Осмотическое давление физиология растений. Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии Физиология растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии Физиология растений. Осмотическое давление физиология растений


31. Понятие об осмотическом давлении. Осмотическое давление разных клеток и тканей растения. Предмет, задачи и методы физиологии растений

Похожие главы из других работ:

Аспекты биотехнологического процесса

9. Применение растительных клеток для трансформации лекарственных веществ. Преимущества получения целевых продуктов с использованием культур клеток растении по сравнению с традиционными. Экономические аспекты биоиндустрии культуры тканей растений

Растения являются продуцентами многих БАВ - соединений, способных оказывать слияние на биологические процессы в организме. К таким соединениям принадлежат сердечные гликозиды, сапонины, стерины, каратиноиды, полифенолы, алкалоиды, витамины...

Атмосферное давление на тело человека

Глава I. Понятие об атмосферном давление

...

Атмосферное давление на тело человека

1.1 Атмосферное давление

Давление, оказываемое атмосферой Земли на все находящиеся в ней предметы, называется атмосферным давлением. Наибольшее давление, обусловленное весом воздуха, испытывает поверхность Земли, а также все тела, находящиеся на ней...

Атмосферное давление на тело человека

Глава II. Внутреннее и внешнее давление

...

Влияние свойств водной среды на организм человека

Механическое давление. Гидростатическое давление

Гидростатическое давление жидкости везде перпендикулярно к поверхности, на которую оно действует, и возрастает с глубиной, но остается постоянным в любой точке на горизонтальной площади...

Дезинтеграция как инструмент для направленного разрушения клеток и клеточных структур

2. Понятие дезинтеграции клеток и её цели

Дезинтеграция - разрушение клеток с помощью механического, физического, химического или иного воздействия с целью выделения их содержимого (напр., экстрагирования нуклеиновых кислот, белков и др...

Кровь и ее значение

3.2 Кровяное давление и его возрастные особенности

Переменное давление, под которым кровь находится в кровеносном сосуде, называют кровяным давлением. Величина давления определяется работой сердца, количеством крови, поступающим в сосудистую систему, интенсивностью ее оттока на периферию...

Механизмы управления фотосинтезом растений

7. Взаимодействие клеток в тканях и органах целостного растения

Представления об анатомо-физиологической целостности растения базируются на знаниях о единстве дифференциации и интеграции клеточных структур в тканях и органах, многоступенчатой связи структур...

Пластиды и их пигменты. Выделительные системы растений

VI. ПОНЯТИЕ О ВИДЕ РАСТЕНИЙ. СОСТАВЛЕНИЕ ВИДОВЫХ НАЗВАНИЙ РАСТЕНИЙ СОГЛАСНО БИНАРНОМУ МЕТОДУ К. ЛИННЕЯ. ВЫПИШЕТЕ ИЗ «СПИСКА ОСНОВНЫХ СЕМЕЙСТВ И ВИДОВ» 6 ВИДОВ (ИЗ НИХ 2 ОДНОГО РОДА) ИЗ РАЗНЫХ СЕМЕЙСТВ

Вид - совокупность популяций особей, способных к скрещиванию с образованием плодовитого потомства, населяющих определенную территорию...

Строение клеток, тканей, органов

Строение тканей

Функции, выполняемые животным организмом, очень разнообразны, поэтому и клетки в нем построены неодинаково. По внешним, или морфологическим, признакам можно выделить однородные группы клеток...

Ткани и их функции в растительных организмах

3.1 Значение и разнообразие образовательных тканей

Отличительной особенностью растений является их способность к неограниченному росту. Рост растений служит основой развития как отдельных органов, так и всего организма...

Ткани и их функции в растительных организмах

4.1 Значение и разнообразие покровных тканей

Покровные ткани являются пограничными. Они располагаются на поверхности органов растений, что обусловливает особенности их строения и многообразие выполняемых функций. 1. Покровные ткани обеспечивают связь растений с окружающей средой...

Ткани и их функции в растительных организмах

5.1 Значение и разнообразие основных тканей

Основные ткани составляют большую часть тела растений по массе и объёму. Благодаря форме клеток они называются также паренхимными. Основные ткани располагаются во всех вегетативных и репродуктивных органах покрытосеменных: в корнях, стеблях...

Транспорт и распределение тяжелых металлов и поливалентных катионов в высших растениях

3.3 Роль различных тканей растения в транспорте и распределении тяжелых металлов и поливалентных катионов

Проведенный анализ имеющихся сведений о транспорте и распределении тяжелых металлов в различных тканях растений показывает, что разные ткани, с одной стороны, могут выполнять неодинаковую функциональную роль в отношении разных металлов...

Физиология дыхания

6. Особенности дыхания при физической нагрузке и при измененном парциальном давлении.

В различных условиях среды обитания системы нейрогуморальной регуляции дыхания и кровообращения функционируют в тесном взаимодействии как единая кардиореспираторная система...

bio.bobrodobro.ru

Осмотическое давление у растений | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Тема:

Физиология растений

Исходя из формулы, выраженной из уравнения Клапейрона:

p = RCT,

где p — осмотическое давление; V — объем в литрах, в ко­тором растворен один моль вещества; R — газовая постоянная, равная 0,0821; T — абсолютная температура 273°, C — молярная концентрация раствора, мы легко получаем величину осмотического давления у растения, зная концентрацию клеточного сока и температуру, при которой ведется измерение.

Устанавливается величина осмотического давления различными путями: криоскопическим по по­нижению точки замерзания раствора (выжатого клеточного сока) или плазмолитическим, т. е. подбирая такую концентрацию раствора, при которой только начинается плазмолиз. Если при 0,5 молярности раствора сахарозы плазмолиз был, а при 0,4 его не было, то, значит, концентрация клеточного сока лежит между этими величинами, т. е. около 0,45. Подставляя эту величину в формулу, найдем, что при 20° C осмотическое давление равня­ется 10,8 атмосферы.

Осмотическое давление неодинаково у различных растений. У расте­ний водных (за исключением растений морей и засоленных водоемов) оно невелико; у растений засушливых местообитаний, в частности у степных ра­стений, оно значительно выше, достигая 30 и более атмосфер. Особенно велико оно у растений засоленных почв, где указыва­ются осмотические давления до 100 атмосфер и выше.

Осмотическое давление не остается постоянным в течение всей жизни растения, меняясь с возрастом и прохождением стадий и фаз развития. Мо­лодые растения характеризуются меньшими величинами давления, по срав­нению с более старыми.

Огромную роль играет осмотическое давление в поступлении воды в клетку.

Таблица. Величина осмотического давления у степных растений

Дата

Часы наблюдений

Шалфей

Вероника

Клубника

7 августа

6 ч

25,0

37,3

37,3 Материал с сайта http://worldofschool.ru

15 ч

25,4

37,9

32,7

19 ч 30 мин

21,0

36,1

-

На этой странице материал по темам:
  • Таблица осмотическое давление клеток растений

worldofschool.ru

Предмет, задачи и методы физиологии растений

Когда раствор отделен от воды полупроницаемой мембраной, которая пропускает только растворитель и непроницаема для растворенных веществ, возникает односторонний ток воды по градиенту ее активности в направлении раствора. Этот процесс называется осмосом, а дополнительное давление, которое должно быть приложено к раствору, чтобы воспрепятствовать одностороннему току воды, — осмотическим давлением .

Таким образом, осмотический потенциал раствора, отделенного полупроницаемой мембраной от чистого растворителя, реализуется в равном по величине и обратном по знаку осмотическом давлении. Растворы с одинаковым давлением называются изотоническими, между ними нет направленного водообмена. Раствор, имеющий большее осмотическое давление, называется гипертоническим, меньшее — гипотоническим. При разделении полупроницаемой мембраной транспорт воды идет по направлению к гипертоническому раствору.

Клетка, а также все органеллы, окруженные мембранами (хлоропласты, митохондрии и др.), представляют собой осмотические системы. Поскольку мембраны обладают избирательной проницаемостью и вода проходит через них значительно легче, чем растворенные вещества, допускают, что мембраны полупроницаемы, т. е. проницаемы только для воды. Всю цитоплазму обычно рассматривают как единый полупроницаемый барьер.

В зрелых растительных клетках главным «осмотическим пространством» является вакуоль. Именно клеточный сок, содержащий растворенные в воде различные соли, сахара, органические кислоты, аминокислоты и другие соединения, представляет собой осмотический актив клетки. Суммарная концентрация растворенных веществ в клеточном соке варьирует от 0,2 до 0,8 М. Осмотический потенциал клеточного сока измеряется сотнями и достигает тысяч кПа.

В проводящих элементах стебля и корня, как правило, отрицательная величина осмотического потенциала очень низка. В листьях осмотический потенциал колеблется от 10 до 18 бар.

Осмотический потенциал различен у разных жизненных форм. У древесных пород он более отрицателен, чем у кустарников, а у кустарников более отрицателен, чем у травянистой растительности. У светолюбивых растений осмотический потенциал более отрицателен, чем у тенелюбивых.

Хлорофиллы

Важную роль в процессе фотосинтеза играет зеленый пигмент — хлорофилл. Французские ученые Пелетье и Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» — зеленый и «филлон» — лист).

У всех высших зеленых растений содержатся хлорофиллы а и б. Хлорофилл с содержится в диатомовых водорослях, хлорофилл д— в красных. Известны четыре бактериохлорофилла (а, б, с, д) ,содержащиеся в клетках фотосинтезирующих бактерий.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофилл для бактерий.

У низших растений и некоторых голосеменных (у хвойных) хлорофилл может образовываться в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. По мере роста проростков в темноте образовавшийся хлорофилл разрушается, и на 35—40-й день проростки при отсутствии света погибают. Проростки хвойных, выращенные из изолированных зародышей в темноте, хлорофилла не образуют, однако достаточно присутствия даже небольшого эндосперма, чтобы проростки начали зеленеть.

Фикобилины

Сине-зеленые водоросли (цианобактерии), красные морские водоросли и некоторые морские криптомонады помимо хлорофилла а и каротиноидов содержат пигменты фикобилины. Наиболее известные представители фикобилинов — фикоэритробилины и фикоцианобилины. Первые преобладают у красных водорослей, вторые — у сине-зеленых.

Значение фикобилинов — поглощать лучи определенного участка спектра. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектра. Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м — желтые, на глубине 322 м — зеленые и, наконец, на глубине свыше 500 м не проникают даже синие и фиолетовые лучи. В связи с этим изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже сине-зеленые и еще глубже водоросли с красной окраской. Такое явление В. Т. Энгельман назвал хроматической комплементарной адаптацией водорослей.

У водорослей фикобилины — дополнительные пигменты, выполняющие вместо хлорофилла б функции светособирающего комплекса. Около 90% энергии света, поглощенного фикобилинами, передается на хлорофилл а. Кроме фикобилинов, участвующих в фотосинтезе у водорослей, у всех растений имеется другой фикобилин — фитохром, являющийся фиторецептором для восприятия красного и дальнего красного света и выполняющий регуляторные функции.

Каротиноиды

Это большая группа пигментов желтого, оранжевого и красного цвета. Каротиноиды широко распространены в природе: их обнаружено больше трехсот. Однако в фотосинтезе участвуют лишь некоторые из них.

Поглощение света каротиноидами, а следовательно, их окраска обусловлены наличием конъюгированных двойных связей. β-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноидами не поглощаются. Каротиноиды в отличие их от хлорофилла не обладают способностью к флюоресценции. Подобно хлорофиллу, каротиноиды в хлоропластах вступают во взаимодействие с белками.

Каротиноиды принимают участие в процессе фотосинтеза, но их роль вспомогательная. Они поглощают определенные участки спектра света и передают энергию на хлорофилл, одновременно защищая молекулу хлорофилла от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое взаимопревращение ксантофиллов. Примером может служить виолаксантиновый цикл.

Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода.

Производные каротиноидов — витамин А, ксантоксин, действующий подобно АБК. Хромопротеин родопсин, обнаруженный у некоторых галофитных бактерий, поглощая свет, функционирует в качестве Н+ -помпы. Хромофорной группой бактериородопсина является ретиональ-альдегидная форма витамина А.

В растениях в процессе фотосинтеза образуются не только фосфорные эфиры сахаров или простые сахара, но и более сложные формы углеводов — сахароза, крахмал, клетчатка. Распад сложных форм углеводов до простых протекает тоже очень быстро. Это наблюдается, например, при прорастании семян, старении вегетативных органов и др. Образующиеся при распаде простые сахара или их фосфорные эфиры оттекают в репродуктивные органы, где из них вновь синтезируются сложные углеводы. И, наконец, в растениях очень легко идут процессы взаимных превращений углеводов.

Взаимопревращение моносахаридов проходит через фосфорные эфиры сахаров или их уридиндифосфатпроизводные (УДФ-производные). УДФ-производные сахаров представляют собой тот или иной сахар, соединенный через два остатка фосфорной кислоты с уридином, например:

Уридиндифосфатглюкоза

Примеры взаимных превращений сахаров могут быть представлены в виде следующей схемы.

Схема взаимопревращений сахаров

Синтез сахарозы. Сахароза наиболее распространенный дисахарид. В растениях он образуется из глюкозы и фруктозы. На первом этапе идетфосфорилирование глюкозы:

Глюкоза + АТФ → глюкоза-6-фосфат + АДФ,

затем глюкозо-6-фосфат изолируется в глюкозо-1-фосфат. Глюкозо-1-фосфат соединяется с УТФ, в результате чегоотщепляется пирофосфатная кислота и образуется соединение глюкозы с уридиндифосфорной кислотой (УДФ) — уридиндифосфатглюкоза.

Одновременно идет фосфорилирование фруктозы под действием фермента фруктокиназы с участием АТФ:

фруктоза + АТФ → фруктозо-6-фосфат + АДФ.

После этого происходит взаимодействие УДФ-глюкозы с фруктозо-6-фосфатом с участием фермента сахарозофосфат-УДФ-глюкозилтрансферазы. Наконец, образовавшийся сахарозо-6-фосфат под действием фермента фосфатазы гидролизуется с образованием свободной сахарозы.

mirznanii.com

Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии Физиология растений

Ганчарова О.С., Куравский М.Л.

Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии

Физиология растений

Задания по физиологии растений, как правило, попадаются на практическом туре 10-11-м классам. Обычно предлагают работы, связанные с осмотическими явлениями в растительных клетках (плазмолиз и деплазмолиз), работой устьиц или разделением фотосинтетических пигментов методом хроматографии.

Осмотические явления в растительной клетке. Плазмолиз

Осмос и осмотические явления. Осмотическое давление

Все биологические мембраны представляют собой полупроницаемые мембраны, так как в силу своей структуры они пропускают одни вещества (воду, газы), а другие (крупные заряженные молекулы, к примеру, глюкозу) – нет. На самом деле, конечно, в мембране клетки есть переносчики для глюкозы, но они строго регулируются и не позволяют веществу проходить в клетку бесконтрольно; то же самое можно сказать про каналы для ионов. Избирательность транспорта веществ через мембрану считается одним из признаков жизни на клеточном уровне. Мертвая клетка не контролирует поступление и веществ внутрь себя и выведение веществ наружу. Тем не менее, из-за липидной природы даже мембрана мертвой клетки остается полупроницаемой, хотя и менее «избирательной», чем мембрана живой.

Избирательность транспорта через проницаемую мембрану ведет к возникновению в клетке осмотических явлений. Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют: плазмалемма – мембрана, разделяющая цитоплазму и внеклеточную среду, и тонопласт – мембрана, разделяющая цитоплазму и клеточный сок, представляющий собой содержимое вакуоли растительной клетки.

Осмосом называют диффузию воды через полупроницаемую мембрану из раствора с низкой концентрацией растворенного вещества в раствор с высокой концентрацией растворенного вещества. Явление осмоса может быть продемонстрировано на классическом примере. Представим сосуд, разделенный на две части полупроницаемой мембраной, в одной половине сосуда находится более концентрированный раствор соли (к примеру, 1M NaCl), в другой – менее концентрированный (0,01 M NaCl). В начале опыта (рис. 12A) объем раствора в каждой из половин одинаков, а концентрация соли различается.

Рис. 12. Схема, демонстрирующая явление осмоса

Ионы Na+ и Cl-, на которые соль, будучи сильным электролитом, распадается сразу после попадания в раствор, не могут пройти через мембрану, в отличие от молекул воды. Неверно думать, что вода из отсека с большей концентрацией соли не переходит в отсек с меньшей концентрацией. Вода идет через мембрану в обе стороны, но интенсивность перехода разная. Известно, что ионы в воде гидратированы – покрыты гидратной «шубой». Вода распадается на ионы H+ и OH- которые электростатически связываются с ионами хлора и натрия, соответственно. Так как в «правой» половине сосуда (см. рис. 12) концентрация Na+ и Cl- больше, соответственно больше воды требуется для гидратирования этих ионов. В связи с этим вода интенсивнее переходит из отсека с малой концентрацией соли в отсек с большой концентрацией. Поскольку вода будет перетекать из разбавленного раствора в концентрированный быстрее, чем в обратном направлении, в целом движение воды между двумя растворами будет идти в одну сторону. В результате уровень раствора в первом понижается, а в последнем повышается; концентрация соли в отсеках выравнивается (рис 12B). Заметим, что изменение объема жидкости и концентрации соли связано с перераспределением только молекул воды, но не соли, так как мембрана непроницаема для ионов натрия и хлора.

Если приложить к столбу жидкости в отсеке с большей начальной концентрацией соли давление (красная стрелка на рисунке 12B), диффузия воды замедлится. Давление, при котором диффузия жидкости прекращается, называется осмотическим давлением. Описанным образом осмотическое давление измеряется для раствора, к которому прикладывается давление (то есть в описанном примере измерено осмотическое давление раствора с большей начальной концентрацией соли). Осмотическое давление – очень важная величина, характеризующая осмос. В физической химии осмотическое давление обозначается буквой π и вычисляется по простой формуле:

π = CRT,

где C – концентрация раствора, R – универсальная газовая постоянная (8,314 ), T – абсолютная температура (K). Попробуем проанализировать это выражение. R – просто постоянная величина, константа, которая никак не влияет на осмотическое давление. Температуру тоже можно принять за постоянную величину, поскольку мы рассматриваем живые системы, которые существуют в узком температурном диапазоне (мы не будем принимать во внимание бактерий-экстремальных термофилов). Следовательно, по большому счету, осмотическое давление раствора зависит только от его концентрации, причем зависимость линейная: чем больше концентрация соли (или сахара, или другого вещества, не проходящего через полупроницаемую мембрану – осмотически активного вещества) в растворе, тем больше его осмотическое давление. В нашем случае осмотическое давление раствора поваренной соли с концентрацией 0,01M гораздо меньше, чем осмотическое давление раствора с концентрацией 1M.

Обычно при описании живых систем, биологических жидкостей и других растворов не указывают значение осмотического давления, пользуясь относительной характеристикой. Принято описывать осмотическое давление растворов относительно интересующей нас жидкости (к примеру, крови, цитоплазмы, клеточного сока). Если осмотическое давление раствора больше, чем давление «нашей» жидкости, раствор называют гипертоническим; если меньше – гипотоническим, если такое же – изотоническим. В этом определении слова «осмотическое давление» смело можно заменить на «концентрация осмотически активного вещества», так как мы уже выяснили, что осмотическое давление раствора зависит от концентрации линейно. В приведенном выше примере раствор с концентрацией 0,01M NaCl является гипотоническим по отношению к раствору с концентрацией 1M NaCl. Широко используемый в медицинской практике физиологический раствор, является изотоническим по отношению к плазме крови. Концентрация солей в физиологическом растворе и плазме крови одинакова, а значит, одинаково и осмотическое давление. Заметим, что существует несколько типов физиологических растворов с одинаковым осмотическим давлением и немного отличающимся составом солей – растворы Рингера – Локка, Рингера – Тироде и Кребса – Рингера.

Осмотическое давление жидкостей живых организмов может быть очень значительным. К примеру, осмотическое давление жидкостей человеческого тела в среднем равно семи (!) атмосферам. Именно за счет осмотического давления вода из корней деревьев доходит до листьев.

Если приложить к столбу жидкости в указанном отсеке сосуда давление, большее осмотического, процесс осмоса «пойдет вспять» - начнется переход растворителя из отсека с большей концентрацией соли в отсек с меньшей концентрацией соли. Это явление носит название обратного осмоса. Обратный осмос находит широкое применение в производстве фильтров для очистки питьевой воды.

Тургор растительной клетки

Если взять клетки животных, например, эритроциты, и поместить их в физиологический раствор, морфология клеток не изменится, так как физиологический раствор изотоничен плазме крови (содержит физиологическое количество солей). Если же поместить эритроциты в гипертонический раствор, например, в раствор с концентрацией соли 10%, вода по закону осмоса будет выходить из цитоплазмы (как из жидкости с меньшей концентрацией соли) в окружающий раствор, в результате чего эритроциты сморщатся. При помещении эритроцитов в гипотоническую среду (дистиллированную воду), вода будет проникать внутрь клеток, «стараясь» уравновесить концентрации солей внутри и вне клетки. В конце концов, эритроциты лопнут, их содержимое высвободится в воду, превратив содержимое пробирки в так называемую «лаковую кровь» - прозрачную красную жидкость. Этот известный эксперимент показывает, что клетки животных не окружены плотной оболочкой и вынуждены существовать в очень ограниченном диапазоне концентраций солей. Клетки пресноводных простейших, не обладающих достаточно плотной оболочкой (амебы, инфузории) справляются с проблемой переизбытка воды с помощью сократительных вакуолей, постоянно «вычерпывающих» лишнюю воду за пределы клетки.

Если поместить взрослые клетки растений (в составе ткани, к примеру, эпидермиса) в гипотонические условия, они не лопнут, поскольку каждая клетка растения окружена более или менее толстой клеточной стенкой. Последняя служит ригидной структурой, не позволяющей притекающей воде разорвать клетку. Если бы клеточная стенка и плазматическая мембрана клетки могли растягиваться, вода входила бы в клетку до тех пор, пока концентрация осмотически активных веществ снаружи и внутри клетки не выровнялась бы. В реальности клеточная стенка – прочная нерастяжимая структура, и в гипотонических условиях входящая в клетку вода давит на клеточную стенку, плотно прижимая к ней плазмалемму. Давление протопласта изнутри на клеточную стенку называется тургорным давлением. Говорят, что клетки растений обладают тургесцентностью. Тургорное давление препятствует дальнейшему поступлению воды в клетку. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора.

Заметим, что клетки растений обычно находятся в гипотонических условиях, поскольку содержимое растительной клетки богато осмотически активными веществами, большая часть которых (органические кислоты, сахара, солей, низкомолекулярных пигментов) входят в состав клеточного сока, расположенного внутри вакуоли. Вакуоли – органеллы, присущие растительным клеткам. Мембрана, ограничивающая вакуоль, называется тонопластом, и по своим свойствам сходна с плазмалеммой. Это мембрана, обладающая избирательной проницаемостью и способностью к активному транспорту. Осмотически активные вещества с целью запасения или утилизации переносятся в вакуоль с помощью белков-каналов и переносчиков, обратно эти вещества в большинстве своем не выходят. Таким образом, с помощью избирательного активного транспорта в клетке создается градиент осмолярности – клеточный сок гипертоничен по отношению к цитоплазме, а цитоплазма гипертонична по отношению к окружающей среде. Вода извне поступает в клетку, «стремясь» уравнять концентрации осмотически активных веществ, давит на клеточную стенку изнутри, обеспечивая тургор.

Тургор – показатель оводненности и состояния водного режима растений. Снижением тургора сопровождаются процессы, увядания и старения клеток. Именно за счет тургора органы растений находятся в выпрямлено, упругом состоянии. Увядание растения – не что иное, как понижение тургорного давления его клеток.

Неверно думать, что тургесцентность свойственна только клеткам растений или бактерий, обладающих клеточной стенкой. Тургор есть и у животных клеток, но он невелик из-за гораздо меньшей прочности плазмалеммы по сравнению с клеточной стенкой (именно из-за наличия тургора, а также из-за эластичности цитоплазматической мембраны, эритроциты в гипотонических условиях разрушаются не сразу, а после некоторого набухания). При разрушении клеточных стенок растительных клеток тургесцентность последних резко падает, и в гипотонических условиях обнаженные протопласты клеток растений ведут себя так же, как клетки млекопитающих.

Плазмолиз. Виды плазмолиза

Под плазмолизом понимается отделение протопласта клетки от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, обладающих жесткой клеточной стенкой. Животные клетки при помещении в гипертонический раствор, как было указано выше, теряя воду, сморщиваются и уменьшаются в размерах. Плазмолиз растительной клетки аналогичен этому процессу, но сморщивание протопласта происходит внутри клеточной стенки. В нормальных условиях плазмалемма растительной клетки плотно прижата к клеточной стенке изнутри под действием тургорного давления. При помещении клетки в раствор, концентрация осмотически активных веществ в котором больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки. В процессе плазмолиза протопласт теряет воду, уменьшается в размерах и отделяется от клеточной стенки.

Известно, что живые ткани растения в какой-то мере могут быть рассмотрены как симпласты (синцитии), поскольку протопласты соседних клеток сообщаются между собой через плазмодесмы – цитоплазматические нити, располагающиеся в канальцах, пронизывающих клеточную стенку. Плазмодесмы располагаются в клетке группами на месте так называемых первичных поровых полей. Роль плазмодесм заключается в обеспечении передачи раздражений и передвижения веществ от клетки к клетке. Протопласт как бы закреплен на клеточной стенке в местах расположения плазмодесм, поэтому при уменьшении объема клетки в процессе плазмолиза протопласт дольше всего остается прикрепленным к клеточной стенке именно в местах плазмодесм.

Исследование плазмолиза позволяет сделать выводы о проницаемости мембран растительных клеток для различных веществ, о величине нормального тургорного давления. Плазмолиз чаще всего исследуют на препаратах, в которых клетки расположены в один или несколько слоев и удобны для изучения. К таким препаратам можно отнести кожицу лука, листья элодеи, эпидермис листьев высших растений.

В зависимости от вязкости цитоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а, следовательно, от скорости и степени потери воды цитоплазмой, различают плазмолиз выпуклый, вогнутый, судорожный и колпачковый.

Изучение форм плазмолиза на препарате листа элодеи

В ходе плазмолиза форма плазмолизированного протопласта меняется. Рассмотрим плазмолиз клетки листа элодеи, помещенного в гипертонический раствор. Для наблюдения плазмолиза нужно сделать временный препарат листа элодеи, для начала поместив лист в воду и накрыв покровным стеклом. Клетки листа следует рассматривать на большом увеличении. Вода – гипотоничная относительно содержимого клетки среда, и пока лист элодеи находится в воде, клетки находятся в состоянии тургора, их протопласт плотно прижат тургорным давлением к клеточной стенке (рис. 8A). При этом на микропрепарате не видно мест, где находятся плазмодесмы (плазмодесмы – объект электронномикроскопического исследования, их средний диаметр составляет 0,3-0,4 нм). Для того чтобы вызвать плазмолиз в клетках, нужно сменить внеклеточную среду на гипертоничную. С этой целью препарат снимают со столика микроскопа, с одного бока покровного стекла, прикрывающего лист элодеи, помещают каплю гипертонического раствора так, чтобы она касалась покровного стекла. С другой стороны стекла аналогично помещают кусочек фильтровальной бумаги. Из-за возникающих капиллярных сил вода, находящаяся под стеклом, впитывается бумагой, втягивая гипертонический раствор под стекло. После замены раствора нужно немного подождать (5 минут), затем наблюдать формы плазмолиза, переходящие одна в другую.

В начале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым (рис. 13Б). Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым (рис. 13В). Места, в которых сохраняется связь протопласта с клеточной стенкой, отражают расположение групп плазмодесм в клетке. Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого (рис. 13Г). Если у протопласта связь с клеточной стенкой в отдельных местах сохраняется, то при дальнейшем уменьшении объема в ходе плазмолиза протопласт приобретает неправильную форму. Протопласт остается связанным с оболочкой многочисленными нитями Гехта, прикрепляющимися к клеточной стенке в местах расположения групп плазмодесм. Такой плазмолиз носит название судорожного (рис. 13Д).

Рис. 13. Плазмолиз растительной клетки: А – клетка в состоянии тургора; Б – уголковый; В – вогнутый; Г – выпуклый; Д – судорожный. 1 - оболочка, 2 - вакуоль, 3 - цитоплазма, 4 - ядро, 5 - нити Гехта.

Приготовить временный препарат кожицы лука, листа элодеи либо эпидермиса листа высшего растения. Вплотную к покровному стеклу нанести на предметное стекло каплю раствора соли - более концентрированного, чем раствор веществ, содержащихся в вакуолях. С другой стороны на предметное стекло вплотную к покровному стеклу положить полоску фильтровальной бумаги, которую нужно держать до тех пор, пока раствор соли не войдет под покровное стекло, заменив воду. Через 5-10 минут обратить внимание на отрыв цитоплазмы от оболочки клеток, т.е. плазмолиз.

Влияние разных агентов, вызывающих плазмолиз, на форму плазмолиза

Форма плазмолиза зависит не только и не столько от стадии процесса (очень редко удается проследить возникновение всех форм плазмолиза на одном и том же препарате), как от свойств цитоплазмы клетки: ее вязкости, гидрофильности, коллоидного состояния (гель или золь). Те или иные свойства цитоплазмы могут быть модулированы агентами, вызывающими плазмолиз.

Задание:

Исследовать влияние ионов натрия и кальция на форму плазмолиза.

Ход работы:

Взять два чистых предметных стекла, капнуть на одно из них 1M KNO3? на другое – 1M Ca(NO3)2, в каждую каплю поместить лист элодеи (или кожицу лука, или препарат эпидермиса листа растения), накрыть покровным стеклом. Через пять-десять минут рассмотреть препараты под микроскопом, сначала на малом, потом на большом увеличении. Найти участки с плазмолизированными клетками, зарисовать клетки в состоянии плазмолиза.

Результат:

В растворе нитрата калия возникает главным образом выпуклый плазмолиз (см. рисунок 13Г), в растворе нитрата кальция – судорожный плазмолиз (см. рисунок 13Д).

Ион калия (очень медленно по сравнению с водой проходящий через мембрану за счет наличия калиевых каналов) уменьшает вязкость цитоплазмы, способствуя ее отделению от клеточной стенки, вследствие чего возникает выпуклый плазмолиз. Ион кальция, напротив, повышает вязкость цитоплазмы, увеличивая силы ее сцепления с клеточной стенкой, что вызывает преимущественно судорожный плазмолиз.

Оба описанных вида плазмолиза обычно предваряются вогнутым плазмолизом.

Исследование колпачкового плазмолиза в раствора роданида калия.

Задание:

Вызвать возникновение колпачкового плазмолиза в клетках растений. Объяснить, в связи с чем возникает указанный тип плазмолиза.

Ход работы:

На чистое предметное стекло капается 1M раствор роданида калия KSCN (или нитрата калия KNO3), в каплю кладется кожица лука или лист элодеи, препарат накрывается покровным стеклом и рассматривается под микроскопом на большом увеличении.

Результат: При длительном нахождении клеток в растворе роданида или нитрата калия (15 мин. и более) цитоплазма набухает, там, где протопласт не касается клеточных стенок, вокруг вакуолей образуются так называемые колпачки цитоплазмы (рис. 14).

Рис. 14. Колпачковый плазмолиз в клетке листа элодеи, длительно находящейся в растворе KNO3. Белым показана вакуоль, ограниченная коричневатыми колпачками цитоплазмы.

Вывод:

Колпачковый плазмолиз возникает при разной проницаемости плазмалеммы и тонопласта: ионы калия, медленно проникают в цитоплазму через калиевые каналы, вызывая ее набухание. В тонопласте таких каналов не имеется, и поэтому объем вакуоли не увеличивается.

Деплазмолиз

Плазмолизированные клетки обычно остаются живыми, особенно если клетка провела в состоянии плазмолиза короткое время. При помещении живой плазмолизированной клетки в воду или гипотонический раствор происходит деплазмолиз – клетка вернется в состояние тургора и приобретет нормальный вид.

В условиях гипотонического раствора, концентрация осмотических веществ в котором меньше, чем в клеточном соке, вода из внеклеточной среды будет поступать внутрь клетки (а там – внутрь вакуоли, «стараясь» уменьшить концентрацию клеточного сока). В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая, в свою очередь, которая начнет приближаться к стенкам клетки, пока не примет первоначальное положение. Деплазмолиз обычно происходит медленнее, чем плазмолиз.

Сравнение проницаемости клеточных мембран для различных веществ

По интенсивности плазмолиза и по времени наступления деплазмолиза можно оценить проницаемость мембраны для тех или иных веществ.

Задание:

исследовать проницаемость мембран растительной клетки для сахарозы и мочевины (карбамида).

Ход работы:

Взять два чистых предметных стекла, на одно капнуть 1M раствор сахарозы, на другое – 1M мочевину, в каждую каплю поместить лист элодеи (или кожицу лука, или препарат эпидермиса листа растения), накрыть покровным стеклом. Через пять минут рассмотреть препараты под микроскопом, сначала на малом, потом на большом увеличении. Найти участки с плазмолизированными клетками, зарисовать клетки в состоянии плазмолиза. Отметить время начала плазмолиза. Оставить препараты на полчаса, затем снова рассмотреть их под микроскопом. Отметить, в каком препарате произошел деплазмолиз, зарисовать клетки из обоих препаратов.

Вывод:

В условиях гипертонического раствора как сахарозы, так и мочевины в клетках возникает плазмолиз, поскольку оба указанных вещества растворимы в воде и осмотически активны. В растворе сахарозы деплазмолиз не возникает, так как плазмалемма непроницаема для крупных молекул сахаров и раствор сахарозы остается гипертоничным относительно содержимого клетки с течением времени. В растворе мочевины по прошествии некого промежутка времени происходит деплазмолиз, так как плазмалемма обладает проницаемостью для мочевины (хотя меньшей, чем для воды, поэтому плазмолиз изначально возникает), и постепенно мочевина проходит в клетку. За ней внутрь клетки следует вода, обеспечивающая тургорное давление – возникает деплазмолиз.

Для сравнительной оценки плазмолиза в тканях существует 2 метода: пограничного плазмолиза и плазмометрический. Первый метод, разработанный Гуго Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией осмотичнески активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после плазмолиза измеряют относительный объем клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

Разделение фотосинтетических пигментов методом тонкослойной хроматографии

Задание:

Разделить фотосинтетические пигменты, входящие в состав предложенной вытяжки, методом тонкослойной хроматографии (на бумаге), определить пигменты на полученной хроматограмме.

Что делать:

Провести разделение, следуя предложенной методике. На полученной хроматограмме обвести карандашом и подписать пятна пигментов, отметить линию фронта и вычислить значения Rf. Объяснить полученный результат.

Методика проведения тонкослойной хроматографии (на бумаге)

Полоску хроматографической бумаги шириной 2-3 см и длиной, соответствующей высоте хроматографической камеры, положить на чистую поверхность стола и нанести карандашом линию старта на расстоянии 2 см от края. Аккуратно перенести небольшую порцию вытяжки с помощью шприца или капилляра на линию старта (диаметр пятна на должен превышать 1 см). После полного высыхания повторить процедуру 3-4 раза с целью повышения концентрации пигментов. Поместить полоску хроматографической бумаги в хроматографическую камеру, на дне которой налит неполярный растворитель (бензин, гексан). При этом пятно пигментов должно находится выше уровня растворителя. Плотно закрыть хроматографическую камеру (для предотвращения высыхания растворителя с хроматографической бумаги, которое приводит к увеличеснию размытости пятен), подождать, пока расстояние между фронтом растворителя и верхним краем полоски бумаги не достигнет 2-3 см. Вынуть полученную хроматограмму из хроматографической камеры и сразу же отметить на ней карандашом положение фронта растворителя и пятнен пигментов.

Механизм разделения пигментов

Разделение пигментов основано на различие их растворимостей в подвижной и неподвижной фазах. В качестве подвижной фазы обычно используют неполярные растворители (бензин, гексан), в качестве подвижной фазы выступает полярный растворитель – вода, адсорбированная на волокнах целлюлозы, из которой состоит бумага. При проведении хроматографии подвижная фаза движется по бумаге под действием капиллярных сил. Чем выше отношение растворимостей пигмента в подвижной и неподвижной фазах, тем большее расстояние он проходит.

Таким образом, наибольший пробег соответствует неполярным пигментам, наименьший – полярным. Фотосинтетические пигменты распределяются в следующем порядке (начиная от фронта растворителя): каротины (светло-желтые), ксантофиллы (желтые), феофитин (серый), хлорофилл a (сине-зеленый), хлорофилл b (желто-зеленый), лютеин (один из ксантофиллов, ярко-желтый) – рис. 15-17. Феофитин является ассоциированным со II фотосистемой переносчиком электронов, но в значительно большем количестве образуется при разрушении хлорофиллов. Большое количество феофитина на хроматограмме говорит о том, что предложенная вытяжка пигментов была несвежей.

Расстояние, пройденной пигментом, характеризуется величиной Rf, которая представляет собой отношение расстояния, пройденного пигментом, к расстоянию, пройденному фронтом растворителя подвижной фазы. В стандартных условиях эта величина является постоянной для каждого пигмента и приводится в справочниках.

А.

Б.

В.

Г.

Рис. 16. Некоторые дополнительные фотосинтетические пигменты Высших растений.

А. β-каротин. Б, В. Ксантофиллы (криптоксантин и лютеин соответственно). Г. Феофитин.

А.

Б.

Рис. 17 (А, Б). Хлорофилл a (А) и хлорофилл b (Б).

Наблюдение за движением устьиц

Задание:

1. Приготовить препарат эпидермиса листа растения (в воде), рассмотреть его и зарисовать состояние устьиц.

2. Заменить воду на раствор осмотически активного вещества низкой концентрации (5% глицерин или 0.1М сахароза). Наблюдать за происходящими изменениями, зарисовать состояние устьиц.

3. Заменить раствор осмотически активного вещества на воду, наблюдать за происходящими измененииями.

4. Заменить воду на раствор осмотически активного вещества в высокой концентрации (20% глицерин или 1М сахароза), наблюдать за происходящими изменениями.

5. Объяснить происходившие изменения.

Что делать:

Для приготовления препарата необходимо надломить лист и подцепить лоскут эпидермиса препаровальной иглой. Если лист достаточно тонкий (например, лист злака), достаточно резко разорвать его в направлении, параллельном жилкованию. По краю разрыва под микроскопом будут видны участки эпидермиса (рис. 18).

Полученный препарат поместить в каплю воды под покровное стекло. Для того, чтобы сменить воду на раствор осмотически активного вещества, необходимо нанести каплю раствора на край покровного стекла и убрать воду, прикоснувшись фильтровальной бумагой к противоположному краю покровного стекла. При этом раствор осмотически активного вещества будет затянут под покровное стекло.

При помещении препарата эпидермиса в раствор осмотически активного вещества вода начинает покидать вакуоли замыкающих клеток устьиц, что приводит к уменьшению в них внутриклеточного давления и закрывание устьичной щели (см. главу, посвященную плазмолизу). При помещении в воду происходят обратные процессы.

Для осуществления повторного закрывания устьичной щели необходимо поместить препарат в раствор более высокой концентрации. Это связано с тем, что некоторое количество осмотически активного вещества ранее проникло внутрь вакуолей замыкающих клеток, повысив осмотическое давление внутри них.

устьице

устьице

побочная клетка

Рис. 18 (А, Б). Эпидермис листа ириса (А) и листа кукурузы (Б).

Строение и механизм работы устьиц

Устьице состоит из двух замыкающих клеток, ограничивающих устьичную щель. Внутренные стенки замыкающих клеток утолщены значительно сильнее, чем наружние. Неодинаковая толщина стенок устьиц приводит к тому, что при изменении внутриклеточного давления они способны менять свою форму, вызывая открывание или закрывание устьичной щели. При увеличении внутриклеточного давления тонкие наружние стенки растягиваются, что приводит к деформации и расхождению более жестких внутренних стенок (устьичная щель открывается). При уменьшении внутриклеточного давления растяжение наружних стенок ослабевает, и внутренние стенки возвращаются в недеформированное состояние (устьичная щель закрывается).

Различают три типа движения устьиц: гидропассивные, гидроактивные и фотоактивные.

Гидропассивные движения. Насыщение водой клеток, прилежащих к устьицам, вызывает увеличение их объема. Это приводит к механическому сдавливанию замыкающих клеток устьица и закрыванию устьичной щели.

Гидроактивные движения. При повышении водного дефицита в замыкающих клетках синтезируется абсцизовая кислота, подавляющая работу H+-насосов. Это приводит к снижению осмотического давления внутри клеток и закрыванию устьичной щели.

Фотоактивные движения. Понижение интенсивности освещения вызывает закрывание устьичной щели. Механизм фотоактивных движений окончательно не установлен. Существует гипотеза, утверждающая, что при уменьшении освещенности падает интенсивность фотосинтеза. Это вызывает понижение концентрации сахаров в цитоплазме и, как следствие, снижение осмотического давления и закрывание устьичной щели.

Особое строение устьиц злаков

У

А

Б

стьица злаков имеют гантелевидую форму, причем утолщены не только стенки замыкающих клеток, обращенные в сторону устьичной щели, но и стенки, примыкающие к соседним клеткам эпидермиса. Замыкающие клетки окружены ромбовидной побочной клеткой. Механизм открывания и закрывания устьиц при изменении внутриклеточного давления связан с изменением объема концевых утолщений замыкающих клеток (рис. 19).

замыкающие клетки

побочная клетка

устьичная щель

Рис. 19 (А, Б). Строение устьичного аппарата злаков.

А. Устьичная щель закрыта. Б. Устьичная щель открыта.

- 41 -

refdb.ru

Осмотическое давление

Что такое осмотическое давление

Осмосом называют одностороннюю самопроизвольную диффузию молекул растворителя сквозь полунепроницаемую мембрану из наименее концентрированного в более концентрированный раствор. Полунепроницаемой мембраной является такая, которая проницаема для клеток растворителя и непроницаема для растворенных в нем частиц. По определению, осмотическое давление – это такое гидростатическое давление, приложение которого к данному раствору может прекратить диффузию частиц, то-есть осмос.

 

Осмос широко распространен в природе. Он свойственен всем биологическим организмам. Осмотическое давление возникает, если растворы разделены полупроницаемой мембраной. Например, возьмем находящиеся в клетках и межклеточном пространстве жидкости. В норме экстрацеллюлярное и интрацеллюлярное осмотическое давление одинаковы. Но если интерстициальная жидкость теряет воду, давление в ней возрастает. Под действием повышенного осмотического давления вода из клеток начинает диффундировать в межклеточное пространство. Диффузия прекратится только тогда, когда величины давления выровняются.

 

От чего зависит осмотическое давление

Давление при осмосе зависит от того, сколько растворенных частиц содержится в единице объема. Это могут быть молекулы, ионы или другие коллоидные частицы. Можно сказать, что осмотическое давление раствора связано с концентрацией всех частиц, активных осмотически, в единице объема. От химических свойств растворителя и растворенных в нем веществ оно не зависит.

 

Ученые выяснили, что осмотическое давление подчиняется тем же законам, что и давление газов. Его можно измерить с помощью приборов, называемых осмометрами. Они представляют собой особого рода манометры. В этих приборах используются полунепроницаемые мембраны животного и искусственного происхождения. Измерения давления показывают прямую зависимость его от концентрации раствора.

 

Закон осмотического давления, открытый Ван-Гоффом, утверждает, что его величина в числовом выражении равна такому давлению, которое оказывало бы вещество данного раствора, будучи при этой же температуре идеальным газом, с условием, что его объем был бы равен объему раствора.

Закон описывается уравнением: p=i C R T

i– значение изотонического коэффициента;

С – концентрация раствора, выраженная в молях;

R – величина универсальной газовой постоянной;

T – температура термодинамическая.

 

Значение осмотического давления для живых организмов

Осмос присущ живой природе, так как все клетки растений и животных организмов имеют мембраны, проницаемые для воды и непроницаемые для других веществ. В живых тканях, на границе клетки и межклеточной жидкости, постоянно действует осмотическое давление. Оно обеспечивает подъем питательных веществ и воды из земли к листьям растений и тургор растений, жизнедеятельность клеток.

 

Растворы, обладающие одинаковым осмотическим давлением, называют изотоническими. Те, в которых давление более высокое, называются гипертоническими, более низкое ‑ гипотоническими.

 

Осмотическое давление в человеческой крови составляет величину в 7,7 атм. Люди способны ощущать малейшие его колебания. Например, жажда после приема соленой пищи связана с его повышением. Местные отеки при воспалениях тоже возникают из-за повышения осмотического давления в месте воспаления.

 

Знание законов осмотического давления в медицине необходимо при проведении лечебных мероприятий. Так, медикам известно, что для внутривенных введений можно использовать только изотоничный плазме крови 0,9% раствор NaCl. Он не вызывает раздражения тканей. Напротив, гипертонический 3-5 % NaCl применяют для лучшего очищения гнойных ран от микроорганизмов и гноя.

Знание законов осмоса необходимо не только в медицине и биологии. Без него не обходятся многие виды человеческой деятельности, в том числе промышленность и энергетика.

fb.ru

Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии Физиология растений

Ганчарова О.С., Куравский М.Л.

Методическое руководство к выполнению практических заданий всероссийских олимпиал школьников по биологии

Физиология растений

Задания по физиологии растений, как правило, попадаются на практическом туре 10-11-м классам. Обычно предлагают работы, связанные с осмотическими явлениями в растительных клетках (плазмолиз и деплазмолиз), работой устьиц или разделением фотосинтетических пигментов методом хроматографии.

Осмотические явления в растительной клетке. Плазмолиз

Осмос и осмотические явления. Осмотическое давление

Все биологические мембраны представляют собой полупроницаемые мембраны, так как в силу своей структуры они пропускают одни вещества (воду, газы), а другие (крупные заряженные молекулы, к примеру, глюкозу) – нет. На самом деле, конечно, в мембране клетки есть переносчики для глюкозы, но они строго регулируются и не позволяют веществу проходить в клетку бесконтрольно; то же самое можно сказать про каналы для ионов. Избирательность транспорта веществ через мембрану считается одним из признаков жизни на клеточном уровне. Мертвая клетка не контролирует поступление и веществ внутрь себя и выведение веществ наружу. Тем не менее, из-за липидной природы даже мембрана мертвой клетки остается полупроницаемой, хотя и менее «избирательной», чем мембрана живой.

Избирательность транспорта через проницаемую мембрану ведет к возникновению в клетке осмотических явлений. Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют: плазмалемма – мембрана, разделяющая цитоплазму и внеклеточную среду, и тонопласт – мембрана, разделяющая цитоплазму и клеточный сок, представляющий собой содержимое вакуоли растительной клетки.

Осмосом называют диффузию воды через полупроницаемую мембрану из раствора с низкой концентрацией растворенного вещества в раствор с высокой концентрацией растворенного вещества. Явление осмоса может быть продемонстрировано на классическом примере. Представим сосуд, разделенный на две части полупроницаемой мембраной, в одной половине сосуда находится более концентрированный раствор соли (к примеру, 1M NaCl), в другой – менее концентрированный (0,01 M NaCl). В начале опыта (рис. 12A) объем раствора в каждой из половин одинаков, а концентрация соли различается.

Рис. 12. Схема, демонстрирующая явление осмоса

Ионы Na+ и Cl-, на которые соль, будучи сильным электролитом, распадается сразу после попадания в раствор, не могут пройти через мембрану, в отличие от молекул воды. Неверно думать, что вода из отсека с большей концентрацией соли не переходит в отсек с меньшей концентрацией. Вода идет через мембрану в обе стороны, но интенсивность перехода разная. Известно, что ионы в воде гидратированы – покрыты гидратной «шубой». Вода распадается на ионы H+ и OH- которые электростатически связываются с ионами хлора и натрия, соответственно. Так как в «правой» половине сосуда (см. рис. 12) концентрация Na+ и Cl- больше, соответственно больше воды требуется для гидратирования этих ионов. В связи с этим вода интенсивнее переходит из отсека с малой концентрацией соли в отсек с большой концентрацией. Поскольку вода будет перетекать из разбавленного раствора в концентрированный быстрее, чем в обратном направлении, в целом движение воды между двумя растворами будет идти в одну сторону. В результате уровень раствора в первом понижается, а в последнем повышается; концентрация соли в отсеках выравнивается (рис 12B). Заметим, что изменение объема жидкости и концентрации соли связано с перераспределением только молекул воды, но не соли, так как мембрана непроницаема для ионов натрия и хлора.

Если приложить к столбу жидкости в отсеке с большей начальной концентрацией соли давление (красная стрелка на рисунке 12B), диффузия воды замедлится. Давление, при котором диффузия жидкости прекращается, называется осмотическим давлением. Описанным образом осмотическое давление измеряется для раствора, к которому прикладывается давление (то есть в описанном примере измерено осмотическое давление раствора с большей начальной концентрацией соли). Осмотическое давление – очень важная величина, характеризующая осмос. В физической химии осмотическое давление обозначается буквой π и вычисляется по простой формуле:

π = CRT,

где C – концентрация раствора, R – универсальная газовая постоянная (8,314 ), T – абсолютная температура (K). Попробуем проанализировать это выражение. R – просто постоянная величина, константа, которая никак не влияет на осмотическое давление. Температуру тоже можно принять за постоянную величину, поскольку мы рассматриваем живые системы, которые существуют в узком температурном диапазоне (мы не будем принимать во внимание бактерий-экстремальных термофилов). Следовательно, по большому счету, осмотическое давление раствора зависит только от его концентрации, причем зависимость линейная: чем больше концентрация соли (или сахара, или другого вещества, не проходящего через полупроницаемую мембрану – осмотически активного вещества) в растворе, тем больше его осмотическое давление. В нашем случае осмотическое давление раствора поваренной соли с концентрацией 0,01M гораздо меньше, чем осмотическое давление раствора с концентрацией 1M.

Обычно при описании живых систем, биологических жидкостей и других растворов не указывают значение осмотического давления, пользуясь относительной характеристикой. Принято описывать осмотическое давление растворов относительно интересующей нас жидкости (к примеру, крови, цитоплазмы, клеточного сока). Если осмотическое давление раствора больше, чем давление «нашей» жидкости, раствор называют гипертоническим; если меньше – гипотоническим, если такое же – изотоническим. В этом определении слова «осмотическое давление» смело можно заменить на «концентрация осмотически активного вещества», так как мы уже выяснили, что осмотическое давление раствора зависит от концентрации линейно. В приведенном выше примере раствор с концентрацией 0,01M NaCl является гипотоническим по отношению к раствору с концентрацией 1M NaCl. Широко используемый в медицинской практике физиологический раствор, является изотоническим по отношению к плазме крови. Концентрация солей в физиологическом растворе и плазме крови одинакова, а значит, одинаково и осмотическое давление. Заметим, что существует несколько типов физиологических растворов с одинаковым осмотическим давлением и немного отличающимся составом солей – растворы Рингера – Локка, Рингера – Тироде и Кребса – Рингера.

Осмотическое давление жидкостей живых организмов может быть очень значительным. К примеру, осмотическое давление жидкостей человеческого тела в среднем равно семи (!) атмосферам. Именно за счет осмотического давления вода из корней деревьев доходит до листьев.

Если приложить к столбу жидкости в указанном отсеке сосуда давление, большее осмотического, процесс осмоса «пойдет вспять» - начнется переход растворителя из отсека с большей концентрацией соли в отсек с меньшей концентрацией соли. Это явление носит название обратного осмоса. Обратный осмос находит широкое применение в производстве фильтров для очистки питьевой воды.

Тургор растительной клетки

Если взять клетки животных, например, эритроциты, и поместить их в физиологический раствор, морфология клеток не изменится, так как физиологический раствор изотоничен плазме крови (содержит физиологическое количество солей). Если же поместить эритроциты в гипертонический раствор, например, в раствор с концентрацией соли 10%, вода по закону осмоса будет выходить из цитоплазмы (как из жидкости с меньшей концентрацией соли) в окружающий раствор, в результате чего эритроциты сморщатся. При помещении эритроцитов в гипотоническую среду (дистиллированную воду), вода будет проникать внутрь клеток, «стараясь» уравновесить концентрации солей внутри и вне клетки. В конце концов, эритроциты лопнут, их содержимое высвободится в воду, превратив содержимое пробирки в так называемую «лаковую кровь» - прозрачную красную жидкость. Этот известный эксперимент показывает, что клетки животных не окружены плотной оболочкой и вынуждены существовать в очень ограниченном диапазоне концентраций солей. Клетки пресноводных простейших, не обладающих достаточно плотной оболочкой (амебы, инфузории) справляются с проблемой переизбытка воды с помощью сократительных вакуолей, постоянно «вычерпывающих» лишнюю воду за пределы клетки.

Если поместить взрослые клетки растений (в составе ткани, к примеру, эпидермиса) в гипотонические условия, они не лопнут, поскольку каждая клетка растения окружена более или менее толстой клеточной стенкой. Последняя служит ригидной структурой, не позволяющей притекающей воде разорвать клетку. Если бы клеточная стенка и плазматическая мембрана клетки могли растягиваться, вода входила бы в клетку до тех пор, пока концентрация осмотически активных веществ снаружи и внутри клетки не выровнялась бы. В реальности клеточная стенка – прочная нерастяжимая структура, и в гипотонических условиях входящая в клетку вода давит на клеточную стенку, плотно прижимая к ней плазмалемму. Давление протопласта изнутри на клеточную стенку называется тургорным давлением. Говорят, что клетки растений обладают тургесцентностью. Тургорное давление препятствует дальнейшему поступлению воды в клетку. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора.

Заметим, что клетки растений обычно находятся в гипотонических условиях, поскольку содержимое растительной клетки богато осмотически активными веществами, большая часть которых (органические кислоты, сахара, солей, низкомолекулярных пигментов) входят в состав клеточного сока, расположенного внутри вакуоли. Вакуоли – органеллы, присущие растительным клеткам. Мембрана, ограничивающая вакуоль, называется тонопластом, и по своим свойствам сходна с плазмалеммой. Это мембрана, обладающая избирательной проницаемостью и способностью к активному транспорту. Осмотически активные вещества с целью запасения или утилизации переносятся в вакуоль с помощью белков-каналов и переносчиков, обратно эти вещества в большинстве своем не выходят. Таким образом, с помощью избирательного активного транспорта в клетке создается градиент осмолярности – клеточный сок гипертоничен по отношению к цитоплазме, а цитоплазма гипертонична по отношению к окружающей среде. Вода извне поступает в клетку, «стремясь» уравнять концентрации осмотически активных веществ, давит на клеточную стенку изнутри, обеспечивая тургор.

Тургор – показатель оводненности и состояния водного режима растений. Снижением тургора сопровождаются процессы, увядания и старения клеток. Именно за счет тургора органы растений находятся в выпрямлено, упругом состоянии. Увядание растения – не что иное, как понижение тургорного давления его клеток.

Неверно думать, что тургесцентность свойственна только клеткам растений или бактерий, обладающих клеточной стенкой. Тургор есть и у животных клеток, но он невелик из-за гораздо меньшей прочности плазмалеммы по сравнению с клеточной стенкой (именно из-за наличия тургора, а также из-за эластичности цитоплазматической мембраны, эритроциты в гипотонических условиях разрушаются не сразу, а после некоторого набухания). При разрушении клеточных стенок растительных клеток тургесцентность последних резко падает, и в гипотонических условиях обнаженные протопласты клеток растений ведут себя так же, как клетки млекопитающих.

Плазмолиз. Виды плазмолиза

Под плазмолизом понимается отделение протопласта клетки от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, обладающих жесткой клеточной стенкой. Животные клетки при помещении в гипертонический раствор, как было указано выше, теряя воду, сморщиваются и уменьшаются в размерах. Плазмолиз растительной клетки аналогичен этому процессу, но сморщивание протопласта происходит внутри клеточной стенки. В нормальных условиях плазмалемма растительной клетки плотно прижата к клеточной стенке изнутри под действием тургорного давления. При помещении клетки в раствор, концентрация осмотически активных веществ в котором больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки. В процессе плазмолиза протопласт теряет воду, уменьшается в размерах и отделяется от клеточной стенки.

Известно, что живые ткани растения в какой-то мере могут быть рассмотрены как симпласты (синцитии), поскольку протопласты соседних клеток сообщаются между собой через плазмодесмы – цитоплазматические нити, располагающиеся в канальцах, пронизывающих клеточную стенку. Плазмодесмы располагаются в клетке группами на месте так называемых первичных поровых полей. Роль плазмодесм заключается в обеспечении передачи раздражений и передвижения веществ от клетки к клетке. Протопласт как бы закреплен на клеточной стенке в местах расположения плазмодесм, поэтому при уменьшении объема клетки в процессе плазмолиза протопласт дольше всего остается прикрепленным к клеточной стенке именно в местах плазмодесм.

Исследование плазмолиза позволяет сделать выводы о проницаемости мембран растительных клеток для различных веществ, о величине нормального тургорного давления. Плазмолиз чаще всего исследуют на препаратах, в которых клетки расположены в один или несколько слоев и удобны для изучения. К таким препаратам можно отнести кожицу лука, листья элодеи, эпидермис листьев высших растений.

В зависимости от вязкости цитоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а, следовательно, от скорости и степени потери воды цитоплазмой, различают плазмолиз выпуклый, вогнутый, судорожный и колпачковый.

Изучение форм плазмолиза на препарате листа элодеи

В ходе плазмолиза форма плазмолизированного протопласта меняется. Рассмотрим плазмолиз клетки листа элодеи, помещенного в гипертонический раствор. Для наблюдения плазмолиза нужно сделать временный препарат листа элодеи, для начала поместив лист в воду и накрыв покровным стеклом. Клетки листа следует рассматривать на большом увеличении. Вода – гипотоничная относительно содержимого клетки среда, и пока лист элодеи находится в воде, клетки находятся в состоянии тургора, их протопласт плотно прижат тургорным давлением к клеточной стенке (рис. 8A). При этом на микропрепарате не видно мест, где находятся плазмодесмы (плазмодесмы – объект электронномикроскопического исследования, их средний диаметр составляет 0,3-0,4 нм). Для того чтобы вызвать плазмолиз в клетках, нужно сменить внеклеточную среду на гипертоничную. С этой целью препарат снимают со столика микроскопа, с одного бока покровного стекла, прикрывающего лист элодеи, помещают каплю гипертонического раствора так, чтобы она касалась покровного стекла. С другой стороны стекла аналогично помещают кусочек фильтровальной бумаги. Из-за возникающих капиллярных сил вода, находящаяся под стеклом, впитывается бумагой, втягивая гипертонический раствор под стекло. После замены раствора нужно немного подождать (5 минут), затем наблюдать формы плазмолиза, переходящие одна в другую.

В начале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым (рис. 13Б). Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым (рис. 13В). Места, в которых сохраняется связь протопласта с клеточной стенкой, отражают расположение групп плазмодесм в клетке. Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого (рис. 13Г). Если у протопласта связь с клеточной стенкой в отдельных местах сохраняется, то при дальнейшем уменьшении объема в ходе плазмолиза протопласт приобретает неправильную форму. Протопласт остается связанным с оболочкой многочисленными нитями Гехта, прикрепляющимися к клеточной стенке в местах расположения групп плазмодесм. Такой плазмолиз носит название судорожного (рис. 13Д).

Рис. 13. Плазмолиз растительной клетки: А – клетка в состоянии тургора; Б – уголковый; В – вогнутый; Г – выпуклый; Д – судорожный. 1 - оболочка, 2 - вакуоль, 3 - цитоплазма, 4 - ядро, 5 - нити Гехта.

Приготовить временный препарат кожицы лука, листа элодеи либо эпидермиса листа высшего растения. Вплотную к покровному стеклу нанести на предметное стекло каплю раствора соли - более концентрированного, чем раствор веществ, содержащихся в вакуолях. С другой стороны на предметное стекло вплотную к покровному стеклу положить полоску фильтровальной бумаги, которую нужно держать до тех пор, пока раствор соли не войдет под покровное стекло, заменив воду. Через 5-10 минут обратить внимание на отрыв цитоплазмы от оболочки клеток, т.е. плазмолиз.

Влияние разных агентов, вызывающих плазмолиз, на форму плазмолиза

Форма плазмолиза зависит не только и не столько от стадии процесса (очень редко удается проследить возникновение всех форм плазмолиза на одном и том же препарате), как от свойств цитоплазмы клетки: ее вязкости, гидрофильности, коллоидного состояния (гель или золь). Те или иные свойства цитоплазмы могут быть модулированы агентами, вызывающими плазмолиз.

Задание:

Исследовать влияние ионов натрия и кальция на форму плазмолиза.

Ход работы:

Взять два чистых предметных стекла, капнуть на одно из них 1M KNO3? на другое – 1M Ca(NO3)2, в каждую каплю поместить лист элодеи (или кожицу лука, или препарат эпидермиса листа растения), накрыть покровным стеклом. Через пять-десять минут рассмотреть препараты под микроскопом, сначала на малом, потом на большом увеличении. Найти участки с плазмолизированными клетками, зарисовать клетки в состоянии плазмолиза.

Результат:

В растворе нитрата калия возникает главным образом выпуклый плазмолиз (см. рисунок 13Г), в растворе нитрата кальция – судорожный плазмолиз (см. рисунок 13Д).

Ион калия (очень медленно по сравнению с водой проходящий через мембрану за счет наличия калиевых каналов) уменьшает вязкость цитоплазмы, способствуя ее отделению от клеточной стенки, вследствие чего возникает выпуклый плазмолиз. Ион кальция, напротив, повышает вязкость цитоплазмы, увеличивая силы ее сцепления с клеточной стенкой, что вызывает преимущественно судорожный плазмолиз.

Оба описанных вида плазмолиза обычно предваряются вогнутым плазмолизом.

Исследование колпачкового плазмолиза в раствора роданида калия.

Задание:

Вызвать возникновение колпачкового плазмолиза в клетках растений. Объяснить, в связи с чем возникает указанный тип плазмолиза.

Ход работы:

На чистое предметное стекло капается 1M раствор роданида калия KSCN (или нитрата калия KNO3), в каплю кладется кожица лука или лист элодеи, препарат накрывается покровным стеклом и рассматривается под микроскопом на большом увеличении.

Результат: При длительном нахождении клеток в растворе роданида или нитрата калия (15 мин. и более) цитоплазма набухает, там, где протопласт не касается клеточных стенок, вокруг вакуолей образуются так называемые колпачки цитоплазмы (рис. 14).

Рис. 14. Колпачковый плазмолиз в клетке листа элодеи, длительно находящейся в растворе KNO3. Белым показана вакуоль, ограниченная коричневатыми колпачками цитоплазмы.

Вывод:

Колпачковый плазмолиз возникает при разной проницаемости плазмалеммы и тонопласта: ионы калия, медленно проникают в цитоплазму через калиевые каналы, вызывая ее набухание. В тонопласте таких каналов не имеется, и поэтому объем вакуоли не увеличивается.

Деплазмолиз

Плазмолизированные клетки обычно остаются живыми, особенно если клетка провела в состоянии плазмолиза короткое время. При помещении живой плазмолизированной клетки в воду или гипотонический раствор происходит деплазмолиз – клетка вернется в состояние тургора и приобретет нормальный вид.

В условиях гипотонического раствора, концентрация осмотических веществ в котором меньше, чем в клеточном соке, вода из внеклеточной среды будет поступать внутрь клетки (а там – внутрь вакуоли, «стараясь» уменьшить концентрацию клеточного сока). В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая, в свою очередь, которая начнет приближаться к стенкам клетки, пока не примет первоначальное положение. Деплазмолиз обычно происходит медленнее, чем плазмолиз.

Сравнение проницаемости клеточных мембран для различных веществ

По интенсивности плазмолиза и по времени наступления деплазмолиза можно оценить проницаемость мембраны для тех или иных веществ.

Задание:

исследовать проницаемость мембран растительной клетки для сахарозы и мочевины (карбамида).

Ход работы:

Взять два чистых предметных стекла, на одно капнуть 1M раствор сахарозы, на другое – 1M мочевину, в каждую каплю поместить лист элодеи (или кожицу лука, или препарат эпидермиса листа растения), накрыть покровным стеклом. Через пять минут рассмотреть препараты под микроскопом, сначала на малом, потом на большом увеличении. Найти участки с плазмолизированными клетками, зарисовать клетки в состоянии плазмолиза. Отметить время начала плазмолиза. Оставить препараты на полчаса, затем снова рассмотреть их под микроскопом. Отметить, в каком препарате произошел деплазмолиз, зарисовать клетки из обоих препаратов.

Вывод:

В условиях гипертонического раствора как сахарозы, так и мочевины в клетках возникает плазмолиз, поскольку оба указанных вещества растворимы в воде и осмотически активны. В растворе сахарозы деплазмолиз не возникает, так как плазмалемма непроницаема для крупных молекул сахаров и раствор сахарозы остается гипертоничным относительно содержимого клетки с течением времени. В растворе мочевины по прошествии некого промежутка времени происходит деплазмолиз, так как плазмалемма обладает проницаемостью для мочевины (хотя меньшей, чем для воды, поэтому плазмолиз изначально возникает), и постепенно мочевина проходит в клетку. За ней внутрь клетки следует вода, обеспечивающая тургорное давление – возникает деплазмолиз.

Для сравнительной оценки плазмолиза в тканях существует 2 метода: пограничного плазмолиза и плазмометрический. Первый метод, разработанный Гуго Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией осмотичнески активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после плазмолиза измеряют относительный объем клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

Разделение фотосинтетических пигментов методом тонкослойной хроматографии

Задание:

Разделить фотосинтетические пигменты, входящие в состав предложенной вытяжки, методом тонкослойной хроматографии (на бумаге), определить пигменты на полученной хроматограмме.

Что делать:

Провести разделение, следуя предложенной методике. На полученной хроматограмме обвести карандашом и подписать пятна пигментов, отметить линию фронта и вычислить значения Rf. Объяснить полученный результат.

Методика проведения тонкослойной хроматографии (на бумаге)

Полоску хроматографической бумаги шириной 2-3 см и длиной, соответствующей высоте хроматографической камеры, положить на чистую поверхность стола и нанести карандашом линию старта на расстоянии 2 см от края. Аккуратно перенести небольшую порцию вытяжки с помощью шприца или капилляра на линию старта (диаметр пятна на должен превышать 1 см). После полного высыхания повторить процедуру 3-4 раза с целью повышения концентрации пигментов. Поместить полоску хроматографической бумаги в хроматографическую камеру, на дне которой налит неполярный растворитель (бензин, гексан). При этом пятно пигментов должно находится выше уровня растворителя. Плотно закрыть хроматографическую камеру (для предотвращения высыхания растворителя с хроматографической бумаги, которое приводит к увеличеснию размытости пятен), подождать, пока расстояние между фронтом растворителя и верхним краем полоски бумаги не достигнет 2-3 см. Вынуть полученную хроматограмму из хроматографической камеры и сразу же отметить на ней карандашом положение фронта растворителя и пятнен пигментов.

Механизм разделения пигментов

Разделение пигментов основано на различие их растворимостей в подвижной и неподвижной фазах. В качестве подвижной фазы обычно используют неполярные растворители (бензин, гексан), в качестве подвижной фазы выступает полярный растворитель – вода, адсорбированная на волокнах целлюлозы, из которой состоит бумага. При проведении хроматографии подвижная фаза движется по бумаге под действием капиллярных сил. Чем выше отношение растворимостей пигмента в подвижной и неподвижной фазах, тем большее расстояние он проходит.

Таким образом, наибольший пробег соответствует неполярным пигментам, наименьший – полярным. Фотосинтетические пигменты распределяются в следующем порядке (начиная от фронта растворителя): каротины (светло-желтые), ксантофиллы (желтые), феофитин (серый), хлорофилл a (сине-зеленый), хлорофилл b (желто-зеленый), лютеин (один из ксантофиллов, ярко-желтый) – рис. 15-17. Феофитин является ассоциированным со II фотосистемой переносчиком электронов, но в значительно большем количестве образуется при разрушении хлорофиллов. Большое количество феофитина на хроматограмме говорит о том, что предложенная вытяжка пигментов была несвежей.

Расстояние, пройденной пигментом, характеризуется величиной Rf, которая представляет собой отношение расстояния, пройденного пигментом, к расстоянию, пройденному фронтом растворителя подвижной фазы. В стандартных условиях эта величина является постоянной для каждого пигмента и приводится в справочниках.

А.

Б.

В.

Г.

Рис. 16. Некоторые дополнительные фотосинтетические пигменты Высших растений.

А. β-каротин. Б, В. Ксантофиллы (криптоксантин и лютеин соответственно). Г. Феофитин.

А.

Б.

Рис. 17 (А, Б). Хлорофилл a (А) и хлорофилл b (Б).

Наблюдение за движением устьиц

Задание:

1. Приготовить препарат эпидермиса листа растения (в воде), рассмотреть его и зарисовать состояние устьиц.

2. Заменить воду на раствор осмотически активного вещества низкой концентрации (5% глицерин или 0.1М сахароза). Наблюдать за происходящими изменениями, зарисовать состояние устьиц.

3. Заменить раствор осмотически активного вещества на воду, наблюдать за происходящими измененииями.

4. Заменить воду на раствор осмотически активного вещества в высокой концентрации (20% глицерин или 1М сахароза), наблюдать за происходящими изменениями.

5. Объяснить происходившие изменения.

Что делать:

Для приготовления препарата необходимо надломить лист и подцепить лоскут эпидермиса препаровальной иглой. Если лист достаточно тонкий (например, лист злака), достаточно резко разорвать его в направлении, параллельном жилкованию. По краю разрыва под микроскопом будут видны участки эпидермиса (рис. 18).

Полученный препарат поместить в каплю воды под покровное стекло. Для того, чтобы сменить воду на раствор осмотически активного вещества, необходимо нанести каплю раствора на край покровного стекла и убрать воду, прикоснувшись фильтровальной бумагой к противоположному краю покровного стекла. При этом раствор осмотически активного вещества будет затянут под покровное стекло.

При помещении препарата эпидермиса в раствор осмотически активного вещества вода начинает покидать вакуоли замыкающих клеток устьиц, что приводит к уменьшению в них внутриклеточного давления и закрывание устьичной щели (см. главу, посвященную плазмолизу). При помещении в воду происходят обратные процессы.

Для осуществления повторного закрывания устьичной щели необходимо поместить препарат в раствор более высокой концентрации. Это связано с тем, что некоторое количество осмотически активного вещества ранее проникло внутрь вакуолей замыкающих клеток, повысив осмотическое давление внутри них.

устьице

устьице

побочная клетка

Рис. 18 (А, Б). Эпидермис листа ириса (А) и листа кукурузы (Б).

Строение и механизм работы устьиц

Устьице состоит из двух замыкающих клеток, ограничивающих устьичную щель. Внутренные стенки замыкающих клеток утолщены значительно сильнее, чем наружние. Неодинаковая толщина стенок устьиц приводит к тому, что при изменении внутриклеточного давления они способны менять свою форму, вызывая открывание или закрывание устьичной щели. При увеличении внутриклеточного давления тонкие наружние стенки растягиваются, что приводит к деформации и расхождению более жестких внутренних стенок (устьичная щель открывается). При уменьшении внутриклеточного давления растяжение наружних стенок ослабевает, и внутренние стенки возвращаются в недеформированное состояние (устьичная щель закрывается).

Различают три типа движения устьиц: гидропассивные, гидроактивные и фотоактивные.

Гидропассивные движения. Насыщение водой клеток, прилежащих к устьицам, вызывает увеличение их объема. Это приводит к механическому сдавливанию замыкающих клеток устьица и закрыванию устьичной щели.

Гидроактивные движения. При повышении водного дефицита в замыкающих клетках синтезируется абсцизовая кислота, подавляющая работу H+-насосов. Это приводит к снижению осмотического давления внутри клеток и закрыванию устьичной щели.

Фотоактивные движения. Понижение интенсивности освещения вызывает закрывание устьичной щели. Механизм фотоактивных движений окончательно не установлен. Существует гипотеза, утверждающая, что при уменьшении освещенности падает интенсивность фотосинтеза. Это вызывает понижение концентрации сахаров в цитоплазме и, как следствие, снижение осмотического давления и закрывание устьичной щели.

Особое строение устьиц злаков

У А

Бстьица злаков имеют гантелевидую форму, причем утолщены не только стенки замыкающих клеток, обращенные в сторону устьичной щели, но и стенки, примыкающие к соседним клеткам эпидермиса. Замыкающие клетки окружены ромбовидной побочной клеткой. Механизм открывания и закрывания устьиц при изменении внутриклеточного давления связан с изменением объема концевых утолщений замыкающих клеток (рис. 19).

замыкающие клетки

побочная клетка

устьичная щель

Рис. 19 (А, Б). Строение устьичного аппарата злаков.

А. Устьичная щель закрыта. Б. Устьичная щель открыта.

- -

koledj.ru

Контрольная работа по дисциплине: физиология растений тюмень 2012

Министерство Сельского Хозяйства Российской Федерации

Контрольная работа

по дисциплине:

ФИЗИОЛОГИЯ РАСТЕНИЙ

Выполнил:

Тюмень 2012

СОДЕРЖАНИЕ

1. Аминокислоты. Строение, свойства, классификация 3 стр.
2. Величины осмотического давления и сосущей силы. Физиологическая роль осмотических процессов 5 стр.
3. Роль пигментов в поглощении света. Их спектры поглощения. Понятие о возбужденной молекуле хлорофилла 7 стр.
4. Суть анаэробной фазы дыхания (гликолиз) и ее физиологическая роль 10 стр.
5. Понятие о микоризе и ризосфере. Роль микроорганизмов в азотном питании растений 13 стр.
6. Превращение липидов в растении 15 стр.
7. Покой растений и его значение; причины, виды покоя. Физиологические особенности покоящихся тканей и органов; способы нарушения и продления покоя 17 стр.
8. Созревание семян масленичных культур 20 стр.
9. Приспособление растений к низким положительным температурам. Холодоустойчивость растений. Способы ее повышения 22 стр.
Опыты и наблюдения 24 стр.
Литература 43 стр.

Аминокислоты. Строение, свойства, классификация.

Аминокислоты – это органические кислоты, содержащие одну или несколько аминокислот. В зависимости от природы кислотной функции аминокислоты подразделяют на аминокарбоновые, например h3N(Ch3)5COOH, аминосульфоновые, например h3N(Ch3)2SO3H, аминофосфоновые, например h3NCH[P(O)(OH)2]2, и аминоарсиновые, например h3NC6h5As)3h3. Согласно правилам ИЮПАК, название аминокислоты производят от названия соответствующей кислоты; взаимное расположение в углеродной цепи карбоксильной и аминной группы обозначают обычно цифрами, в некоторых случаях – греческими буквами. Однако, как правило, пользуются тривиальными названиями кислот.

Структура и физические свойства. По физическим и ряду химических свойств аминокислоты резко отличаются от соответствующих кислот и оснований. Они лучше растворяются в воде, чем в органических растворителях; хорошо кристаллизуются; имеют высокую плотность и исключительно высокие температуры плавления. Эти свойства указывают на взаимодействие аминных и кислотных групп, вследствие чего аминокислоты в твердом состоянии и в растворе находятся в цвиттер-ионной форме.

Взаимное влияние групп особенно ярко проявляется у α-аминокислот, где обе группы находятся в непосредственной близости, а так же у ο- и n-аминобензойных кислот, где их взаимодействие передается через систему сопряженных связей.

Все α-аминокислоты, кроме аминоуксусной (глицина), имеют асимметрии, α-углеродный атом и существуют в виде двух энантиомеров. За редким исключением природные α-аминокислоты относятся к L-ряду.

Гидроксипролин, треонин, изолейцин имеют два асимметричных атома и образуют по две пары диастереомеров.

Химические свойства. Реакции по карбоксильным группам аминокислот, аминогруппа которых защищена ацилированием или солеобразованием, протекают аналогично превращениям карбоновых кислот. Аминокислоты легко образуют соли, сложные эфиры, амиды, гидразиды, азиды, тиоэфиры, галогенангидриды, смешанные ангидриды и т.д. Эфиры аминокислот под действием натрия или магнийорганических соединений превращаются в аминокислоты. При сухой перегонке в присутствии Ba(OH)2 аминокислоты декарбоксилируются.

Реакции аминогрупп аминокислот аналогичны превращениям аминов. Аминокислоты образуют соли с минеральными кислотами и пикриновой кислотой, легко ацилируются хлорангидридами кислот в водно-щелочном растворе и алкилируются алкилгалогенидами. С формалином аминокислоты дают мегилольные или метиленовые производные. При обработке эфиров аминокислот изоцианатами и изотиоцианатами образуются производные мочевины и тиомочевины.

Реакции с одновременным участием групп Nh3 и COOH наиболее характерны для α-аминокислот, которые способны образовывать устойчивые 5-членные гетероциклы. С ионами переходных металлов α-аминокислоты образуют прочные хелатные комплексы, что используется в комплексонах и в комплексообразующих ионообменных смолах на основе аминокарбоновых и аминофосфоновых кислот.

Величины осмотического давления и сосущей силы. Физиологическая роль осмотических процессов.

Поглощение воды из внешней среды – обязательное условие существования любого живого организма. Вода может поступать в клетки растений благодаря набуханию биоколлоидов, увеличению степени их гидратации. Такое поступление воды характерно для сухих семян, помещенных в воду. Однако главным способом поступления воды в живые клетки является ее осмотическое поглощение.

Осмос и его законы. Осмосом называется прохождение растворителя в раствор, отделенный от него полупроницаемой мембраны.

Первый осмометр был сконструирован в 1826 г. французским физиологом Г. Дютроше. Но в силу нескольких причин, измерение осмотического давления было не точным.

Более совершенная конструкция осмометра была предложена В. Пфеффером. Свой осмометр он назвал «искусственной клеткой».

Вант-Гофф, использовав в качестве осмотической ячейки «искусственную клетку» и другие модели, показал, что осмотические законы соответствуют газовым законам Бойля – Мариотта. Для расчета потенциального давления он предложил формулу: π* = i · c · RT, где c – концентрация раствора в молях, T – абсолютная температура, R – газовая постоянная, i – изотонический коэффициент. Таким образом, для разбавленных растворов осмотическое давление при постоянной температуре определяется концентрацией частиц растворенного вещества. Потенциальное осмотическое давление выражается в Паскалях и отражает максимально возможное давление, которое имеет раствор данной концентрации, или максимальную способность раствора в ячейке поглощать воду.

Осмос и осмотическое давление играют большую роль в биологических явлениях. Так, постоянный осмос воды внутрь клетки создает в растении повышенное гидростатическое давление, которое обусловливает прочность и упругость тканей. Уравновешенное осмотическое давление клеточного сока составляет 405 – 2025 кПа.

Растительная клетка окружена клеточной стенкой, которая обладает определенной эластичностью и может растягиваться. Вакуоль содержит большое количество осмотически активных веществ – сахаров, органических кислот, солей. Поскольку мембрана избирательно проницаема и вода проходит через нее значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме, при помещении клетки в воду последняя по законам осмоса будет поступать внутрь клетки.

Силу, с которой вода входит в клетку, называют сосущей силой S. Величина сосущей силы определяется осмотическим давлением клеточного сока (π*) и тургорным (гидростатическим) давлением в клетке (P), которое равно противодавлению клеточной стенки, возникающему при ее эластичном растяжении: S = π* - P.

Таким образом, растительную клетку можно рассматривать как саморегулирующий осмотический механизм, который всасывает воду тем сильнее, чем больше ее требуется. При большой потере воды осмотическое давление и сосущая сила возрастают, и поступление воды становится более интенсивным.

В какой-то степени, осмотическое давление является регулятором движения воды по растению и распределения ее между отдельными органами. В этом и заключается важное физиологическое значение осмотических процессов. Разностороннюю роль осмотической концентрации клеточного сока следует рассматривать как приспособительный механизм растений, выполняющий важную роль в обеспечении их и водой, и питательными веществами.

Роль пигментов в поглощении света. Их спектры поглощения. Понятие о возбужденной молекуле хлорофилла.

В процессе фотосинтеза происходит поглощение света пигментами, сосредоточенными в хлоропластах. Пигменты зеленых растений играют важную роль в превращении лучистой энергии света в химическую. В автотрофных растениях уменьшение количества пигментов приводит к снижению интенсивности фотосинтеза. Все пигменты, встречающиеся в растениях, можно разделить на такие группы: 1. хлорофиллы, 2. каротиноиды, 3. фикобилины, 4. флавоноидные пигменты.

В каждой из этих групп пигментов путем модификации основной структуры образуется несколько химически различных структур, имеющих максимумы поглощения в разных частях видимой области электромагнитного спектра. Известно 10 различных структурных форм хлорофиллов, несколько форм фикобилинов, более 100 различных модификаций каротиноидов. Кроме того, одна и та же химическая структура в живом листе в комплексе с белками и липидами образует целую серию так называемых «нативных» форм. Так, для хлорофилла a известно около 10 таких спектрально различных форм, из них 4 формы с максимумами поглощения в красной части спектра считаются универсальными – 661, 670, 678, 683 нм. Для каротиноидов известно несколько различных состояний одной и той же структуры: например, максимум поглощения β-каротина мономерного – 450 нм, в комплексе с белком – 455 – 460 нм, кристаллического – 540 нм. В итоге формируется мощная фоторецепторная система с большим набором различных спектральных форм. Это определяет поглощение большей части видимой области спектра (от 400 до 800 нм) – так называемую фотосинтетически активную радиацию (ФАР) с энергией квантов от 1 до 3 эВ, и высокую эффективность миграции энергии в пигмент-белковых комплексах хлоропластов.

Энергетические состояния молекулы хлорофилла. Структура хлорофилла очень хорошо приспособлена для того, чтобы служить посредником в фотохимических процессах в ходе фотосинтеза. Возбужденная светом молекула хлорофилла приобретает способность участвовать в окислительно-восстановительных процессах, т.е. отдавать и принимать электроны.

Время пребывания молекулы в возбужденном состоянии зависит от ее химического строения. В молекулах, атомы которых соединены одинарными ковалентными связями, для возбуждения электронов требуются кванты высокой энергии, например ультрафиолетовое излучение или рентгеновские лучи. Время жизни возбужденного состояния в этом случае очень мало и составляет в среднем 10-14 с.

В молекулах с сопряженными двойными связями каждый π-электрон делокализован, и поэтому для их возбуждения требуются кванты тем меньшей энергии, чем более протяженной является система сопряженных свойных связей. В порфириновом ядре молекулы хлорофилла имеет место чередование одинарных и двойных связей, что служит причиной появления вокруг него 18 делокализованных π-электронов, легко переходящих в возбужденное состояние при попадании квантов света видимой части спектра. Время жизни возбужденного состояния у молекул хлорофилла, имеющих систему сопряженных двойных связей, варьирует от 10-10 до 10-9 с.

Наиболее устойчивы те состояния атомов, в которых валентные электроны занимают самые низкие энергетические уровни и распределены по ним согласно принципу Паули, который гласит: если атом имеет четное количество электронов, то их спины направлены противоположно друг другу и суммарный спин всех электронов атома равен 0. Такое состояние называют основным синглетным (S = 0). Если же число электронов в атоме четное, но спины двух электронов параллельны, то полный спин равен 1 (S = 1) и такое состояние называется триплетным.

Возвращение в исходное состояние молекулы хлорофилла, находящейся в возбужденном состоянии под воздействием света, происходит несколькими путями. Во-первых, отдав часть энергии в виде тепла и излучив квант света, молекула может перейти в основное состояние. Такое явление называется флуоресценцией.

Иной путь расходования энергии наблюдается, когда при возбуждении происходит изменение знака спина электрона и молекула хлорофилла переходит в метастабильное триплетное состояние, имеющее гораздо большее время жизни. Это объясняется тем, что возбужденный электрон приобретает тот же знак спина, что и невозбужденный электрон, оставшийся на основном уровне.

Из триплетного состояния молекула может вернуться в основное энергетическое состояние, излучив квант света более длинноволновый, чем при флуоресценции. Такое свечение называют фосфоресценцией. Однако более важной особенностью молекул в триплетном состоянии является способность участвовать в фотохимических превращениях, поскольку продолжительность их жизни сопоставима со скоростями химических процессов. В результате становится возможным превращение световой энергии в химическую; при этом резко возрастает вероятность того, что молекула хлорофилла, находясь в возбужденном состоянии, успеет прореагировать с другой молекулой.

Суть анаэробной фазы дыхания (гликолиз) и ее физиологическая роль.

Гликолиз – процесс анаэробного распада глюкозы, идущий с освобождением энергии, конечным продуктом которого является пировиноградная кислота. Гликолиз – общий начальный этап аэробного дыхания и всех видов брожения.

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: C6h22O6 → 2C3h5O2 + 2h3. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ → глюкозо-6-фосфат + АДФ.

Реакция идет в присутствии ионов магния и фермента гексокиназы. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментом фосфоглюкоизомеразой:

глюкозо-6-фосфат → фрктозо-6-фосфат.

Далее происходит еще одно фосфорилирование при участии АТФ. Фосфорная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой:

фруктозо-6-фосфат + АТФ → фруктозо-1,6-дифосфат + АДФ.

Дальнейшие реакции, составляющие процесс гликолиза, складывается следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по уравнению:

фруктозо-1,6-дифосфат → фосфодиоксиацетон + 3-фосфоглицериновый

альдегид

Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии.

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфонлицераткиназой:

1,3-дифосфоглицериновая + АДФ → 3-фосфоглицериновая + АТФ

кислота кислота

Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем фосфатная группа переносится из положения 3 в положение 2.

Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Mn2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты.

Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза следующее:

C6h22O6 + 2АТФ + 2НАД + 2Фн + 4АДФ →

→ 2ПВК + 2НАДН + 2Н+ + 4АТФ + 2АДФ.

В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе гликолиза носит название субстратного фосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата.

Функции гликолиза в клетке. В аэробных условиях гликолиз выполняет ряд функций:

1. осуществляет связь между дыхательными субстратами и циклом Кребса;

2. поставляет на нужды клетки две молекулы АТФ и две молекулы НАД при окислении каждой молекулы глюкозы;

3. производит интермедиаты, необходимые для синтетических процессов в клетке;

4. в хлоропластах гликолитические реакции обеспечивают прямой путь для синтеза АТФ, независимый от поставок НАД;

кроме того, черех гликолиз в хлоропластах запасенный крахмал метаболизируется в триозы, которые затем экспортируются из хлоропласта.

Понятие о микоризе и ризосфере. Роль микроорганизмов в азотном питании растений.

Микориза – симбиотическое обитание грибов на корнях и в тканях корней высших растений. В микоризе гриб получает от корней углеводы и снабжает растение водой и минеральными элементами питания.

Микотрофное питание характерно для многих, преимущественно многолетних, трав. У однолетних растений микоризы встречаются относительно редко, у водных растений их нет совсем.

Внешний вид и внутренняя структура микориз очень варьируют. Различают микоризу эктотрофную (внешняя), эндотрофную (внутренняя) и эктоэндотрофную (переходная). У древесных пород встречаются все типы микориз, но чаще – внешняя и переходная.

Теперь известно несколько десятков видов грибов, принимающих участие в образовании микориз у различных растений. Грибы микоризы относятся к классу базидиомицетов; причем это главным образом представители гименомицетов и в отдельных случаях гастеромицетов.

У некоторых растений в образовании микоризы принимают участие и аскомицеты, фикомицеты и несовершенные грибы. Таким образом, микоризные грибы нельзя отнести к каким-либо односистемным группам. Микориза может быть образована совершенно разными грибами, и это, очевидно, имеет значение для лучшего роста древесных пород.

Существует несколько гипотез, объясняющих физиологическую роль микоризы. Многие ученые считают, что микроорганизмы снабжают высшие растения элементами минерального питания, различными органическими соединениями, включая и азотистые, способствуют регулированию водного режима и др. При наличии микоризы усиливается адсорбционная способность корневой системы; микоризы стимулируют и активную корневую систему высших растений, выделяя вещества типа биоса.

Корневая система высших растений окружена так называемой ризосферой, т.е. почвой, которая непосредственно соприкасается с корнями растений. Она обогащена корневыми выделениями, отмершими корневыми волосками и является питательной средой для бактерий, которые массами поселяются там. Наибольшее количество микроорганизмов наблюдается на поверхности живых корней, так называемая бактериориза.

Состав микроорганизмов, поселяющихся в ризосфере, непостоянен и зависит от состава и реакции корневых выделений, возраста растения и других факторов.

Было также установлено, что продукты жизнедеятельности микроорганизмов, выделяемые в ризосферу, способствуют не только поглощающей деятельности корневой системы, а и синтетической.

Микроорганизмы образуют и выделяют наружу стимулирующие рост вещества, различные витамины, ферменты и ряд других соединений, способствующих поглощению веществ. Попадая в растительный организм, они могут активировать рост корней и надземных органов, процессы обмена, дыхания, образования аминокислот и др.

kk.docdat.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта