10.4. Регенерация у растений. Регенерация растений
Способы регенерации у растений
Регенерация — это восстановление организмом поврежденной или утраченной части тела. Способность к регенерации широко распространена в растительном мире от низших до высших таксонов, причем разнообразие форм регенерации очень велико. Это обусловлено следующими причинами. Во-первых, регенерация - один из основных неспецифических способов зашиты растений, ведущих неподвижный, прикрепленный образ жизни, от всякого рода повреждений и травм Во-вторых, многие формы регенерации успешно используются растениями как способ вегетативного размножения.
Способы регенерации у растений
В настоящее время не существует общепринятой классификации форм регенерации у растений, а также устоявшейся терминологии. Если исходить из механизмов регенерации, то классификацию наиболее часто встречающихся способов регенерации у растений можно представить следующим образом:
I. Физиологическая регенерация.
II. Травматическая регенерация:
1. Регенерация, обусловленная дедифференцировкой клеток:
а) заживление ран;
б) органогенез, связанный с образованием каллуса;
в) соматический эмбриогенез;
г) восстановление частей без образования каллуса;
2. Регенерация на уровне меристем:
а) восстановление апикальных меристем;
б) органогенез из предсуществуюших зачатков;
в) органогенез из новообразованных адвентивных зачатков.
Кратко рассмотрим каждый из перечисленных способов.
Физиологическая регенерация
При этом способе восстанавливаются части при их естественном изнашивании. Примеры физиологической регенерации — постоянное восполнение слущивающихся клеток корневого чехлика, замена старых элементов ксилемы новыми (у древесных), замена корки у стволов деревьев и др. В животных организмах аналогичным образом идет постоянное обновление клеток слизистой желудка, клеток кожи и т. д.
Заживление ран
Ткани, оказавшиеся на поверхности раны, дедифференцируются, их клетки начинают периклинально делиться и образуют феллоген, превращающийся в пробку. Поверхность раны может затягиваться также каллусной тканью.
Органогенез, обусловленный образованием каллуса
Начальный этап дедифференциации клеток на поверхности раны аналогичен тому, что происходит при заживлении ран. Однако клетки, дедифференцируясь, переходят к неорганизованному делению и возникает каллусная ткань, состоящая из рыхло соединенных друг с другом паренхиматиче-ских клеток. При определенных условиях (см. ниже) отдельные клетки или группы клеток могут дать начало адвентивным(т. е. возникшим не из эмбриональных тканей) органам: корням, побегам, листьям. В естественных условиях каллус на поверхности среза стебля или корня обычно образуется из камбиальных клеток.
Соматический эмбриогенез
Каллус на раневой поверхности образуется так, как описано выше. Из отдельных клеток каллуса, начинающих организованно делиться, формируются соматические зародыши (элюриоиды), из которых при определенных условиях развивается целый организм. Такой процесс идет и в районе перерезанных жилок листа бегонии, где из единичных эпидермальных клеток образуются целые растеньица.
Восстановление частей без образования каллуса
Примером такого способа регенерации служит формирование адвентивных побегов из единичных эпидермальных клеток на некотором удалении от раневой поверхности. Другой пример - превращение паренхимных клеток коры в клетки ксилемы при образовании обходного участка проводящего пучка вокруг места его прерывания. Направление регенерации проводящих элементов определяется прежде всего полярным базипетальным транспортом ауксина, который индуцирует генетическую программу ксилемообразования. Диффс-ренцировке элементов флоэмы наряду с присутствием ИУК и цитокинина способствует высокая (4-8%) концентрация сахарозы.
Другие пути восстановления утраченных частей у растений связаны с деятельностью апикальных или латеральных меристем.
Восстановление апикальных меристем
При продольном рассечении конуса нарастания из каждой половины могут регенерировать отдельные апексы. Конус нарастания как побе!а, так и корня регенерирует при удалении небольшого участка его дистального конца (не более 80 мкм). У развивающегося молодою листа папоротника восстанавливается отрезанная меристематическая верхушка.
Органогенез из предшествующих зачатков
Восстановление надземных органов у высших растений осуществляется, как правило, за счет отрастания покоящихся (пазушных) почек при устранении доминирующего влияния апикальной почки побега (см. П.2.3). Повреждение или частичное удаление дистальной части корневой системы также способствует росту зачагков боковых корней вследствие устранения тормозящего действия кончика корня. Такой способ восстановления утраченных частей присущ только растениям.
Органогенез из новообразованных адвентивных зачатков
Стеблевые черенки многих древесных травянистых растений образуют корни благодаря активации периклинальных делений в камбии или перицикле, выполняющих функции латентных меристем. Индукция делений клегок связана с действием ИУК, которая, перемещаясь базипеталыю. накапливается в нижней части черенка.
Таким образом, растения могут восстанавливать как надземные, так и подземные части даже при полной их утрате.
www.abakbot.ru
Способы регенерации у растений
Регенерация — это восстановление организмом поврежденной или утраченной части тела. Способность к регенерации широко распространена в растительном мире от низших до высших таксонов, причем разнообразие форм регенерации очень велико. Это обусловлено следующими причинами. Во-первых, регенерация - один из основных неспецифических способов зашиты растений, ведущих неподвижный, прикрепленный образ жизни, от всякого рода повреждений и травм Во-вторых, многие формы регенерации успешно используются растениями как способ вегетативного размножения.
Способы регенерации у растений
В настоящее время не существует общепринятой классификации форм регенерации у растений, а также устоявшейся терминологии. Если исходить из механизмов регенерации, то классификацию наиболее часто встречающихся способов регенерации у растений можно представить следующим образом:
I. Физиологическая регенерация.
II. Травматическая регенерация:
1. Регенерация, обусловленная дедифференцировкой клеток:
а) заживление ран;
б) органогенез, связанный с образованием каллуса;
в) соматический эмбриогенез;
г) восстановление частей без образования каллуса;
2. Регенерация на уровне меристем:
а) восстановление апикальных меристем;
б) органогенез из предсуществуюших зачатков;
в) органогенез из новообразованных адвентивных зачатков.
Кратко рассмотрим каждый из перечисленных способов.
Физиологическая регенерация
При этом способе восстанавливаются части при их естественном изнашивании. Примеры физиологической регенерации — постоянное восполнение слущивающихся клеток корневого чехлика, замена старых элементов ксилемы новыми (у древесных), замена корки у стволов деревьев и др. В животных организмах аналогичным образом идет постоянное обновление клеток слизистой желудка, клеток кожи и т. д.
Заживление ран
Ткани, оказавшиеся на поверхности раны, дедифференцируются, их клетки начинают периклинально делиться и образуют феллоген, превращающийся в пробку. Поверхность раны может затягиваться также каллусной тканью.
Органогенез, обусловленный образованием каллуса
Начальный этап дедифференциации клеток на поверхности раны аналогичен тому, что происходит при заживлении ран. Однако клетки, дедифференцируясь, переходят к неорганизованному делению и возникает каллусная ткань, состоящая из рыхло соединенных друг с другом паренхиматиче-ских клеток. При определенных условиях (см. ниже) отдельные клетки или группы клеток могут дать начало адвентивным(т. е. возникшим не из эмбриональных тканей) органам: корням, побегам, листьям. В естественных условиях каллус на поверхности среза стебля или корня обычно образуется из камбиальных клеток.
Соматический эмбриогенез
Каллус на раневой поверхности образуется так, как описано выше. Из отдельных клеток каллуса, начинающих организованно делиться, формируются соматические зародыши (элюриоиды), из которых при определенных условиях развивается целый организм. Такой процесс идет и в районе перерезанных жилок листа бегонии, где из единичных эпидермальных клеток образуются целые растеньица.
Восстановление частей без образования каллуса
Примером такого способа регенерации служит формирование адвентивных побегов из единичных эпидермальных клеток на некотором удалении от раневой поверхности. Другой пример - превращение паренхимных клеток коры в клетки ксилемы при образовании обходного участка проводящего пучка вокруг места его прерывания. Направление регенерации проводящих элементов определяется прежде всего полярным базипетальным транспортом ауксина, который индуцирует генетическую программу ксилемообразования. Диффс-ренцировке элементов флоэмы наряду с присутствием ИУК и цитокинина способствует высокая (4-8%) концентрация сахарозы.
Другие пути восстановления утраченных частей у растений связаны с деятельностью апикальных или латеральных меристем.
Восстановление апикальных меристем
При продольном рассечении конуса нарастания из каждой половины могут регенерировать отдельные апексы. Конус нарастания как побе!а, так и корня регенерирует при удалении небольшого участка его дистального конца (не более 80 мкм). У развивающегося молодою листа папоротника восстанавливается отрезанная меристематическая верхушка.
Органогенез из предшествующих зачатков
Восстановление надземных органов у высших растений осуществляется, как правило, за счет отрастания покоящихся (пазушных) почек при устранении доминирующего влияния апикальной почки побега (см. П.2.3). Повреждение или частичное удаление дистальной части корневой системы также способствует росту зачагков боковых корней вследствие устранения тормозящего действия кончика корня. Такой способ восстановления утраченных частей присущ только растениям.
Органогенез из новообразованных адвентивных зачатков
Стеблевые черенки многих древесных травянистых растений образуют корни благодаря активации периклинальных делений в камбии или перицикле, выполняющих функции латентных меристем. Индукция делений клегок связана с действием ИУК, которая, перемещаясь базипеталыю. накапливается в нижней части черенка.
Таким образом, растения могут восстанавливать как надземные, так и подземные части даже при полной их утрате.
- Средняя скорость движения >>
www.abakbot.ru
10.4. Регенерация у растений
Регенерация – это восстановление организмом поврежденной или утраченной части тела, что является одним из способов вегетативного размножения и защиты растений от повреждений. Различают следующие виды регенерации.
I. Физиологическая регенерация.
Части восстанавливаются при их естественном изнашивании, например, постоянное восполнение слущивающихся клеток корневого чехлика.
II. Травматическая регенерация.
1. Регенерация, обусловленная дедифференцировкой клеток:
а) заживление ран.
Эпидермис и первичная кора дедифференцируются, их клетки начинают делиться и образуют вторичную меристему, которая превращается в пробку.
б) органогенез, связанный с образованием каллуса.
Клетки дедифференцируются и переходят к неорганизованному делению, образуя каллусную ткань из рыхло соединенных друг с другом паренхимных клеток. Иногда отдельные клетки дают начало адвентивным, то есть возникшим не из эмбриональных тканей, органам: корням, побегам, листьям.
в) соматический эмбриогенез.
На раневой поверхности образуется каллус. Из отдельных клеток каллуса, начинающих делиться, формируются соматические зародыши (эмбриоиды), из которых при определенных условиях развивается целый организм.
г) восстановление частей без образования каллуса.
Паренхимные клетки коры под влиянием ауксина, индуцирующего генетическую программу ксилемообразования, превращаются в клетки ксилемы при образовании обходного участка проводящего пучка вокруг места его прерывания.
2). Регенерация на уровне меристем:
а) восстановление апикальных меристем.
При продольном рассечении конуса нарастания из каждой половины могут регенерировать отдельные апексы.
б) органогенез из предсуществующих зачатков.
Восстановление надземных органов у высших растений происходит за счет отрастания пазушных почек при устранении доминирующего влияния апекса побега.
10.5. Кинетика ростовых процессов
Кривую, описывающую скорость роста, можно разделить на 4 участка: 1) лаг-период, когда рост почти не заметен и идут процессы, подготавливающие организм к видимому росту, 2) лог-фаза, когда скорость роста изменяется логарифмически, 3) фаза замедления роста, 4) стационарная фаза (рис. 10.1).
Рис. 10.1. Кривая роста.
1 – лаг-период, 2 – логарифмическая фаза, 3 – фаза замедленного роста, 4 – фаза стационарного состояния (по С. И. Лебедеву).
Для измерения скорости роста используются следующие показатели.
Удельная скорость роста r– прирост массы растения или отдельного его органа в единицу времени, который рассчитывается по формуле Блекмана:
W1
lgx2,3026
W0
r=
t
где W0– начальный, аW1– конечный вес сухого вещества,t– промежуток времени между определениями.
Относительный или процентный рост R – прирост, вычисленный в процентах от исходного веса растения или органа: (W1–W0)
R=x100
W0
Абсолютная скорость роста К – величина прироста за промежуток времени, отнесенная к единице времени:
W2–W1
K=
t2–t1
studfiles.net
Регенерация у растений - это... Что такое Регенерация у растений?
Р. в общем смысле слова называют новообразование органов (а также тканей и даже только одной кутикулы) на отрезанных или пораненных частях растения. Наиболее важны те явления регенерации, которые ведут к увеличению количества особей, к их "вегетативному размножению". У высших растений дело сводится при этом к новообразованию корней и к новообразованию почек или просто к дальнейшему развитию уже имеющихся почек. Так происходит вегетативное размножение черенками у ив, тополей, точно так же — размножение бегоний обрезками листьев, размножение хрена отрезками корня. Далеко не всегда регенерация сводится к новообразованию органов, весьма часто дело сводится к развитию покоящихся, "спящих" зачатков. Новообразования возможны лишь на эмбриональной, зародышевой ткани, поэтому, если поранены не молодые, а уже закончившие свой рост части растения, то прежде всего часть клеток возвращается к состоянию эмбриональной ткани; такие клетки начинают усиленно делиться и, вернувшись таким путем к недифференцированному, зародышевому состоянию, дают начало новым органам. Г. Симон, изучая Р. верхушки корня, предлагает различать здесь прямую и частичную Р. При прямой Р. новая корневая верхушка образуется непосредственно из всех тканей центрального цилиндра, тогда как при частичной Р. в образовании новой верхушки принимает участие лишь часть всей поверхности раны. Новообразование идет здесь из кольцевого вала, который образуется путем разрастания перикамбия, равно как из наружных слоев центрального цилиндра. В более узком смысле слова регенерацией называют лишь возобновление отделенной части какого-либо органа, тогда как, если восполнение недостающих частей происходит путем новообразования целиком новых органов или путем развития покоящихся зачатков, то такие явления относят уже к области репродукции (см. Пфеффер).
В. Арц.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.
- Регенерация
- Регенсбург
Смотреть что такое "Регенерация у растений" в других словарях:
РЕГЕНЕРАЦИЯ — восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей … Энциклопедия Кольера
РЕГЕНЕРАЦИЯ — РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… … Большая медицинская энциклопедия
Регенерация — * рэгенерацыя * regeneration 1. Образование отдельных тканей, органов или целых организмов в результате морфогенеза (см.) в культуре изолированных тканей () или клеток (). 2. Восстановление утраченных или поврежденных органов и тканей либо целого … Генетика. Энциклопедический словарь
Регенерация — (от позднелат. regeneratio возрождение, возобновление) в биологии, восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. Р. наблюдается в естественных условиях, а… … Большая советская энциклопедия
регенерация — способность растений воспроизводить из отдельных частей новые растения … Сельскохозяйственный словарь
Питание растений* — Характеристическая черта П. растений состоит в том, что в то время, как для П. животных нужны готовые белки, жиры и углеводы, растение само приготовляет их для себя. Пищею для растения служат простейшие минеральные соединения: углекислота, вода и … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Питание растений — Характеристическая черта П. растений состоит в том, что в то время, как для П. животных нужны готовые белки, жиры и углеводы, растение само приготовляет их для себя. Пищею для растения служат простейшие минеральные соединения: углекислота, вода и … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Размножение растений — Описание способов Р. растений составляет главное содержание специальной морфологии. Отсылая поэтому к специальным статьям, посвященным отдельным группам растительного царства (см. Бактерии, Водоросли, Грибы, Мхи, Папоротники, Голосемянные и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Кренке, Николай Петрович — В Википедии есть статьи о других людях с такой фамилией, см. Кренке. Николай Петрович Кренке Дата рождения: 21 июля (2 августа) 1892(1892 08 02) Место рождения: Тифлис Дата смерти: 25 … Википедия
Кренке, Николай — Кренке Николай Петрович (1892 1939) советский ботаник. Работы по экспериментальной морфологии (трансплантация и регенерация у растений, растительные химеры), возрастной изменчивости растений. Родился 21 июля (2 августа) 1892 года, Тбилиси. Умер… … Википедия
dic.academic.ru
10.6. Влияние факторов внешней среды на рост растений
На рост растений оказывают влияние продукты жизнедеятельности других растений (явление аллелопатии), микроорганизмов (антибиотики, регуляторы роста) и факторы внешней среды.
Свет. Растения воспринимают свет не только как источник энергии, но и в качестве сигнала, характеризующего условия среды. В клетках имеются рецепторные молекулы фитохрома, опосредующие действие света на морфогенез. Фитохром состоит из двух белковых субъединиц и хромофора – незамкнутого тетрапиррола, относящегося к группе фикобилинов. Фитохром синтезируется в форме Ф660, поглощающей красный свет. Под действием красного света он переходит в активную форму Ф730, поглощающей дальний красный свет. Под действием дальнего красного света и в темноте Ф730превращается в Ф660. Фитохром изменяет проницаемость клеточных мембран, регулирует движение хлоропластов и влияет на синтез ферментов и стимуляторов роста гиббереллинов и цитокининов.
Температура. Различают три основные температурные точки: минимальная температура, при которой начинается рост, оптимальная – наиболее благоприятная для роста и максимальная, при которой рост прекращается. В зависимости от приспособленности к температурному режиму различают теплолюбивые (минимальная температура выше 10оС, оптимальная 30-40оС) и холодостойкие (минимальная температура 0-5оС, оптимальная 25-30оС).
Газовый состав. Необходим кислород, так как дыхание поставляет энергию для ростовых процессов, и углекислый газ, который в ходе фотосинтеза восстанавливается до органических веществ. Избыток углекислого газа на короткое время повышает растяжимость клеточных стенок и стимулирует рост клеток (эффект «кислого роста»).
Водный режим. Недостаточное снабжение растений водой задерживает рост побегов и кратковременно стимулирует с последующим торможением рост корней.
Минеральное питание. Для нормального роста необходимо достаточное снабжение всеми питательными элементами. Избыток азота стимулирует рост вегетативной массы, но замедляет процессы дифференцировки и формирование цветков.
10.7. Фитогормоны
Они образуются в процессе обмена веществ растений и оказывают в очень малых количествах регуляторное и координирующее влияние на физиологические процессы в разных органах растения. Различают стимуляторы и ингибиторы роста. Стимуляторы роста, применяемые в сверхоптимальных дозах, способны подавлять ростовые процессы.
10.7.1. Ауксины
Главным представителем ауксинов в растениях является индолил-3-уксусная кислота (ИУК). Она синтезируется из триптофана в верхушке побега. Разрушается ИУК ферментом ИУК-оксидазой. Ауксин стимулирует деление и растяжение клеток, необходим для образования проводящих пучков и корней. ИУК активирует протонную помпу в плазмалемме, что приводит к закислению и разрыхлению клеточной стенки и тем самым способствует росту клеток растяжением. Комплекс ИУК с рецептором транспортируется в ядро и активирует синтез РНК, что в свою очередь приводит к усилению синтеза белков.
10.7.2. Цитокинины
Цитокинины образуются путем конденсации аденозин-5-монофосфата и изопентенилпирофосфата в апикальной меристеме корня. Много цитокининов в развивающихся семенах и плодах. Цитокинины индуцируют в присутствии ауксина деление клеток, активируют дифференциацию пластид, повышают активность АТФ-синтетазы, способствуют выходу почек, семян и клубней из состояния покоя, предотвращают распад хлорофилла и деградацию клеточных органелл. Ткани, обогащенные цитокининами, обладают высокой аттрагирующей способностью. Комплекс цитокининов с белковым рецептором повышает активность РНКполимеразы и экспрессию генов. При этом увеличивается число полисом и активируется синтез белка.
studfiles.net
Регенерация у растений - Справочник химика 21
У растений, способных размножаться листовыми черенками, мажно получить полиплоидные формы путем регенерации растений из листьев, обработанных колхицином. [c.72]
Регенерация растений п у№го ( в пробирке ) [c.101]
Регенерация растений из трансформированных клеток [c.59]
Регенерация растений из протопластов [c.384]
Химический состав каллусной ткани и ткани органа, из которого она получена, как правило, различаются (табл. 3). Каллусные ткани, выращиваемые поверхностным способом, часто применяют для сохранения в растущем состоянии коллекций разных щтаммов, линий, мутантов, из них получают суспензии клеток, культивируемых в жидкой питательной среде, для регенерации растений. [c.21]
Регенерация растений осуществляется либо через эмбриогенез, либо через развитие каллуса с дальнейшей и1 дукцией морфо- [c.38]
В настоящей книге нашли отражение разные стороны исследований в области клеточной инженерии растительных и животных клеток. Одна из задач клеточной инженерии, как это следует из представленного в книге экспериментального материала, состоит в создании клеточных систем с новыми свойствами на основе клеточных взаимодействий. Были приведены примеры экспериментальных решений этих задач, известных в мировой литературе, а также полученных на кафедре клеточной физиологии и иммунологии МГУ им. М. В. Ломоносова. Так, в проводимых на кафедре работах по клеточной инженерии с растительными объектами и микроорганизмами выявлено большое число видов, способных формировать искусственные ассоциации разного типа. Во многих случаях продемонстрировано улучшение ростовых и биосинтетических параметров культивируемых клеток (тканей) в присутствии микроорганизмов и способность их к регенерации растений. Растения при этом способны включать клетки микроорганизмов в свои ткани и иногда — в клетки, получая выгоду от присутствия симбионта при дефиците источников питания. Все это представляет интерес с точки зрения перспективы использования метода смешанного культивирования на основе растительных клеток в биотехнологии с целью, во-первых, поиска новых субстратов для промышленного получения биомассы культивируемых растительных клеток и удешевления производства на их основе экономически важных продуктов и, во-вторых, получения устойчивых ассоциаций растений-регенерантов с азотфиксирующими организмами, обеспечивающими рост растений при дефиците минерального азота. [c.121]
Онкогены Т-ДНК и регенерация растений из опухолей, [c.89]
Селекция трансформированных тканей и регенерация растений [c.95]
Случайная регенерация растений с нормаль ной морфологией из нетрансформированных корней, которые обнаруживаются в опухоли косматого корня [c.104]
Трансформацию небольших колоний суспензионной культуры клеток моркови, высеваемых с низкой плотностью на фидерные чашки , путем совместного культивирования с агробактериями с последующей регенерацией растений моркови через соматический эмбриогенез. [c.143]
Регенерация растений табака из каллуса [c.159]
Селекция трансформированных тканей и регенерация растений............ [c.403]
Хотя причины и механизмы дифференциации морфогенеза и регенерации растений в культуре клеток и тканей еще далеко не изучены, установлена ведущая роль в индукции морфогенеза фитогормонов в сочетании с физическими факторами, такими, как температура, свет, аэрация. Таким образом, созданы ряд эмпирических приемов управления морфогенезом в культуре клеток и,тканей и возможность их широкого практического применения. При этом соотношение и концентрация цитокининов и ауксинов, а также их искусственных аналогов в таких культурах играют определяющую роль для дальнейшего роста каллусной ткани или морфогенеза и регенерации растения. [c.408]
Метод основан на напылении ДНК-вектора на мельчайшие частички вольфрама, которыми затем бомбардируют клетки. Бомбардировка осуществляется с помощью биолистической пушки за счет перепада давления. Часть клеток гибнет, а выжившие клетки трансформируются, затем их культивируют и используют для регенерации растений. . [c.149]
Полученные тем или иным путем протопласты либо используют для регенерации растения (см. тотипотентность), либо их можно подвергнуть слиянию с образованием гетерокариотических гибридов. [c.516]
Успех в применении культуры клеток и тканей в первую очередь зависит от оптимизации физиологических процессов, обеспечивающих нормальное деление клеток, их дифференцировку и регенерацию из них взрослых растений. Наиболее сложной является регенерация растений из отдельных клеток. В первую очередь это касается злаковых растений. Поэтому важнейшее значение имеет выяснение механизма морфогенеза in vitro, регенерации и лежащих в их основе процессов. [c.78]
Существует несколько путей, по которым может идти развитие клетки после ее дедифференцировки. Первый путь — это вторичная регенерация целого растения, возможна дифференцировка на уровне клеток, тканей, органов. Второй путь — это утрата клеткой способности к вторичной дифференцировке и регенерации растения, стойкая дедифференцировка, приобретение способности расти на среде без гормонов, т. е. превращение в опухолевую. Такими свойствами часто характеризуются клетки старых пересадочных культур. Третий путь — это нормальный цикл развития каллусной оетки, заканчивающийся ее старением и отмиранием. В этом случае клетка претерпевает вторичную дифференцировку и прекращает делиться (стационарная фаза роста). Однако такая дифференцировка не ведет к морфогенезу, а закрепляет за ней свойства старой каллусной клетки. [c.96]
Клеточную основу морфогенеза составляет цитодифференцировка. Регенерация растения начинается со вторичной дифференцировки клеток. При этом дедифференцированные клетки вновь приобретают структуру и функции специализированных. [c.97]
Вторичная дифференцировка каллусных клеток не всегда заканчивается морфогенезом и регенерацией растения. Иногда она приводит только к образованию тканей (гистодифференцировка). Таким путем каллусная клетка может превращаться во флоэмные или ксилемные элементы. Другим примером вторичной дифференцировки может служить превращение дедифференцированной активно пролиферирующей клетки в старую неделящуюся каллусную клетку (стационарная фаза роста). [c.98]
Однако, несмотря на некоторые недостатки, данный метод имеет положительные стороны и преимущества. Во-первых, он является эффективным и экономически выгодным, так как в процессе размножения из каждой индивидуальной каллусной клетки при благоприятных условиях культивирования может сформироваться адвентивная почка, дающая начало новому растению. Во-вторых, в ряде случаев он является единственно возможным способом размножения растений в культуре тканей. В-третьих, представляет большой интерес для селекционеров, так как растения, полученные данным методом, различаются генетически и морфофизиологически. Это дает возможность селекционерам проводить отбор растений по хозяйственно-важным признакам и оценивать их поведение в полевых условиях. Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости. К таким растениям можно отнести амариллис, томаты, спаржу, некоторые древесные породы и другие культуры. Через каллусную культуру были размножены сахарная свекла, некоторые представители рода Brassi a, кукуруза, рис, пшеница и другие злаковые, подсолнечник, лен, разработаны условия, способствующие регенерации растений из каллуса огурца, картофеля, томатов. [c.115]
Экспериментально было показано, что клетки после хранения в жидком азоте не теряют способности к делению, регенерации растений, не уменьшается продуктивность синтеза вторичных метаболитов (клетки продуценты) и т. д. Так, Институтом физиологии растений РАН совместно с НПО по картофелеводству разработаны методы криосохранения меристем четырех сортов картофеля и показана возможность из 20 % хранящихся меристем регенерировать целые растения, которые при высадке в поле не отличались по всем признакам, включая темпы роста и продуктивность, от обычных пробирочных растений (С. Манжулин и др., 1982). Более подробно о технике криосохранения можно узнать из обзорных работ A. . Попова. [c.138]
В связи с разбираемыми вопросами остановимся на теории циклического старения и омоложения растений , принадлежащей советскому ботанику Н. П. Кренке. Выдающийся специалист в области анатомии и морфологии, Кренке широко известен своими работами по вопросам регенерации растений, а также в области хирургии растений — отрасли ботаники, которая фактически создана этим ученым. Он много работал над выяснением закономерностей изменений морфологических признаков растений, связанных с возрастом как отдельных органов, так и всего организма. В своей теории Кренке исходил от правильной идеи, что онтогенез растения и его органов представляет собой совокупность закономерных, взаимосвязанных и взаимообусловленных изменений. Кренке писал, что развитие растительного организма, начиная с момента оплодотворения яйцеклетки, представляет собой систему непрерывно изменяющегося состояния целостности . Он рассматривал онтогенез как процесс постепенного исчерпания потенциала жизнеспособности, свойственного организму и заложенного в его наследственности. В этом, согласно теории Кренке, якобы и состоит сущность процесса развития организма, которое он представлял себе как чередование отрезков старения и обратного старению процесса — омоложения организма. [c.593]
Регенерация клеток, клеточных культур и растений из протопластов. Образование клеточной стенки у протопластов в культуре происходит сразу после удаления раствора фермента. Вновь синтезируемую клеточную стенку можно наблюдать в флуоресцентный микроскоп, используя как реагент калкофлер белый (1%-ный раствор). Регенерация клеточных стенок — явление достаточно распространенное. Гораздо труднее добиться деления образующихся клеток и еще труднее получить целое растение. Однако для ряда видов имеются устойчивые пинии клеток и целые растения (см. Ю. Ю. Глеба, К. М. Сытник, М984). Возможность регенерации растений из протопластов мо ет свидетельствовать о тотипотентности протопластов, как это было показано для клеток растений (F. Steward, 1970). I [c.38]
Еще один представитель пасленовых Petunia обладает достаточно высоким регенерационным потенциалом и широко используется в экспериментальных исследованиях. Интересно, что состав среды, на которой происходит образование проростков и корней, сходен и у табака, и у петуньи. Формирование каллуса и регенерация растений получена из протопластов рапа Brassi a napus. [c.41]
Известна единственная, оказавшаяся удачной, попытка регенерации растений табака из ассоциации каллусной культуры с Rhizobium (Г. Н. Юркова, Б. А. Левенко, 1978). К сожалению, отсутствует информация как о дальнейшей судьбе этих растений, так и об инфицировании их клубеньковыми бактериями в процессе регенерации из каллуса. [c.64]
Одна из важнейших задач при разработке методики генетической трансформации любых видов растений заключается в идентификации подходящих эксплантатов, из которых может произойти эффективная регенерация побегов. Обычный подход—это определить эксплантат и комбинации сред, которые стимулируют регенерацию растения путем органо- или эмбриогенеза. Невозможно предсказать условия, приводящие к регенерации побегов у каждого вида, поэтому изложенная ниже методика дает только общие принципы поиска. Как правило, если литература по культивированию какого-либо отдельнога вида отсутствует, можно попытаться осуществить регенерацию [c.130]
Методы регенерации растений из меристем уже разработаны для 60 видов и широко используются в практике для массового размножения и оздоровления посадочного материала ряда декоративных растений, а также для оздоровления картофеля от вирусных болезней. Успешно разрабатываются специальные методы создания банка клеток для сохранения генофонда растений путем консервирования в условиях глубокого холода (—196.°С) их меристематических тканей, находящихся в точках и зонах роста, и эмбриоидов. Для этого применяют программное замораживание, т. е. постепенное замораживание с точно регулируемой скоростью снижения температуры (порядка. ] °С/мин) с использованием специальных веществ — криопротекторов (глицерин, сахара, этиленгликоль и их производные, поливинилпирролидои и диметилсульфоксид), ослабляющих повреждения клеток. Криопротекторы добавляют к среде, в которой находятся клетки перед замораживанием. Банк клеток растений (генофонд)—один из способов сохранения разнообразия растительного мира. [c.410]
chem21.info