые включениями.
  • Структура, формирующая поверхность – оболочка растительной клетки.

Особенности поверхностного аппарата

У лейкоцитов и одноклеточных организмов оболочка клетки обеспечивает проникновение воды, ионов, мелких молекул прочих соединений. Процесс, в ходе которого происходит проникновение твердых частиц, именуют фагоцитозом. Если же попадают капли жидких соединений, то говорят о пиноцитозе. функции оболочки клетки

Органоиды

Они присутствуют в эукариотических клетках. С органоидами связаны биологические превращения, которые происходят в клетке. Их покрывает двойная мембрана – пластиды и митохондрии. В них присутствуют собственные ДНК, а также аппарат, синтезирующий белок. Размножение осуществляется делением. В митохондриях, кроме АТФ, синтезируется белок в небольшом количестве. Пластиды присутствуют в растительных клетках. Их размножение осуществляется делением.

Мембрана

Ошибочно считать, что наружный слой клетки – это цитоплазма. Мембрана является молекулярной эластической структурой. Наружный слой клетки называется поверхностным аппаратом, посредством которого осуществляется отделение содержимого от внешней среды. Существуют разные функции оболочки клетки. Одной из основных задач является обеспечение целостности всего элемента. Внутри также присутствуют структуры, разделяющие клетку на так называемые отсеки. Эти замкнутые зоны именуют органеллами или компартментами. Внутри них поддерживаются определенные условия. В функции оболочки клетки входит регулирование обмена между средой и клеткой.

Мембрана

Каково же строение оболочки клетки? Клеточная мембрана – это бислой (двойной) из молекул липидного класса. Большинство из них представляет собой липиды сложного типа – фосфолипиды. В молекулах присутствуют гидрофобная (хвост) и гидрофильная (головка) части. Когда формируется оболочка клетки, хвосты обращены внутрь, а головки – в обратную сторону. Мембраны – это инвариабельные структуры. Оболочка животной клетки имеет много сходств с элементом представителя флоры. Толщина мембраны – порядка 7-8 нм. Биологический наружный слой клетки включает в себя разные белковые соединения: полуинтегральные (одним концом погруженные во внешний либо внутренний липидный слой), интегральные (пронизывающие насквозь), поверхностные (прилегающие к внутренним сторонам либо находящиеся на внешней стороне). Ряд белков является точками примыкания мембраны и цитоскелета внутри клетки и наружной стенкой (если она присутствует). Некоторые интегральные соединения исполняют роль ионных каналов, разнообразных рецепторов и транспортеров. наружный слой клетки это цитоплазма

Защитная задача

Строение оболочки клетки во многом определяет ее деятельность. В частности, мембрана обладает избирательной проницаемостью. Это означает, что степень проходимости молекул через мембрану зависит от их размеров, химических свойств, электрического заряда. Основная функция, которую выполняет наружный слой клетки, называется барьерной. За счет нее обеспечивается избирательный, регулируемый, активный и пассивный обмен соединений с окружающей средой. К примеру, оболочка пероксисом обеспечивает защиту цитоплазмы от опасных пероксидов.

Транспорт

Сквозь наружный слой клетки происходит переход веществ. За счет транспорта обеспечивается доставка питательных компонентов, устранение конечных продуктов процесса обмена, секреция разных веществ, формирование ионных ингредиентов. Кроме того, в клетке поддерживается оптимальный рН и концентрация ионов, необходимых для работы ферментов. Если необходимые частицы по каким-либо причинам не могут пройти сквозь бислой из фосфолипидов, к примеру, в связи с гидрофильными свойствами, поскольку мембрана гидрофобна внутри, либо из-за своего крупного размера, они могут пересечь мембрану посредством специальных транспортеров (белков-переносчиков), путем эндоцитоза или по белкам-каналам. В процессе пассивного транспорта соединения проходят наружный слой клетки без энергетических затрат путем диффузии по градиенту концентрации. Одним из вариантов этого процесса считается облегченное внедрение. В этом случае веществу помогает пересечь наружный слой клетки какая-либо специфическая молекула. У нее может присутствовать канал, который способен пропускать вещества только 1 типа. Для активного транспорта необходима энергия. Это связано с тем, что движение в данном случае происходит обратно градиенту концентрации. На мембране в данном случае присутствуют особые белки-насосы, АТФаза в том числе, которая достаточно активно закачивает в клетку калийные ионы и выкачивает натриевые. оболочки клеток состоят из

Прочие задачи

Наружный слой клетки выполняет матричную функцию. За счет этого обеспечивается определенное взаимное расположение и ориентация мембранных белковых соединений, а также их оптимальное взаимодействие. За счет механической функции обеспечивается автономность клетки и внутренних структур, а также соединения с прочими клетками. Большое значение в данном случае у представителей флоры имеют стенки структур. У животных обеспечение механической функции зависит от межклеточного вещества. Мембраны выполняют и энергетические задачи. В процессе фотосинтеза в хлоропластах и клеточного дыхания в митохондриях в их стенках активизируются системы по переносу энергии. В них, как и во многих прочих случаях, принимают участие белки. Одной из важнейших считается рецепторная функция. Некоторые белки, которые находятся в мембране, являются рецепторами. Благодаря этим молекулам клетка может воспринимать те или другие сигналы. К примеру, стероиды, циркулирующие с током крови, оказывают влияние только на те клетки-мишени, которые имеют рецепторы, соответствующие тем или другим гормонам. Существуют также и нейромедиаторы. Эти химические соединения обеспечивают импульсную передачу. Они тоже имеют связь со специфическими белками мишеней. Мембранные компоненты зачастую являются ферментами. Отсюда и ферментативная функция оболочки клетки. В плазматических мембранах эпителиальных элементов кишечника присутствуют пищеварительные соединения. В наружном слое клетки генерируются и проводятся биопотенциалы. биология строение растительной клетки

Концентрация ионов

С помощью мембраны поддерживается внутреннее содержание К+ иона на более высоком, нежели снаружи, уровне. При этом концентрация Na+ существенно ниже, чем с внешней стороны. Это имеет особое значение, поскольку так обеспечивается разность потенциалов на стенке и генерация нервного импульса.

Маркировка

На мембране присутствуют антигены, которые действуют в качестве неких "ярлыков". Маркировка позволяет опознавать клетку. Гликопротеины – белки с пристыкованными к ним олигосахаридными разветвленными боковыми цепями – исполняют роль "антенн". Так как конфигураций боковых цепей бесчисленное множество, можно для каждой группы клеток сделать свой маркер. При помощи них происходит распознавание одних элементов другими, что, в свою очередь, позволяет им действовать согласовано. Так происходит, к примеру, при формировании тканей и органов. По этому же механизму осуществляется работа иммунной системы по распознаванию чужеродных антигенов.

Состав и структура

Как выше было сказано, оболочки клеток состоят из фосфолипидов. Однако кроме них в структуре присутствует холестерол и гликолипиды. Последние представляют собой липиды с пристыкованными к ним углеводами. Глико- и фосфолипиды, в основном формирующие оболочки клеток, состоят из 2-х длинных углеводных гидрофобных "хвостов". Они связаны с гидрофильной, заряженной "головой". За счет присутствия холестерола мембрана обладает необходимым уровнем жесткости. Соединение занимает свободное пространство между липидными гидрофобными хвостами, препятствуя, таким образом, их изгибанию. В связи с этим, те мембраны, в которых меньше холестерола, более гибки и мягки, а там, где его больше, наоборот, больше жесткости и хрупкости в стенках. Кроме того, соединение выступает в качестве стопора, препятствующего перемещению из клетки в клетку полярных молекул. Особое значение имеют белки, которые пронизывают мембрану и отвечают за различные ее свойства. Та или иная оболочка растительной клетки имеет определенные по составу и своей ориентации белки. наружный слой клетки называется

Аннулярные липиды

Эти соединения находятся рядом с белками. Однако аннулярные липиды более упорядочены и менее подвижны. В их составе присутствуют жирные кислоты с большей насыщенностью. Липиды выходят из мембран вместе с белковым соединением. Без аннулярных элементов мембранные белки работать не будут. Зачастую оболочки асимметричны. Другими словами, это означает, что слои имеют различный состав липидов. Во внешнем содержатся преимущественно гликолипиды, сфингомиелины, фосфатидилхолин, фосфатидилнозитол. Во внутреннем же слое присутствуют фосфатидилнозитол, фосфатидилэтаноламин и фосфатидилсерин. Переход из одного уровня в другой определенной молекулы несколько затруднен. Тем не менее, он вполне может произойти спонтанно. Это случается приблизительно раз в полгода. Переход также может быть осуществлен при помощи белков-флиппаз и скрамблазы. При появлении во внешнем слое фосатидилсерила, макрофаги принимают защитную позицию и направляют свою активность на уничтожение клетки.

Органеллы

Эти участки могут быть одиночными и замкнутыми или связанными друг с другом, отделенными мембранами от гиалоплазмы. Одномембранными органеллами считаются периксисомы, вакуоли, лизосомы, аппарат Гольджи, эндоплазматическая сеть. К двумембранным относят пластиды, митохондрии, ядро. Что касается строения мембран, то у разных органелл стенки отличаются по составу белков и липидов.

Избирательная проницаемость

Сквозь клеточные мембраны медленно диффундируют жирные и аминокислоты, ионы и глицерол, глюкоза. При этом сами стенки достаточно активно регулируют данный процесс, пропуская одни и задерживая другие вещества. Для поступления соединения в клетку существует четыре главных механизма. К ним относят эндо- или экзоцитоз, активный транспорт, осмос и диффузия. Последние два обладают пассивным характером и не требуют энергетических затрат. А вот первые два – активны. Для них необходима энергия. При пассивном транспорте избирательная проницаемость обуславливается интегральными белками – специальными каналами. Мембрана пронизана ими насквозь. Эти каналы формируют в некотором роде проход. Свои белки есть для элементов Cl, Na, К. Что касается градиента концентрации, то молекулы элементов осуществляют движение в клетку из него. На фоне раздражения происходит раскрытие каналов натриевых ионов. Они, в свою очередь, начинают резко поступать в клетку. Это сопровождается дисбалансом мембранного потенциала. Однако после этого он восстанавливается. Калийные каналы остаются открытыми всегда. Ионы поступают через них в клетку медленно. строение оболочки клетки

В заключение

Ниже представлены коротко задачи и строение растительной клетки. Таблица содержит также информацию и о составе биологического элемента.

Виды элементов

Состав и функции

Клетки растений

Состоят из клетчатки. Служат каркасом и обеспечивают защиту.

Биоэлементы

Очень тонкий и эластичный слой – гликокаликс включает в себя белки и полисахариды. Обеспечивает защиту.

fb.ru

Растительная клетка » Привет Студент!

Стратегия существования высших растений обусловлена прежде всего двумя их главными свойствами — фототрофным типом питания и отсутствием активной подвижности. Эти два свойства наложили отпечаток на все уровни организации растительного организма, вплоть до клеточного.

 

 

Рис. 1. Схема строения растительной клетки

 

Помимо общих для всех эукариотических клеток признаков, клетки растений обладают рядом особенностей. Главные из них — наличие пластид, вакуолей и жесткой клеточной стенки. Схема строения типичной растительной клетки представлена на рис. 1.

Присутствие пластид связано прежде всего с фототрофным типом питания растений. Пластиды, как и митохондрии, имеют собственный геном. Таким образом, еще одной особенностью растительной клетки является то, что она совмещает в себе три относительно автономные генетические системы: ядерную (хромосомную), митохондриальную и пластидную. Наличие трех геномов является следствием симбиотического происхождения растительных клеток. При этом растительная клетка, в отличие от других эукариотических клеток, образовалась как минимум из трех исходно самостоятельных форм:

1) «хозяйского» организма, генетический аппарат которого переместился в ядро;

2) гетеротрофной бактерии (похожей на родоспириллу), послужившей предшественницей митохондрии;

3) древней бактерии с оксигенным фотосинтезом, похожей на цианобактерию Scinechocystis, ставшей родоначальницей пластид.

Длительная коэволюция симбионтов привела к перераспределению функций между ними и их генетическими системами, при этом многие гены митохондриальной и пластидной ДНК были перемещены в ядро.

 

Используемая литература: Физиология растений: Учебник для стул, вузов / Н.Д. Алехина, Ф504 10. В. Балнокин. В.Ф. Гаврилснко и Др.; Под ред. И. П. Ермакова. — М.: Издательский центр «Академия», 2005. — 640 с.

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

privetstudent.com


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта