Процесс транспирации у растений. Влияние внешних и внутренних факторов на транспирацию и транспирационный коэффициент

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Изучение процессов и методов транспирации. Процесс транспирации у растений


Влияние условий на процесс транспирации

Прежде всего испарение зависит от ненасыщенности атмосферы парами воды, или дефицита влажности. Это в целом справедливо и для транспирации. Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, бла­годаря чему влияние внешних условий сказывается в смягченном ви­де и транспирация начинает возрастать медленнее. Несмотря на это, общая зако­номерность зависимости транспирации от насыщенности водой ат­мосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации.

Следующим фактором среды, оказывающим влияние на процесс транспирации, является температура. С повышением тем­пературы значительно увеличивается количество паров воды, кото­рое насыщает данное пространство. Возрастание пространства приводит к повышению дефицита влажности. В связи с этим с повышением температуры транспирация увеличи­вается. Сильное влияние на транспирацию оказывает свет. Это связано с несколькими причинами: 1. На свету повышается температура листа и это вызывает усиление процесса транспирации. На транспирацию влияют поглощенные лучи, которые и вызывают повышение температуры. В связи с этим действие света на транспирацию про­является тем сильнее, чем выше содержание хлорофилла. У зеленых растений даже рассеянный свет повышает транспирацию на 30 - 40%.

2. Под влиянием света увеличивается проницаемость цитоплаз­мы для воды, что также, естественно, увеличивает скорость ее ис­парения. 3. Под влиянием света устьица раскрываются. Все это вместе приводит к тому, что на свету транспирация идет во много раз интенсивнее, чем в темноте.

На интенсивность процесса транспирации оказывает влияние влажность почвы. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении. Уменьшение содержания воды в растительном организме автомати­чески снижает процесс транспирации, в силу устьичной и внеустьичной регулировки. В этой связи имеет значение и величина осмо­тического потенциала почвенного раствора. Чем она выше, тем ни­же при прочих равных условиях интенсивность транспирации.

Ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Ветер оказывает влияние и на транспирацию, правда по сравнению с испарением в несколько ослабленной форме. Поскольку обычно ветер не проникает внутрь листа, то под его влиянием воз­растает в основном третий этап транспирации, т. е. перенос насы­щенного водой воздуха от поверхности листа в более дальние слои атмосферы. В силу указанных причин при ветре усиливается прежде всего кутикулярпая транспирация. Естественно поэтому, что более сильное действие ветер оказывает на транспирацию тех растений, где кутикула развита слабее. Сильнее, чем обычно, ветер сказывает­ся на транспирации при суховеях. При суховеях ветер сгибает и раз­гибает листья и горячий воздух врывается в межклетники. Этим вы­зывается усиление траиспирации уже на первом ее этапе.

Транспирация зависит как от внешних, так и от внутренних фак­торов, прежде всего от содержания воды в листьях. Всякое уменьше­ние содержания воды уменьшает транспирацию. Транспирация из­меняется в зависимости от концентрации и осмотического давления клеточного сока. Молекулы воды удерживаются осмотическими сила­ми. Чем концентрированнее клеточный сок, тем слабее транспирация. Интенсивность транспирации зависит от эластичности (способ­ности к обратимому растяжению) клеточных стенок. Если клеточные стенки малоэластичны, то уже небольшая потеря воды приводит к сокращению объема клетки до минимума. В этот период клеточные оболочки не растянуты и не оказывают сопротивления, сосущая си­ла резко возрастает и становится равной всей величине осмотическо­го давления. Возрастание сосущей силы клетки приводит к умень­шению транспирации.

Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги.

Чем больше развита листовая поверхность, тем больше общая потеря воды. Однако в процессе естественного отбора у растений одновремен­но с большей листовой поверхностью выработалась компенсирующая способность к меньшему испарению с единицы поверхности листа (меньшая интенсивность транспирации). Вместе с тем с увеличением этого

отношения транспирация

С увеличением возраста интенсивность транспирации, как правило, падает. Смена дня и ночи, смена условий в течение суток наложила от­печаток и па процесс транспирации. Как устьичные движения, так и транспирация имеют свой определенный суточный ход. Все растения разделяются в отношении суточного хода устьичных движений на три группы: 1) растения, у которых ночью устьица всегда закрыты. Утром устьица открывают­ся, и их дальнейшее поведение в течение дня зависит от условий среды. Мало воды — они закрываются. Достаточно воды — они откры­ваются. К этой группе относятся в первую очередь хлебные злаки; 2) растения, у которых устьица утром открываются, а днем в зави­симости от условий открыты или закрыты. Ночное их поведение за­висит от дневного. Если днем устьица были закрыты, то ночью они открываются. Если днем они были открыты, то ночью они закрыва­ются. К этой группе относятся растения с тонкими листьями — лю­церна, горох, клевер; 3) растения, у которых ночью устьица всегда открыты (суккуленты), а днем, как и у всех остальных групп рас­тений, открыты или закрыты в зависимости от условий.

Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменени­ем внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспира­ция составляет всего 3—5% от дневной.

Дневной ход транспирации обычно следует за изменением напря­женности основных метеорологических факторов (освещенности, температуры, влажности воздуха). Максимум транспирации будет приходиться на 12—13 ч. Это подчеркивает сравнительно малую за­висимость транспирации от физиологического состояния растения. Ведущим в этом комплексе внешних воздействий будет напряженность солнечной инсоляции. Интересно, что растения с разным рас­положением листьев несколько различаются по суточному ходу транспирационного процесса. На листья, повернутые ребром к гори­зонту, солнечные лучи начинают падать раньше. В связи с этим подъем транспирации у таких растений в утренние часы также на­чинается несколько раньше.

В случае недостатка влаги кривая суточного хода транспирационного процесса из одновершинной превращается в двухвершинную. В полуденные часы транспирация сокращается, это позволяет расте­нию восполнить недостаток воды, и тогда к вечеру транспирация сно­ва возрастает.

При частом измерении транспирации можно заметить, что это пульсирующий процесс, т. е. ему свойственно ритмичное увеличение и уменьшение интенсивности. По-видимому, это связано главным об­разом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, что, в свою оче­редь, сокращает транспирацию. Как следствие, содержание воды растет и транспирация также возрастает, и так непрерывно.

Напряженность транспирации, а также ее связь с другими про­цессами, в частности с фотосинтезом, принято выражать в следую­щих единицах.

Интенсивность транспирации — это количество воды, испаряемой растением (в мг) за единицу времени (ч) единицей поверхности листа (в дм2). Транспирационный коэффициент — количество воды (в г), испаряемой растением при накоплении им 1 г сухого вещества (транспирационные коэффициенты обычно колеблются от 300 до 1500). Продуктивность транспирации — величина, обратная транспирационному коэффициенту,— это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площа­ди за один и тот же промежуток времени. Экономность транспира­ции — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении.

studfiles.net

Изучение процессов и методов транспирации

Начало экспериментальных исследований транспирации растений относится к первой четверти XVIII в., однако научный подход к объяснению этого явления наметился лишь в середине XIX в. Обнаружение определяющей зависимости транспирации от устьиц привлекло особое внимание к изучению транспирационного аппарата растений.

Первое исследование движения устьиц провел Г. Моль, который показал, что величина устьичных отверстий определяется тургором замыкающих клеток и зависит от света, тепла и влажности воздуха. Он же обратил внимание на присутствие в замыкающих клетках хлоропластов, синтезирующих осмотические вещества, и таким образом влияющих на работу устьиц и на транспирацию. В этом же направлении вел исследования Унгер, опубликовавший в 1862 г. большую работу о транспирации. С. Швенденер высказал мысль, что устьица обеспечивают не только испарение, но и усвоение СО2. Представление об активной роли замыкающих, а не прилегающих к ним эпидермальных клеток, как это считал Дейтгеб, окончательно утвердил сын Чарльза Дарвина Ф. Дарвин. Действие различных лучей спектра на работу устьиц первым исследовал Коль. Он установил, что красные и синие лучи, т. е. лучи, поглощенные хлорофиллом, вызывают открывание устьиц.

Кроме устьичной транспирации в 1878 г. была обнаружена еще и кутикулярная. Определения количеств испаряемой воды показали, что эта величина различна в зависимости от природы самого растения и условий его произрастания.

Многое для изучения природы транспирации в 50-е годы сделал Ю. Сакс. В противоположность Шлейдену Сакс подошел к изучению испарения у растений не как к физическому, а как к физиологическому процессу, имеющему важное биологическое значение для жизни растений. Так, он обнаружил, что испарение с поверхности листа происходит менее интенсивно, чем с такой же поверхности воды. Сакс в еще большей степени, чем его предшественники, связал действие испарения с поглощающей деятельностью корневой системы. Он показал, что транспирация может измениться в зависимости от температуры и характера почв, в которых находятся корни растений.

Опыты П. Я. Крутицкого, Бюргерштейна и Веска еще более расширили знания об испарении срезанных ветвей и листьев, находящихся на растении, о зависимости испарения от состава и концентрации растворов, поглощаемых корнями растений. Проводилось много определений потребления воды культурными растениями. Из внешних факторов изучали в основном влияние на транспирацию влажности воздуха и ветра. Утверждения об усилении испарения под действием света без учета теплового излучения или влияния на устьица, как отметил Тимирязев, оказались несостоятельными. Все эти исследования велись преимущественно в лабораторных условиях и не касались проблемы засухоустойчивости растений, которая в силу благоприятных климатических условий не была актуальной для Западной Европы.

Необходимость всестороннего изучения данной проблемы с особой остротой встала перед русскими физиологами растений в связи с сильной засухой 1891 г., широко охватившей юг России и приведшей к гибели от голода многих тысяч людей. Почвоведы В. В. Докучаев, П. А. Костычев и А. А. Измаильский предложили ряд приемов для лучшего сохранения влаги в почве, а К. А. Тимирязев первый из ботаников обратил внимание на биологические основы засухоустойчивости растений. Он показал, что лишь небольшая часть воды, поступающей в растение, используется им для синтеза органических веществ («организационная вода»), а большая ее часть («расхожая вода») испаряется. Вслед за французским агрохимиком Т. Шлезингом Тимирязев окончательно, доказал, что интенсивность испарения не влияет на количество питательных растворов и минеральных веществ, поступающих в растения из почвы. Рассматривая взаимодействие между транспирацией и фотосинтезом, Тимирязев впервые высказал суждение об антагонистическом характере этих процессов: полезное для растений снижение, расходования воды путем замыкания устьиц влечет за собой прекращение фотосинтеза, и, наоборот, при фотосинтезе усиливается испарение необходимой растению воды. Более широко развернулись исследования водного режима растений в XX в.

Методы транспирации

Чаще всего применяют или метод быстрого взвешивания, или метод инфильтрации (открытость устьиц). Первый метод связан с сильным нарушением, но все же он дает некоторые сравнительные результаты. Расчет транспирации обычно производится в миллиграммах испаряемой воды (потери массы срезанного побега) за какую-то единицу времени (час, минуту) на единицу поверхности или на сырую/сухую массу.

Расчет на сырую массу сильно меняется в течение дня. И, кроме того, надо учитывать и анатомические особенности, прежде всего выраженность в структуре листа механических тканей. Расчет транспирации на сухую массу дает так называемый транспирационный коэффициент, который указывает, сколько растение затратило воды (в граммах) на производство единицы массы сухого органического вещества (фитомассы).

Общей закономерностью является то, что при ухудшении условий транспирационный коэффициент увеличивается, т. е. растение должно «прогнать» через себя больше воды на производство фитомассы. Если мы хотим сравнить транспирацию нескольких видов сообщества, то удобно один из них выбрать за единицу (эталон) и тогда можно получить "сравнительную транспирацию".

ТранспирацияРис.1. Транспирация

Новый метод измерения транспирации в древесных стволах в почвенно-климатических условиях хорезмской области основан на датчики теплового рассеивания. Датчики непосредственно измеряют скорость ксилемного сока, которая может быть соотнесена к транспирации дерева рассчитанной на единицу площади активного ксилема. Принцип данного метода был развит доктором Андре Граниером во Франции и был широко принят сообществом исследователей, начиная с 1996.

Величину транспирации растений также можно определить весовым или объемным методом. Массу воды, которую растение испаряет в единицу времени, определяют путем систематического взвешивания вегетационного сосуда вместе с выращиваемыми растениями. При объемном методе пользуются прибором – потометром. Для измерения фактической транспирации в естественных условиях используют почвенные испарители, или лизиметры.

Определение интенсивности транспирации при помощи торсионных весов по методу А. Л. Иванова. При определении интенсивности транспирации отрезанных листьев производят учет изменения их массы за короткие промежутки времени, обычно за 1-2 мин. Это дает возможность наблюдать транспирацию при том состоянии насыщенности водой листа, в каком он находился на растении. В основе метода лежит учет количества воды, потерянной листом за короткий промежуток времени (1-15 мин в зависимости от условий опыта) в результате транспирации. При этом изменение массы листа следует учитывать до начала его завядания.

Определение интенсивности транспирации объёмным методом (в модификации В. П. Моисеева). Основным достоинством данного метода является его точность, наглядность, возможность изучения динамики транспирации в различных условиях среды. Для выполнения работы не требуется сложной измерительной техники. Сущность метода состоит в том, что лист при помощи эластичной трубки соединяется с микропипеткой (цена деления 0,001- 0,002 мл), предварительно заполненной водой. Объем поглощенной листом воды из пипетки будет соответствовать величине транспирации.

Единицы измерения водного режима

Интенсивность транспирации – это количество воды, испаряемой растением (в г) за единицу времени (ч) единицей поверхности листа (в дм2). Эта величина колеблется в пределах 0,1 5 – 1,47 г/дм2/ч. Транспирационный коэффициент — количество воды (в г), испаряемой растением при накоплении им 1 г сухого вещества. Транспирационные коэффициенты заметно колеблются у одного и того же растения в зависимости от условий среды. Все же в некоторой степени они могут служить показателем требований растений к влаге. Продуктивность транспирации — величина, обратная транспирационному коэффициенту, — это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени. Экономность транспирации — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении. Тонколистные растения расходуют за час 39-119%, тогда как растения с мясистыми листьями — 8-20% от общего количества содержащейся в них воды.



biofile.ru

Внеустьичная регуляция транспирации

Внеустьичная регуляция транспирации представлена также несколькими механизмами. Первый связан с обезвоживанием клеточных стенок, с поверхности которых идет испарение. Этот механизм называют механизмом подсушивания. Когда поверхность верхних клеток мезофилла (хлоренхима) начинает подсыхать, то затрудняется движение воды, и таким образом, затрудняется и испарение. В клеточной стенке между микро- и макрофибриллами целлюлозы находятся капиллярные промежутки. Когда много воды и мениски в капиллярах выпуклые, силы поверхностного натяжения малы, то испарение идет быстро. Когда воды мало в клеточной стенке, мениски вогнуты, испарение идет медленнее.

Второй механизм связан со свойством протоплазмы изменять свою водоудерживающую способность.

На его существование указывает то обстоятельство, что при одной и той же степени открытия устьиц транспирация может довольно сильно изменяться. Так, например, показано, что коротковолновые лучи (сине- и ультрафиолетовые) немедленно увеличивают транспирацию. Это происходит за счет изменения структуры белковых глобул протоплазмы под действием этих лучей. При частичной денатурации способность белков удерживать воду ослабляется, и кутикулярная транспирация возрастает.

Во внеустьичной регуляции транспирации, возможно, участвуют эктодермы. Удлиняясь или укорачиваясь, они усиливают или уменьшают контакт клеток эпидермы с окружающей средой и тем самым могут влиять на скорость испарения воды.

Толщина кутикулы на поверхности листьев влияет на интенсивность транспирации. Она может изменяться под влиянием внешних факторов. Увеличение толщины кутикулы уменьшает интенсивность транспирации с поверхности листьев.

У некоторых растений существуют свои специфическиемеханизмы внеустьичной регуляции транспирации. Так, например, у некоторых сортов сахарного тростника, когда транспирация превышает поступление воды, происходит свертывание листовых пластинок вдоль средней жилки в трубку и наблюдается снижение транспирации на 10–20 %.

При нехватке воды растения могут терять листья. Опять же, у сахарного тростника может остаться на побеге в условиях засухи один лист. При возобновлении дождей или полива количества листьев быстро увеличивается.

Известно, что при наступлении зимней засухи сбрасывают все листья деревья в умеренной зоне. Однако листопадные формы деревьев встречаются в тропиках и пустынях.

Таким образом, транспирация – саморегулируемый процесс, чем она и отличается от испарения – процесса физического.

Существует связь между устьичной и внеустьичной транспирацией. Как при максимально открытых устьицах наиболее эффективным является внеустьичный регулятор, так при закрытых устьицах уменьшение кутикулярной транспирации так же происходит за счет внеустьичной транспирации.

Роль регуляторных механизмов у растений разных видов неодинакова. Например, более низкая интенсивность транспирации, характерная для оливковых деревьев, связана с устьичным механизмом.

Факторы среды оказывают влияние непосредственно на интенсивность транспирации.

Главным фактором, регулирующим транспирацию, является свет. С интенсивностью солнечной радиации хорошо коррелируют температура и влажность среды. Во время максимальной освещенности наблюдается и максимальная интенсивность транспирации. Ночью транспирация в 10 раз меньше, чем днем. Солнечная радиация служит источником энергии, затрачиваемой на транспирацию.

Лист, поглощая свет, использует на фотосинтез 1–2 %, максимум   5 %, а остальная энергия тратиться на испарение воды. Это прямое действие света на транспирацию. Однако свет играет и иную роль, как мы уже отмечали, влияя на открытие и закрытие устьиц.

Как физический процесс (испарение) транспирация зависит от дефицита насыщения воздуха водяными парами, температуры, ветра, величины испаряющей поверхности и др.

Потеря воды в условиях, когда солнечная радиация отсутствует, как раз и обусловлена дефицитом насыщения воздуха водяными парами.

Интенсивность транспирации в какой-то мере зависит от наличия ветра. Сначала появление ветра приводит к увеличению транспирации. Однако прямой зависимости между скоростью ветра и величиной транспирации не наблюдается. Сильный ветер не намного увеличивает интенсивность транспирации по сравнению со слабым. Это связано с тем, что испарение происходит из межклетников, защищаемых от ветра.

Интенсивность транспирации зависит от условий минерального питания. У растений при недостатке азота, фосфора и калия интенсивность транспирации максимальна. Почти такая же интенсивность у растений, получивших калий и фосфор, но при дефиците азота.

Резко уменьшается транспирация при полных сбалансированных минеральных удобрениях. Чем лучше питание, тем ниже транспирация. Величина интенсивности транспирации может служить для диагностики обеспеченности растений минеральными элементами: увеличение транспирации говорит о нарушении минерального питания.

В соответствии с изменением солнечной радиации, температуры, влажности воздуха дневной ход интенсивности транспирации, как правило, выглядит следующим образом: слабая в утренние часы транспирация быстро увеличивается по мере восхода солнца, увеличению температуры и уменьшению влажности воздуха, достигает максимума около полдня, а затем быстро падает к заходу солнца.

Однако такой дневной ход наблюдается не всегда. В некоторых случаях, несмотря на интенсивную освещенность и высокую температуру, в полдень транспирация уменьшается, и отмечаются двухвершинные кривые. Нужно отметить, что кривые дневного хода транспирации очень разнообразны. Эту разнообразность обуславливают три фактора: внешние условия данного дня, условия предыдущих дней и наследственность. Эти факторы взаимодействуют один с другим и определяют  реальную интенсивность транспирации.

Сами растения выработали в процессе эволюции различные приспособления для уменьшения транспирации: восковой налет на поверхности листьев и плодов, погружение устьиц в мезофилл, развитие волосков (опушенность), редукция листовой поверхности.

Однако сильно уменьшать транспирацию нельзя, так как она определяет подъем воды по растению, поддерживает постоянной температуру растения и т. д.

Существует определенная связь между транспирацией и газообменом листьев, зависящим от состояния устьиц. Растение должно поглощать из атмосферы большое количество СО2 и в тоже время ограничить расход воды.

Из этого противоречия природа нашла выход, создав осциллирующие механизмы, о которых мы уже упоминали.

Таким образом, водный обмен растений, определяющий поступлением и расходованием воды, связан с различными физиологическими процессами, особенно с фотосинтезом (рис. 4.9).

Взаимосвязь фотосинтеза и водного обмена растений можно представить схемой:

Рис. 4.9. Схема взаимосвязи фотосинтеза и водного обмена растений:

1 – корневое давление; 2 – активное нагнетание воды; 3 – транспирация; 4 – осмотическое поглощение воды клетками корня; 5 – передвижение воды под действием транспирации; 6 – влияние транспирации на корневое давление; 7 – влияние транспирации на фотосинтез; 8 – фотосинтез; 9 – влияние фотосинтеза на транспирацию; 10 – поступление ассимилятов в корень.



biofile.ru

Влияние внешних и внутренних факторов на транспирацию и транспирационный коэффициент

Как физический процесс испарения воды транспирация зависит от влажности воздуха, температуры, ветра, величины испаряющей поверхности. Прежде всего, на транспирацию влияет влажность воздуха: чем меньше относительная влажность воздуха, тем ниже его водный потенциал и тем быстрее идет транспирация. Однако необходимо помнить, что при недостатке воды в листе включаются устьичная и внеустьичная регуляция, поэтому интенсивность транспирации увеличивается медленнее испарения воды с водной поверхности. При возникновении сильного водного дефицита транспирация может почти прекратиться, несмотря на увеличивающуюся сухость воздуха. С увеличением влажности воздуха транспирация уменьшается; при большой влажности воздуха происходит только гуттация.

Капли воды на растенииРис.1. Капли воды на растении

В районах с большим количеством осадков и высокой влажностью воздуха обитают гигрофиты. К ним относятся растения, развивающиеся под пологом густого леса (кислица обыкновенная и другие тенелюбивые растения), растения открытых сырых почв (калужница болотная, лютик весенний, сердечник луговой и многие другие).

Высокая влажность воздуха препятствует нормальному ходу транспирации, следовательно, отрицательно влияет на восходящий транспорт веществ по сосудам, регуляцию температуры растения, устьичные движения. У гигрофитов нет приспособлений, ограничивающих расход воды. Они имеют крупные листовые пластинки с тонкой кутикулой и немногочисленными устьицами. Устьичная транспирация почти отсутствует. Клетки крупные, с тонкими клеточными стенками. У гигрофитов стенки сосудов одревесневают слабо, плохо развита механическая ткань. Растения имеют длинные стебли. Корневая система развита плохо, но хорошо приспособлена к недостатку кислорода. Осмотический потенциал клеток невысок. Даже незначительный дефицит воды в почве вызывает увядание гигрофитов.

Следующий фактор, влияющий на транспирацию как на физический процесс испарения, — температура. С увеличением температуры интенсивность транспирации увеличивается. Температура — источник энергии для испарения воды. Интенсивности транспирации 1 г воды/дм • ч соответствует затрата энергии 0,1 кал/см•мин. Охлаждающий эффект транспирации особенно значителен при высокой температуре, низкой влажности воздуха и хорошем водоснабжении. Кроме того, температура выполняет еще и регуляторную функцию, влияя на степень открытости устьиц.

Скорость ветра не так сильно влияет на транспирацию, как на испарение со свободной водной поверхности. Вначале при появлении ветра и увеличении его скорости до 0,4—0,8 м/с интенсивность транспирации возрастает, но дальнейшее усиление ветра почти не влияет на этот процесс. Сильный ветер увеличивает интенсивность транспирации лишь немного больше, чем слабый. Это связано с тем, что вода испаряется с поверхности клеток мезофилла в межклетники, а ветер влияет лишь на движение пара от поверхности листа, т. е. только на третью фазу устьичной транспирации и на кутикулярную транспирацию. Как физиологический процесс транспирация зависит от света, влажности почвы, удобрений.

Свет — главный фактор, регулирующий транспирацию. Интенсивность транспирации, например, у кукурузы в темноте — 97, на рассеянном свету — 114, на прямом солнечном свету — 785 мг воды/ дм2 • ч. На испарение со свободной водной поверхности свет влияет мало.

Влияние света на транспирацию связано, прежде всего, с тем, что зеленые клетки поглощают не только инфракрасные солнечные лучи, но и видимый свет, необходимый для фотосинтеза. Однако лист расходует на фотосинтез только 1—2% поглощенного света, редко 5%, а остальная энергия (до 98%) превращается в тепло и используется на испарение воды. Поэтому влияние света на транспирацию тем сильнее, чем выше концентрация хлорофилла. У зеленых растений даже на рассеянном свету интенсивность транспирации увеличивается на 30-40 % по сравнению с темнотой — это прямое действие света на транспирацию. Свет играет и косвенную роль, регулируя открывание и закрывание устьиц. Например, устьица у сахарного тростника открываются на прямом солнечном свету; слабый или рассеянный свет вызывает их частичное закрывание, причем устьица нижней эпидермы закрываются сильнее, чем верхней. В полной темноте устьица сначала полностью закрываются, а потом немного приоткрываются.

С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем ее меньше в клетках, и, следовательно, растение уменьшает транспирацию, прикрывая устьица. Если почва была сухой, то при увеличении ее влажности интенсивность транспирации сначала увеличивается. Но если в почве становится много воды, то интенсивность транспирации падает, так как вода вытесняет из почвы кислород, необходимый для дыхания корней. Нарушение дыхания приводит к плохому поглощению солей и, следовательно, уменьшению поступления воды. Если вода плохо поступает в корни, то интенсивность транспирации уменьшается. Интенсивность транспирации зависит и от условий минерального питания. У растений, испытывающих недостаток азота, фосфора или калия, интенсивность транспирации максимальна. Транспирация резко сокращается, если растения получают полное минеральное удобрение. Таким образом, чем лучше питается растение, тем меньше транспирация. Объясняется это тем, что поглощаемые растением ионы и синтезируемые вещества связывают воду, а испаряется только свободная вода. Следовательно, внесение удобрений — это один из методов уменьшения интенсивности транспирации.

Транспирация зависит и от внутренних факторов, прежде всего от содержания воды в листьях. Всякое уменьшение оводненности листьев уменьшает транспирацию. Интенсивность транспирации зависит от количества свободной воды, водоудерживающей силы клеток. Чем меньше свободной воды, тем меньше транспирация. Количество воды, испарившейся растением, зависит от величины его листовой поверхности: чем больше листовая поверхность, тем больше воды теряет растение. Однако в процессе эволюции у растений выработались приспособления для сокращения испарения воды. Опушение листовой пластинки снижает транспирацию в 2—3 раза. Устьица могут быть погружены в мезофилл. Толщина кутикулы, зависящая от вида растений, влияет на интенсивность кутикулярной транспирации.

Интенсивность транспирации зависит и от соотношения поверхности корней и побегов. При увеличении доли корней транспирация увеличивается. На интенсивность транспирации влияет физиологическое состояние тканей, например, связанное с возрастными изменениями. У молодых листьев интенсивность испарения воды выше, поскольку у них кутикула еще тонкая, и поэтому кутикулярная транспирация сильнее. Интенсивность транспирации зависит и от фазы развития растения. Так, у пшеницы в фазу колошения транспирация снижается, а сразу после цветения растений усиливается, что приводит к уменьшению влажности тканей и помогает созреванию зерновок.

Суточный ход интенсивности транспирации максимально полно повторяет дневной ход солнечной радиации, с которой хорошо коррелируют температура и влажность среды. Слабая в утренние часы транспирация быстро возрастает по мере поднятия солнца, увеличения температуры и уменьшения влажности воздуха достигает максимума вскоре после полудня, а затем быстро падает к заходу солнца. В часы максимальной освещенности наблюдается и максимальная транспирация. Ночью интенсивность транспирации в 10 раз меньше.

Однако такой ход транспирации бывает в природе не всегда. Очень часто, несмотря на большую освещенность и высокую температуру, в полуденные часы транспирация уменьшается, и возникают двухвершинные кривые. У многих тропических растений в 14 ч транспирация уменьшается: у старых листьев ананаса минимальная транспирация приходится на самые жаркие часы дня. Это вызвано тем, что в дневные часы трата воды часто превышает ее поступление. Возникающий водный дефицит приводит к увяданию: потере тургора, опусканию листьев, закрыванию устьиц и, таким образом, к снижению транспирации. Это наблюдение говорит о способности листа подавлять испарение воды, несмотря на внешние условия, способствующие его увеличению. В сухих субтропиках, в степях, в тропиках интенсивная транспирация часто возможна только в ранние утренние часы, а потом она идет очень медленно. Например, максимальная интенсивность транспирации у сахарного тростника наблюдается до 10—11 ч.

У любого растения в жаркие сухие дни транспирация превышает поступление воды, и возникает водный дефицит. Ночью поступление воды становится интенсивнее транспирации, в результате в утренние часы водный дефицит снижается и может совсем исчезнуть. Разница между скоростью поступления воды и транспирацией, постепенно увеличивающейся днем, приводит к уменьшению водного потенциала клеток корней. Последнее стимулирует поступление воды – этот пример показывает, что неблагоприятная для растений ситуация — разница между скоростями транспирации и поступлением воды — служит основой для ее исправления. В идеале расход воды должен уравновешиваться ее поступлением. Но реально ежеминутно, ежесекундно происходит нарушение водного баланса. При этом растение чутко реагирует на эти нарушения: еще не наступил дефицит, а уже включаются механизмы для его ликвидации.

Интенсивность транспирации в данный момент суток зависит от многих причин. Во-первых, она зависит от напряженности метеорологических факторов: температуры, освещенности, влажности воздуха, при изменении которых интенсивность транспирации изменяется через несколько секунд. Во-вторых, интенсивность транспирации сегодня зависит от того, как шла вчера транспирация. В-третьих, транспирация, как и поступление воды, подчиняется эндогенным ритмам: даже в постоянных условиях днем она интенсивнее, чем ночью. Таким образом, по крайней мере, три причины: внешние условия данного дня, влияние условий предыдущих дней и наследственность — взаимодействуют друг с другом и определяют реальную интенсивность транспирации. В результате кривые дневного хода транспирации очень разнообразны.

Величина транспирационного коэффициента сильнее зависит от внешних условий, чем от вида растения. Она возрастает по мере увеличения сухости воздуха. Интересный опыт был проведен на чайной плантации в Грузии. Кусты поливали не обычным способом — по бороздам, а с помощью дождевального аппарата, что повышало влажность воздуха. В результате величина интенсивности транспирации снизилась, а урожай листьев удвоился.

Температура воздуха тоже влияет на транспирационный коэффициент. У многих растений с понижением температуры воздуха транспирационный коэффициент уменьшается, так как снижается транспирация. Однако у риса, проса, сорго транспирационный коэффициент в прохладных условиях может увеличиться в несколько раз. Это связано с тем, что при понижении температуры у теплолюбивых растений резко тормозится рост. В таких условиях даже при уменьшении испарения транспирационный коэффициент возрастает.

Так как интенсивность транспирации зависит от условий минерального питания растений, то внесение удобрений должно влиять и на величину транспирационного коэффициента. Например, кукурузу выращивали на бедных, средних и плодородных почвах. Транспирационный коэффициент был соответственно 550, 478 и 392 г воды/ г сухого вещества, т. е. на плодородных почвах он меньше. При внесении удобрений во всех трех вариантах транспирационные коэффициенты были сходные — 350, 341 и 347, следовательно, произошло их выравнивание. Особенно сильно упал транспирационный коэффициент на бедных почвах, а на плодородных он изменился мало. Этот пример показывает, что можно управлять водным режимом растений, внося удобрения. Орошение без внесения удобрений неэкономично из-за высокого транспирационного коэффициента. Управление водным режимом — ключ к управлению урожаем.



biofile.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта