Первичные метаболиты растений. Open Library - открытая библиотека учебной информации

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

№6_2 сем_ПЕРВИЧНЫЕ МЕТАБОЛИТЫ. Первичные метаболиты растений


Первичные метаболиты

Ряд метаболитов клетки представляют интерес как целевые продукты ферментации. Их разделяют на первичные и вторичные.

Первичные метаболиты– это низкомолекулярные соединения (молекулярная масса менее 1500 дальтон), необходимые для роста микроорганизмов. Одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, нуклеотиды, витамины и др.

Биосинтез первичных метаболитов осуществляют различные биологические агенты – микроорганизмы, растительные и животные клетки. При этом используются не только природные организмы, но и специально полученные мутанты. Чтобы обеспечить высокие концентрации продукта на стадии ферментации, необходимо создавать продуценты, противостоящие генетически свойственным их природному виду механизмам регуляции. Например, необходимо устранить накопление конечного продукта, репрессирующего или ингибирующего важный фермент для получения целевого вещества.

Производство аминокислот.

В процессе ферментаций, осуществляемых ауксотрофами (микроорганизмы, нуждающиеся для воспроизведения в факторах роста), производят многие аминокислоты и нуклеотиды. Распространенными объектами селекции продуцентов аминокислот являются микроорганизмы, относящиеся к родам Brevibacterium, Corynebacterium, Micrococcus, Arthrobacter.

Из 20 аминокислот, составляющих белки, восемь не могут синтезироваться в организме человека (незаменимые). Эти аминокислоты должны поступать в организм человека с пищей. Среди них особенное значение имеют метионин и лизин. Метионин производится химическим синтезом, а более 80% лизина – биосинтезом. Перспективным является микробиологический синтез аминокислот, так как в результате этого процесса получаются биологически активные изомеры (L-аминокислоты), а при химическом синтезе оба изомера получаются в равных количествах. Поскольку их трудно разделить, половина продукции оказывается биологически бесполезной.

Аминокислоты используют в качестве пищевых добавок, приправ, усилителей вкуса, а также как сырье в химической, парфюмерной и фармацевтической промышленности.

Разработка технологической схемы получения отдельной аминокислоты базируется на знании путей и механизмов регуляции биосинтеза конкретной аминокислоты. Необходимого дисбаланса метаболизма, обеспечивающего сверхсинтез целевого продукта, добиваются путем строго контролируемых изменений состава и условий среды. Для культивирования штаммов микроорганизмов при производстве аминокислот как источники углерода наиболее доступны углеводы – глюкоза, сахароза, фруктоза, мальтоза. Для снижения стоимости питательной среды используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты, метанола, этанола, н-парафинов.

Производство органических кислот.

В настоящее время биотехнологическими способами в промышленных масштабах синтезируют ряд органических кислот. Из них лимонную, глюконовую, кетоглюконовую и итаконовую кислоты получают лишь микробиологическим способом; молочную, салициловую и уксусную – как химическим, так и микробиологическим способами; яблочную – химическим и энзиматическим путем.

Уксусная кислота имеет наиболее важное значение среди всех органических кислот. Ее используют при выработке многих химических веществ, включая каучук, пластмассы, волокна, инсектициды, фармацевтические препараты. Микробиологический способ получения уксусной кислоты состоит в окислении этанола в уксусную кислоту при участии бактерий штаммов GluconobacterиAcetobacter:

Лимонную кислоту широко используют в пищевой, фармацевтической и косметической промышленности, применяют для очистки металлов. Самый крупный производитель лимонной кислоты – США. Производство лимонной кислоты является старейшим промышленным микробиологическим процессом (1893 г.). Для ее производства используют культуру гриба Aspergillus niger, A. wentii. Питательные среды для культивирования продуцентов лимонной кислоты в качестве источника углерода содержат дешевое углеводное сырье: мелассу, крахмал, глюкозный сироп.

Молочная кислота – первая из органических кислот, которую начали производить путем брожения. Ее используют в качестве окислителя в пищевой промышленности, как протраву в текстильной промышленности, а также при производстве пластмасс. Микробиологическим путем молочную кислоту получают при сбраживании глюкозы Lactobacillus delbrueckii.

studfiles.net

№6_2 сем_ПЕРВИЧНЫЕ МЕТАБОЛИТЫ

НАЦИОНАЛЬНЫЙ ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ СПЕЦИАЛЬНОСТЬ «БИОТЕХНОЛОГИЯ»

ДИСЦИПЛИНА «ОБЩАЯ МИКРОБИОЛОГИЯ И ВИРУСОЛОГИЯ» КАФЕДРА БИОТЕХНОЛОГИИ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ.

БИОСИНТЕЗ ПЕРВИЧНЫХ МЕТАБОЛИТОВ: АМИНОКИСЛОТ, НУКЛЕОТИДОВ, УГЛЕВОДОВ, ЖИРНЫХ КИСЛОТ.

ПЛАН

•БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

•БИОСИНТЕЗ АМИНОКИСЛОТ

•ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ АМИНОКИСЛОТ

•БИОСИНТЕЗ НУКЛЕОТИДОВ

•ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ НУКЛЕОТИДОВ

•БИОСИНТЕЗ ЖИРНЫХ КИСЛОТ, УГЛЕВОДО, САХАРОВ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ

УМИКРООРГАНИЗМОВ

Впроцессе роста микроорганизмов на глюкозе в аэробных условиях около 50 %

глюкозы окисляются до СО2 для получения энергии. Остальные 50 % глюкозы преобразуется на клеточный материал. Именно на это преобразование и тратится большая часть АТФ, образованная во время окисления субстрата.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

На разных этапах роста микроорганизмов образуются метаболиты.

В логарифмической фазе роста образуются первичные метаболиты (белки, аминокислоты и др.).

В лаг-фазеи в стационарной фазе образуются вторичные метаболиты, которые являются биологически активными соединениями. К ним относятся различные антибиотики, ингибиторы ферментов и др.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

Первичные метаболиты – это низкомолекулярные соединения (молекулярная масса менее 1500 дальтон), необходимые для роста микробов; одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, пуриновые и примидиновые нуклеотиды, витамины и др.

Вторичные метаболиты – это низкомолекулярные соединения, образующиеся на более поздних стадиях развития культуры, не требующиеся для роста микроорганизмов. По химическому строению вторичные метаболиты относятся к различным группам соединений. К ним относят антибиотики, алкалоиды, гормоны роста растений, токсины и пигменты.

Микроорганизмы – продуценты первичных и вторичных метаболитов используют в промышленности. Исходными штаммами для промышленных процессов служат природные организмы и культуры с нарушениями регуляции синтеза этих метаболитов, так как обычные микробные клетки не производят7 избытка первичных метаболитов.

БИОСИНТЕЗ АМИНОКИСЛОТ

БИОСИНТЕЗ АМИНОКИСЛОТ

Большинство микроорганизмов способны синтезировать все 20 аминокислот, из которых состоят белки. Углеводные скелеты аминокислот строятся из промежуточных продуктов обмена, аминогруппы вводятся прямым аминированием или трансаминированием. Перевод неорганического азота в органические соединения всегда происходит через аммиак.

Нитраты, нитриты, молекулярный азот, являющиеся источниками азота в питательных средах, предварительно восстанавливаются до аммиака (ассимиляционная нитратредукция) и только после этого включаются в состав органических соединений.

Nh5

+

NO3

Nh5+ АССИМИЛЯЦИЯ АЗОТА

-

 

N

studfiles.net

ЛЕКЦИЯ 1 ПОНЯТИЕ О МЕТАБОЛИЗМЕ. ПЕРВИЧНЫЙ И ВТОРИЧНЫЙ СИНТЕЗ.

Химия ЛЕКЦИЯ 1 ПОНЯТИЕ О МЕТАБОЛИЗМЕ. ПЕРВИЧНЫЙ И ВТОРИЧНЫЙ СИНТЕЗ.

просмотров - 347

(1 ч.)

ВВЕДЕНИЕ

В последние годы широкое распространение получили различные пищевые добавки, в качестве которых всœе чаще применяются добавки из растений, содержащие ароматические и лекарственные вещества, ᴛ.ᴇ. биологически активные добавки. Их ценность определяется содержащимися в них биологически активными веществами (БАВ). По этой причине целью данного курса является изучение специфических БАВ, содержащихся в растениях. В задачи курса входит знакомство с основными группами БАВ и освоение приемов проведения анализа сложных органических соединœений, проявляющих биологическую активность.

Химический состав растений чрезвычайно сложен, и содержащиеся в них вещества весьма разнообразны. Специфическая особенность растений состоит в том, что они способны синтезировать огромное количество самых разнообразных химических соединœений различной природы, зачастую весьма сложных по строению, относящихся к различным классам органических соединœений.

ПОНЯТИЕ О МЕТАБОЛИЗМЕ. ПЕРВИЧНЫЙ И ВТОРИЧНЫЙ СИНТЕЗ.

Под метаболизмом, или обменом веществ, понимают совокупность химических реакций в организме, обеспечивающих его веществами для построения тела и энергией для поддержания жизнедеятельности. Часть реакций оказывается сходной для всœех живых организмов (образование и расщепление нуклеиновых кислот, белков и пептидов, а также большинства углеводов, некоторых карбоновых кислот и т.д.) и получила название первичного обмена (или первичного метаболизма).

Помимо реакций первичного обмена, существует значительное число метаболических путей, приводящих к образованию соединœений, свойственных лишь определœенным, иногда очень немногим, группам организмов.

Эти реакции, согласно И.Чапеку (1921) и К. Пэху (1940), объединяются термином вторичный метаболизм, или обмен, а их продукты называются продуктами вторичного метаболизма, или вторичными соединœениями (иногда вторичными метаболитами).

Вторичные соединœения образуются преимущественно у вегетативно малоподвижных групп живых организмов — растений и грибов, а также у многих прокариот.

У животных продукты вторичного обмена образуются редко, но часто поступают извне вместе с растительной пищей.

Вещества первичного синтеза образуются в процессе ассимиляции, ᴛ.ᴇ. превращения веществ, поступающих в организм извне, в вещества самого организма (протопласт клеток, запасные вещества и т.д.).

К веществам первичного синтеза относят аминокислоты, белки, липиды, углеводы, ферменты, витамины и органические кислоты.

Вещества вторичного синтеза образуются в растениях в результате - диссимиляции.

Диссимиляция - процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся выделœением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вторичного синтеза. К примеру, глюкоза (вещество первичного синтеза) распадается до уксусной кислоты, из которой синтезируется мевалоновая кислота и через ряд промежуточных продуктов - всœе терпены.

К веществам вторичного синтеза относятся терпены, гликозиды, фенольные соединœения, алкалоиды и др. Все они принимают участие в обмене веществ и выполняют определœенные важные для растений функции.

Вещества вторичного синтеза применяются в медицинской практике значительно чаще и шире, чем вещества первичного синтеза.

Каждая группа веществ растений не является изолированной и неразрывно связана с другими группами биохимическими процессами.

К примеру:

- большая часть фенольных соединœений является гликозидами;

- горечи из класса терпенов являются гликозидами;

- растительные стероиды по происхождению являются терпенами, в то же время сердечные гликозиды, стероидные сапонины и стероидные алкалоиды являются гликозидами;

- каротиноиды, производные тетратерпенов, являются витаминами;

моносахариды и олигосахариды входят в состав гликозидов.

Вещества первичного синтеза содержат всœе растения, вещества вторичного синтеза накапливают растения отдельных видов, родов, семейств.

Роль продуктов вторичного метаболизма и причины их появления в той или иной систематической группе различны. В самой общей форме им приписывается адаптивное значение, и в широком смысле защитные свойства.

В современной медицинœе продукты вторичного обмена применяются значительно шире и чаще, чем первичные метаболиты. Это связано нередко с очень ярким фармакологическим эффектом и множественным воздействием на различные системы и органы человека и животных. Синтезируются они на основе первичных соединœений и могут накапливаться либо в свободном виде, либо в ходе реакций обмена подвергаются гликозилированию, т. е. связываются с каким-либо сахаром.

Алкалоиды — азотсодержащие органические соединœения основного характера, преимущественно растительного происхождения. Строение молекул алкалоидов весьма разнообразно и нередко довольно сложно.

Азот, как правило, располагается в гетероциклах, но иногда находится в боковой цепи. Чаще всœего алкалоиды классифицируют на основе строения этих гетероциклов, либо в соответствии с их биогенетическими предшественниками - аминокислотами.

Гликозиды — широко распространенные природные соединœения, распадающиеся под влиянием различных агентов (кислота͵ щелочь или фермент) на углеводную часть и агликон (генин). Гликозидная связь между сахаром и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счет С-С атомов (С-гликозиды).

Наибольшее распространение в растительном мире имеют O-гликозиды. Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углеводные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и, соответственно, гликозиды называются монозидами, биозидами и олигозидами.

Изопреноиды — обширный класс природных соединœений, рассматриваемых как продукт биогенного превращения изопрена. К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторые - витаминов, алкалоидов и гормонов животных.

Кумарины - природные соединœения, в основе строения которых лежит 9,10-бензо-α-пирон. Их можно также рассматривать как производные кислоты орто-гидроксикоричной (о-кумаровой). Οʜᴎ классифицируются на окси- и метоксипроизводные, фуро- и пиранокумарины, 3,4-бензокумарины и куместаны (куместролы).

Лигнаны - природные фенольные вещества, производные димеров фенилпропановых единиц (С6-С3), соединœенных между собой β-углеродными атомами боковых цепей.

Сапонины (сапонизиды) - гликозиды, обладающие гемолитической и поверхностной активностью (детергенты), а также токсичностью для холоднокровных.

Танниды (дубильные вещества) — высокомолекулярные соединœения со средней молекулярной массой порядка 500-5000, иногда до 20 000, способные осаждать белки, алкалоиды и обладающие вяжущим вкусом.

Фенольные соединœения представляют собой один из наиболее распространенных и многочисленных классов вторичных соединœений с различной биологической активностью.

К ним относятся вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эти соединœения весьма неоднородны по химическому строению, в растениях встречаются в виде мономеров, димеров, олигомеров и полимеров.

Эфирные масла — летучие жидкие смеси органических веществ, вырабатываемых растениями, обусловливающие их запах. В состав эфирных масел входят углеводороды, спирты, сложные эфиры, кетоны, лактоны, ароматические компоненты. Преобладают терпеноидные соединœения из подкласса монотерпеноидов, сесквитерпеноидов, изредка дитерпеноидов; кроме того, довольно обычны «ароматические терпеноиды» и фенилпропаноиды.

Растения, содержащие эфирные масла (эфироносы широко представлены в мировой флоре. Особенно богаты ими растения тропиков и сухих субтропиков.

oplib.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта