Питание способы питания организмов питание растений. Питание, его значение в жизни организма. Различия организмов по способу питания.

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Способ питание грибов, растений и животных. Заранее спасибо! Питание способы питания организмов питание растений


Способы питания живых организмов — Студопедия.Нет

Автотрофы

Автотрофы никого не едят, органические вещества делают сами из неорганических.

· Автофототрофы – энергию получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.

· Автохемотрофы – энергию получают при окислении неорганических веществ (хемосинтез). Например,

o серобактерии окисляют сероводород до серы,

o железобактерии окисляют двухвалентное железо до трехвалентного,

o нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

· Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды – глюкоза).

· Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.

Гетеротрофы

Гетеротрофы получают органические вещества в готовом виде, с пищей. К гетеротрофам относятся животные, грибы и большинство бактерий.

Способы питания гетеротрофов1. Хищники – убиваю жертву, а затем съедают (лев, щука, оса).2. Паразиты – поедают живую жертву (вирус гриппа, туберкулёзная палочка, дизентерийная амеба, аскарида и т.п.)3. Cапрофиты (сапротрофы) – питаются мертвыми организмами (личинки мясных мух, плесневые грибы, бактерии гниения).4. Cимбионты – получают питание от другого организма на взаимовыгодной основе. Например:

· Микориза (грибокорень) – симбиоз гриба и растения. Растение дает грибу глюкозу (которую делает при фотосинтезе), а гриб дает растению воду и минеральные соли.

· Лишайник – симбиоз грибов и водорослей. Водоросли дают грибу глюкозу, а гриб водорослям – соли и воду.

· Клубеньковые бактерии живут в специальных утолщениях (клубеньках) на корнях растений семейства бобовых. Растения дают бактериям глюкозу, а бактерии дают растениям соли азота, которые они получают при фиксации азота воздуха.

Естественный отбор

Естественный отбор – главный, ведущий, направляющий фактор эволюции, лежащий в основе теории Ч.Дарвина. Все остальные факторы эволюции случайны, один лишь естественный отбор имеет направление (в сторону приспособления организмов к условиям среды).

Определение: избирательное выживание и размножение наиболее приспособленных организмов.

Творческая роль: выбирая полезные признаки, естественный отбор создает новые виды.

Причина:борьба за существование.

Материал:наследственная изменчивость (чем больше мутаций – тем больше эффективность естественного отбора, быстрее идёт эволюция)

Формы:

· Стабилизирующий – действует в постоянных условиях, отбирает средние проявления признака, сохраняет признаки вида (кистепёрая рыба латимерия)

· Движущий – действует в изменяющихся условиях, отбирает крайние проявления признака (отклонения), приводит к изменению признаков (берёзовая пяденица)

· Половой – конкуренция за полового партнера.

Следствия естественного отбора:

· Эволюция (изменение, усложнение организмов)

· Возникновение новых видов (увеличение количества [многообразия] видов)

· Приспособленность организмов к условиям окружающей среды. Любая приспособленность относительна, т.е. приспосабливает организм только к одним определенным условиям.

Отличия прокариот и эукариот

Все живые организмы на Земле делятся на две группы – надцарство прокариот и надцарство эукариот.

К надцарству прокариот относится три царства:

· царство бактерий (эубактерий),

· царство архебактерий,

· царство цианобактерий (цианей, синезеленых водорослей).

К надцарству эукариот относится три царства:

· царство растений,

· царство животных

· царство грибов.

Главное отличие

Упрокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид).

У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

Дополнительные отличия

1) Раз упрокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое.

2) Упрокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот кроме рибосом (крупных, 80S) имеется множество других органоидов: митохондрии, эндоплазматическая сеть, клеточный центр, и т.д.

3) Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Сходства

Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

 

 

studopedia.net

способ питания растений — Способ питание грибов, растений и животных. Заранее спасибо! — 22 ответа



способ питания животных

В разделе Домашние задания на вопрос Способ питание грибов, растений и животных. Заранее спасибо! заданный автором Ёабанцева Ирина лучший ответ это Растения автотрофы, животные - голозои (гетеротрофы со ртом) , грибы - осмотрофы (гетеротрофы без рта).

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Способ питание грибов, растений и животных. Заранее спасибо!

Ответ от Кособокий[гуру]Мицелий высших грибов использует для своего роста и развития готовые вещества растительного и животного происхождения. Многие высшие грибы находятся в симбиозе с корневой системой различных древесных и травянистых растений, в результате невозможно провести границу между паразитическим и сапрофитным способом питания. В зависимости от источника питания грибы можно разделить на монофаги и полифаги. Монофаги, являясь строго специализированными организмами, используют довольно ограниченный круг источников питания и живут в основном в симбиозе. Полифаги отличаются широким диапазоном используемых источников пищи. К ним относится большая часть гименомицетов.В питании высших базидиальных грибов главную роль играют соединения, содержащие углерод, так как служат двум основным функциям в метаболизме этих гетеротрофных организмов: снабжают углеродом, необходимым для синтеза веществ живой клетки, и участвуют в процессах окисления, где являются единственным источником энергии (Шиврина, 19б9). Кроме того, соединения углерода являются составной частью запасных питательных веществ, необходимых для роста и развития мицелия грибов, а также ферментов, регулирующих процессы усвоения. При изучении углеродного питания установлено, что лучше всего грибы потребляют глюкозу, обладающую способностью расщепляться на более простые соединения с освобождением энергии уже при слабом окислении. Вследствие этого глюкоза является биологически самым важным и универсальным источником углеродного питания при искусственном культивировании шляпочных грибов. Фруктоза эквивалентна глюкозе для роста большинства высших съедобных базидиомицетов. Грибами охотно используется ксилоза - продукт гидролиза гемицеллюлозы. Все испытанные виды шампиньона двуспорового хорошо росли на средах, в состав которых входила ксилоза. Крахмал часто является лучшим, чем глюкоза, источником углеродного питания. Объясняется это наличием в крахмале примесей ростовых стимулирующих веществ. Кроме того, крахмал как труднорастворимое вещество медленнее накапливает кислоты в питательном растворе, чем при потреблении глюкозы (Воhus, 1961). Мальтоза - продукт расщепления крахмала - также хорошо усваивается грибницей шляпочных грибов. Установлено, что различные штаммы базидиальных грибов обладают избирательной способностью по отношению к источникам углеродного питания. При наличии в среде слабо используемого источника углерода и источника азота в форме иона аммония в клетке может накапливаться избыток аммиака, и происходит отравление клетки. В случае потребления грибами источника углерода, использование которого сопровождается образованием органических кислот, отравление не наступает вследствие связывания избытка аммиака этими кислотами. Углерод является источником энергии для аэробных организмов и вторым важным элементом клеточной протоплазмы. Кроме того, углеродсодержащие компоненты используются мицелием высших грибов в трех направлениях: для образования клеток, запасных питательных веществ и выделения энергии, углекислого газа, воды и других продуктов обмена веществ (Russer, Spenser, 1958; Atkins, 1974). При наличии подходящего источника углерода для данного вида гриба физиологические процессы протекают нормально: образование клеточной структуры мицелия сопровождается выделением во внешнюю среду значительного количества органических кислот, ферментов, витаминов и т. д. питание грибов

Ответ от Невроз[активный]спасибо огромное я вам блогодарна

Ответ от Прососать[новичек]Растения автотрофы, животные - голозои (гетеротрофы со ртом) , грибы - осмотрофы (гетеротрофы без рта).

Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

Голозойный способ питания на ВикипедииПосмотрите статью на википедии про Голозойный способ питания

 

Ответить на вопрос:

22oa.ru

Способы питания. Биологическое значение разнообразия способов питания

Способы питания. Биологическое значение разнообразия способов питания.

Пища нужна всем живым существам. Она служит им источником энергии и веществ, необходимых для роста и других процессов жизнедеятельности. Живые организмы используют только два вида энергии – это энергия солнечного света и энергия химических связей. Организмы, специализированные для использования световой энергии, осуществляют фотосинтез и содержат пигменты, в том числе хлорофилл, способные поглощать свет. К таким организмам относятся растения, водоросли и некоторые наиболее простые организмы, включая бактерии. Организмы, не способные к фотосинтезу, должны получать химическую энергию (т.е. энергию, запасенную в химических связях органических веществ) от других организмов. К таким организмам, называемым гетеротрофами, относятся животные и грибы. Различные способы питания обуславливают фундаментальные различия между разными организмами.

Питание — это процесс приобретения энергии и веществ. Основываясь на природе необходимого источника энергии или источника углерода — наиважнейшего элемента для роста, — живые организмы можно подразделить на несколько групп. Для синтеза органических соединений живые организмы способны использовать только два вида энергии: энергию света и энергию химических связей. Организмы, использующие световую энергию, называются фототрофами, а организмы, использующие только химическую энергию — хемотрофами. Фототрофы осуществляют фотосинтез.

Организмы разделяют также на автотрофные и гетеротрофные — в зависимости от того, какой источник углерода они используют: неорганическое соединение (диоксид углерода) или разнообразные органические вещества. Таким образом, можно выделить четыре типа питания.

Источники углерода

Источники энергии

Автотрофные

Источник углерода - СО2

Гетреротрофные

Источник углерода – органические соединения

Фототрофные

Используют энергию солнечного света (фотосинтезирующие)

Фотоавтотрофные

Цианобактерии

Фотогетеротрофные

Пурпурные несерные бактерии

Хемотрофные

Используют химическую энергию (хемосинтезирующие)

Хемоавтотрофные

Нитрифицирующие бактерии, учавствующие в круговороте азота

Хемогетеротрофные

Большинство бактерий - все

Классификация организмов в соответствии с источниками энергии и углерода. Фотоавтотрофные бактерии

Примерами фотоавтотрофных бактерий могут служить цианобактерии, (сине-зеленые бактериями). Водоросли и растения также являются фотоавтотрофами. Все они осуществляют фотосинтез и используют углекислый газ (СО2) в качестве единственного источника углерода. Процесс фотосинтеза впервые появился у бактерий, возможно именно у цианобактерии. Хлоропласты водорослей и наземных растений представляют собой, по-видимому, потомков некогда свободноживущих фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках.

Цианобактерии широко распространены в поверхностных водах морей и пресных водоемов. Кроме того, они обнаружены в слизистых подушковидных образованиях на затененных почвах, на скалах, в иле, на древесине и в некоторых живых организмах. Большинство цианобактерии представлены одиночными клетками, хотя некоторые из них объединяются, образуя покрытые слизью нити. В отличие от большинства бактерий они, подобно водорослям и растениям, способны к фотосинтезу, а, следовательно, и к выделению кислорода из воды.

Некоторые цианобактерии способны фиксировать азот. Иными словами, они способны превращать содержащийся в воздухе газообразный азот в аммиак, который затем может быть использован для синтеза аминокислот, белков и других азотсодержащих органических соединений. Этот процесс происходит в специализированных клетках, называемых гетероцистами, которые образуются при недостатке азота. Гетероцисты экспортируют содержащиеся в них азотистые вещества в соседние клетки в обмен на другие питательные вещества в соединение клетки в обмен на другие питательные вещества, например углеводы.

Хемоавтотрофные бактерии

Эти организмы чаще называют хемосинтезирующими бактериями. В качестве источника углерода они используют СО2, но энергию получают в результате химических реакций. Высвобождение необходимой энергии происходит при окислении таких неорганических веществ, как аммиак и нитриты. Некоторые хемоавтотрофные бактерии играют важную роль в круговороте азота, участвуя в процессе, называемом нитрификацией. Процесс нитрификации протекает в две стадии. На первом этапе аммиак окисляется до нитрита, что сопровождается выделением энергии. На втором этапе образовавшийся нитрит окисляется до нитрата с высвобождением дополнительной энергии.

  1. Nh5+ кислород NO2- + энергия
  2. NO2- кислород NO3- + энергия

Хемогетеротрофные бактерии

Бактерии этого типа получают энергию из поступающих с пищей химических соединений. Они способны использовать огромное множество различных веществ. Среди хемогетеро-трофных бактерий можно выделить три основные группы, а именно сапротрофы, мутуалисты и паразиты.

Сапротрофы представлены организмами, извлекающими питательные вещества из мертвого разлагающегося материала. Для разложения органического материала сапротрофы выделяют на него ферменты. Таким образом, переваривание пищи у них происходит вне организма. Образующиеся при этом растворимые продукты поступают в тело сапротрофа и там ассимилируются.

Сапротрофные бактерии и грибы составляют группу редуцентов. Им принадлежит важная роль в разложении органического материала и возврате элементов в природные круговороты. Они образуют гумус из животных и растительных остатков, но при этом они способны и наносить вред, разрушая нужные человеку материалы, особенно пищевые продукты.

Мутуализмом (или симбиозом) называют любую форму тесной взаимосвязи между двумя живыми организмами, выгодной для обоих партнеров.

Паразитом называют любой организм, живущий внутри тела или на теле другого организма (хозяина), от которого он получает пищу и, как правило, убежище. Хозяевами могут служить представители самых различных видов, причем паразиты наносят ощутимый вред своим хозяевам. Паразиты, вызывающие болезни, называют патогенами. Одни паразиты, называемые облигатными, могут жить и расти только в живых клетках. Другие, называемые факультативными, заражают хозяина, вызывают его гибель и затем живут на его остатках как сапротрофы. Паразиты отличаются чрезвычайной разборчивостью в пище, поскольку они нуждаются во «вспомогательных факторах роста», которые не способны синтезировать сами, но могут получать только от своих хозяев.

flatik.ru

Питание, его значение в жизни организма. Различия организмов по способу питания.

⇐ ПредыдущаяСтр 9 из 10Следующая ⇒

Живые организмы представляют собой открытые системы, обменивающиеся веществом и энергией с окружающей средой. Питание, т.е. обеспечение поступления необходимых для жизни веществ, является важнейшим условием существования любого живого организма.

По способу питания организмы делятся на автотрофов и гетеротрофов. Автотрофы сами синтезируют органические вещества из неорганических за счет энергии солнечного света – так называемое воздушное питание (растения, цианобактерии, или синезеленые водоросли) реже за счет энергии реакций окисления железа, серы (хемосинтезирующие бактерии). Растения поглощают из почвы необходимые биогенные элементы в виде минеральных солей, растворенных в воде, – минеральное питание. Среди растений имеются хищники: росянка, венерина мухоловка, – переваривающие пойманных насекомых в качестве дополнительного источника азота.

Гетеротрофы питаются готовыми органическими веществами. Животные являются фаготрофами, т.е. «поедают» пищу. Грибы – осмотрофы, всасывают питательные вещества в виде растворов. Одноклеточные организмы иногда занимают промежуточное положение, проявляя признаки как гетеротрофов, так и автотрофов (эвглена зеленая).

2. Беспозвоночные животные, их многообразие, классификация, роль в природе, значение в хозяйственной деятельности человека. Раскройте роль дождевых червей в образовании почвы и повышении ее плодородия.

Беспозвоночные животные не столь заметны, как крупные позвоночные, но играют важнейшую роль в экосистемах и биосфере в целом. В школьном курсе изучают типы кишечнополостных, плоских, круглых и кольчатых червей, членистоногих, моллюсков. Наиболее продвинутыми в эволюционном плане считаются членистоногие и моллюски.

Беспозвоночные перерабатывают огромное количество органического вещества, входя в состав пищевых цепей, и служат пищей для многих организмов. Роль беспозвоночных во многом сходна с ролью членистоногих (билет 19), следует добавить, что многие круглые и плоские черви являются паразитами человека, животных, растений.

Дождевые черви способствуют повышению плодородия почвы: разрыхляют ее своими ходами, обогащают органикой: заносят в нее опавшие листья, выделяют экскременты. При этом черви улучшают структуру почвы, склеивая мелкие частички грунта своими выделениями. Все это делает выгодным разведение дождевых червей на специальных фермах с последующим внесением на земельные участки. Также развивается технология переработки навоза с помощью червей в высокопитательные удобрения.

Слуховой анализатор, строение и значение. Нарушения слуха, профилактика болезней органа слуха. Объясните, почему в самолете при взлете и посадке у людей возникают болезненные ощущения в ушах и как этого избежать.

Слуховой анализатор включает орган слуха, проводящие нервные пути и центры в височной зоне коры больших полушарий. Звуковое восприятие очень важно для человека, позволяет общаться с окружающими с помощью речи.

Орган слуха состоит из наружного уха (ушная раковина, слуховой проход), среднего уха со слуховыми косточками, внутреннего уха (улитка). Ушная раковина направляет звуковые колебания к барабанной перепонке, отделяющей среднее ухо. Где усиленные слуховыми косточками колебания перепонки передаются в улитку, раздражая чувствительные рецепторы.

Глухота может возникать при повреждении барабанной перепонки, уменьшении подвижности слуховых косточек (например, в результате приема некоторых лекарств), воспалительных явлений в слуховой трубе, соединяющей среднее ухо с носоглоткой (в т.ч. насморка). Следует беречь слух от громкого шума, не злоупотреблять громкостью при прослушивании музыки через наушники. При взрыве необходимо открывать рот, чтобы звуковая волна воздействовала на барабанную перепонку и через слуховую трубу, что предохраняет перепонку от разрыва.

Для музыкального слуха очень вредно играть на расстроенных музыкальных инструментах.

При перепадах атмосферного давления, например во время взлета или посадки самолета, давление в среднем ухе выравнивается через слуховую трубу. Для этого полезно делать глотательные движения. Если у человека заложен нос во время насморка, это может помешать движению воздуха, вызвать болевые ощущения.

Билет № 21

Разнообразие организации живых систем: клетка, вид, экосистема.

Биология изучает живые организмы на разных уровнях организации.

Клетка – элементарная структурная единица живого. Свойства живого начинают проявляться именно на клеточном уровне. Из клеток построены многоклеточные организмы, а у одноклеточных клетка представляет собой самостоятельный организм.

Вид – совокупность особей, обладающих сходством внешнего и внутреннего строения, физиологических процессов, занимающих определенную территорию – ареал, способных свободно скрещиваться и давать плодовитое потомство. На видовом уровне проявляются новые свойства, из которых важнейшим является способность эволюционировать, т.е. приспосабливаться к условиям окружающей среды в результате естественного отбора на основе наследственной изменчивости.

Экосистема включает совокупность популяций различных видов, занимающих определенное место обитания, и компоненты неживой природы. Экосистема характеризуется видовым составом, продуктивностью, трофической структурой. Экосистемы обладают различной устойчивостью и в то же время развиваются с течением времени, такое обновление называется сукцессией.

2. Взаимосвязь строения и функций органов растений (на примере покрытосеменных). Докажите, что растение – целостный организм. Объясните, будет ли увеличиваться масса клубней картофеля, если все его листья объедены колорадскими жуками.

Строение органов покрытосеменных растений определяется выполняемыми функциями. Корень обеспечивает поступление из почвы растворов минеральных солей в зоне всасывания, покрытой корневыми волосками, и проведение их в надземную часть растения через зону проведения. Продвижение корня вглубь почвы обеспечивает плотный корневой чехлик в сочетании с зоной деления и зоной растяжения. Корень закрепляет растение в почве, для чего служат механические ткани, обеспечивающие прочность корня на разрыв и располагающиеся, в основном, по центру.

Стебель должен противостоять изгибу, поэтому механические ткани располагаются по периферии стебля. Проводящие ткани: сосуды древесины и ситовидные трубки луба проводят растворы минеральных солей и органических веществ. Покровные ткани коры защищают стебель от повреждений.

В листьях осуществляется фотосинтез благодаря наличию ассимиляционной (так называемой, основной) ткани. Столбчатая ткань обеспечивает наилучшее поглощение света, а губчатая основная ткань с межклетниками способствует газообмену и испарению влаги через устьица.

Околоцветник цветка защищает завязь от неблагоприятных воздействий и привлекает насекомых-опылителей. Насекомых также привлекает изобилие пыльцы и нектар. Из завязи в дальнейшем образуется плод, способствующий распространению семян, в образовании плода могут принимать участие и другие части цветка (цветоложе).

Растение представляет собой целостный организм, его органы функционируют взаимосвязанно. Например, чрезмерное развитие зеленой массы растения в случае избытка азотных удобрений приводит к задержке созревания плодов и клубней. Что может быть причиной плохого хранения картофеля. Если листья картофеля будут объедены колорадскими жуками, не будет происходить образование органических веществ, масса клубней увеличиваться не будет.

В местностях, где проводится массовая химическая обработка картофельных полей от колорадского жука, ее обычно не проводят после цветения, т.к. ядохимикаты еще должны разрушиться до сбора урожая.

Отделы нервной системы: центральный и периферический. Какие причины, вызывающие заболевания мозга, вам известны? Как можно предупредить некоторые заболевания мозга? В чем заключается вредное воздействие наркотических веществ и алкоголя на мозг?

Нервная система состоит из центрального отдела, включающего спинной и головной мозг, и периферического, к которому относятся нервы и периферические нервные узлы соматической и вегетативной нервной системы.

Заболевания мозга могут возникать:

· под воздействием инфекции, например клещевого энцефалита, бешенства, сифилиса, гриппа и др.

· в результате травм черепа, кровоизлияний;

· при отравлении бытовыми растворителями, пищевых отравлений;

· радиоактивном облучении;

Меры профилактики заключаются в закаливании организма, предохранении от инфекций, применении защитных шлемов при езде на мотоцикле, ремней безопасности на автомобилях. Необходимо избегать переохлаждения, покрасочные работы проводить только в хорошо проветриваемых помещениях, использовать в пищу только знакомые грибы. Есть мнение, что мозгу может вредить излучение сотовых телефонов.

Алкоголь и наркотики вводят клетки головного мозга в состояние наркоза, вызывают их отравление и гибель. При этом формируется психологическая и физиологическая зависимость от наркотических веществ, очень затрудняющая лечение.

Билет № 22

Рекомендуемые страницы:

lektsia.com

Способы питания живых организмов

Автотрофы

Автотрофы никого не едят, органические вещества делают сами из неорганических.

  • Автофототрофы – энергию получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.
  • Автохемотрофы – энергию получают при окислении неорганических веществ (хемосинтез). Например,
    • серобактерии окисляют сероводород до серы,
    • железобактерии окисляют двухвалентное железо до трехвалентного,
    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды – глюкоза).
  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.

Гетеротрофы

Гетеротрофы получают органические вещества в готовом виде, с пищей. К гетеротрофам относятся животные, грибы и большинство бактерий.

Способы питания гетеротрофов

1. Хищники – убиваю жертву, а затем съедают (лев, щука, оса). 2. Паразиты – поедают живую жертву (вирус гриппа, туберкулёзная палочка, дизентерийная амеба, аскарида и т.п.) 3. Cапрофиты (сапротрофы) – питаются мертвыми организмами (личинки мясных мух, плесневые грибы, бактерии гниения). 4. Cимбионты – получают питание от другого организма на взаимовыгодной основе. Например:

  • Микориза (грибокорень) – симбиоз гриба и растения. Растение дает грибу глюкозу (которую делает при фотосинтезе), а гриб дает растению воду и минеральные соли.
  • Лишайник – симбиоз грибов и водорослей. Водоросли дают грибу глюкозу, а гриб водорослям – соли и воду.
  • Клубеньковые бактерии живут в специальных утолщениях (клубеньках) на корнях растений семейства бобовых. Растения дают бактериям глюкозу, а бактерии дают растениям соли азота, которые они получают при фиксации азота воздуха.


biofile.ru

Типы питания организмов | Экология. Реферат, доклад, сообщение, кратко, презентация, лекция, шпаргалка, конспект, ГДЗ, тест

Жизнедеятельность любого организма воз­можна лишь при постоянном поступлении химических соединений, которые используются для его роста, жизнедеятельности и воспроизведения.

По способу питания организмы делятся на три группы: автотрофов, гетеротрофов и миксотрофов.

Автотрофы (греч. autos — «сам»; trophe — «пища», «питание») осуществляют фотосинтез и для постро­ения своего тела в качестве главного источника углерода используют CO2 и h3O. Автотрофами являются все зелёные растения и некоторые группы бактерий.

Гетеротрофы (греч. heteros — «иной», «другой»; trophe — «пи­ща», «питание») используют в качестве источника углерода готовые органи­ческие вещества, которые, как правило, служат и источником необходимой энергии. Гетеротрофами являются все животные, грибы, большинство бак­терий и бесхлорофилльные растения.

Миксотрофы (греч. mixis — «смеше­ние»; trophe — «пища», «питание») способны сочетать автотрофное и гете­ротрофное питание (некоторые бактерии и одноклеточные водоросли, многие простейшие, особенно из жгутиконосцев). Насекомоядные расте­ния (мухоловки, росянки, непентес и др.), помимо фотосинтеза, осуществ­ляемого клетками зелёных частей тела, способны поглощать химические ве­щества отловленных насекомых, перерабатывая их на поверхности листа выделяемыми ферментами до минеральных соединений, которые затем по­глощаются (всасываются) клетками растения. Материал с сайта http://doklad-referat.ru

У многоклеточных организмов в процессе эволюции выработались специальные системы поглощения и переработки пищи.

На этой странице материал по темам:
  • Специальные системы поглащения и переработки пищи у многоклеточных

  • Реферат на тему виды питания

  • Охарактеризуйте основные типы питания организмов

  • Способы добывания пищи животными 6 класс доклад

Вопросы по этому материалу:
  • Охарактеризуйте основные типы питания организмов.

doklad-referat.ru

Способ питание грибов, растений и животных. Заранее спасибо!

Мицелий высших грибов использует для своего роста и развития готовые вещества растительного и животного происхождения. Многие высшие грибы находятся в симбиозе с корневой системой различных древесных и травянистых растений, в результате невозможно провести границу между паразитическим и сапрофитным способом питания. В зависимости от источника питания грибы можно разделить на монофаги и полифаги. Монофаги, являясь строго специализированными организмами, используют довольно ограниченный круг источников питания и живут в основном в симбиозе. Полифаги отличаются широким диапазоном используемых источников пищи. К ним относится большая часть гименомицетов.

В питании высших базидиальных грибов главную роль играют соединения, содержащие углерод, так как служат двум основным функциям в метаболизме этих гетеротрофных организмов: снабжают углеродом, необходимым для синтеза веществ живой клетки, и участвуют в процессах окисления, где являются единственным источником энергии (Шиврина, 19б9). Кроме того, соединения углерода являются составной частью запасных питательных веществ, необходимых для роста и развития мицелия грибов, а также ферментов, регулирующих процессы усвоения. При изучении углеродного питания установлено, что лучше всего грибы потребляют глюкозу, обладающую способностью расщепляться на более простые соединения с освобождением энергии уже при слабом окислении. Вследствие этого глюкоза является биологически самым важным и универсальным источником углеродного питания при искусственном культивировании шляпочных грибов. Фруктоза эквивалентна глюкозе для роста большинства высших съедобных базидиомицетов. Грибами охотно используется ксилоза - продукт гидролиза гемицеллюлозы. Все испытанные виды шампиньона двуспорового хорошо росли на средах, в состав которых входила ксилоза. Крахмал часто является лучшим, чем глюкоза, источником углеродного питания. Объясняется это наличием в крахмале примесей ростовых стимулирующих веществ. Кроме того, крахмал как труднорастворимое вещество медленнее накапливает кислоты в питательном растворе, чем при потреблении глюкозы (Воhus, 1961). Мальтоза - продукт расщепления крахмала - также хорошо усваивается грибницей шляпочных грибов. Установлено, что различные штаммы базидиальных грибов обладают избирательной способностью по отношению к источникам углеродного питания. При наличии в среде слабо используемого источника углерода и источника азота в форме иона аммония в клетке может накапливаться избыток аммиака, и происходит отравление клетки. В случае потребления грибами источника углерода, использование которого сопровождается образованием органических кислот, отравление не наступает вследствие связывания избытка аммиака этими кислотами. Углерод является источником энергии для аэробных организмов и вторым важным элементом клеточной протоплазмы. Кроме того, углеродсодержащие компоненты используются мицелием высших грибов в трех направлениях: для образования клеток, запасных питательных веществ и выделения энергии, углекислого газа, воды и других продуктов обмена веществ (Russer, Spenser, 1958; Atkins, 1974). При наличии подходящего источника углерода для данного вида гриба физиологические процессы протекают нормально: образование клеточной структуры мицелия сопровождается выделением во внешнюю среду значительного количества органических кислот, ферментов, витаминов и т. д. http://grib-portal.nm.ru/_1.htm питание грибов

otvet.mail.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта