Органоиды растительной клетки и их функции. Органоиды растений
Органоиды растительной клетки и их функции
Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.
Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды. Впервые описал жидкое содержимое клетки и назвал его протоплазмой (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).
Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.
Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 - 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.
Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений).
Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.
Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.
Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения - матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.
Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.
Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.
Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.
Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.
Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.
По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.
Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых - смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами.
Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.
Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы - ядрышек, погруженных в бесцветную, однородную, гелеобразную массу - ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек - синтез РНК и формирование рибосом.
agrostory.com
Органоиды клетки и их функции
Содержание:
Что такое органоиды клетки
Органоиды клетки, они же органеллы, представляют собой специализированные структуры собственно клетки, отвечающие за различные важные и жизненно необходимые функции. Почему же все-таки «органоиды»? Просто тут эти компоненты клетки сопоставляются с органами многоклеточного организма.
Какие органоиды входят в состав клетки
Также порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее цитоплазме. По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами клеточная мембрана, реснички и жгутики. А вот к органоидам, входящим в состав клетки относятся: хромосомы, митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, микротрубочки, микрофиламенты, лизосомы. По сути это и есть основные органоиды клетки.
Если речь идет о животных клетках, то в число их органоидов также входят центриоли и микрофибриллы. А вот в число органоидов растительной клетки еще входят только свойственные растениям пластиды. В целом состав органоидов в клетках может существенно отличатся в зависимости от вида самой клетки.
Рисунок строения клетки, включая ее органоиды.
Двумембраные органоиды клетки
Также в биологии существует такое явление как двумембраные органоиды клетки, к ним относятся митохондрии и пластиды. Ниже мы опишем свойственные им функции, впрочем, как всех других основных органоидов.
Функции органоидов клетки
А теперь коротко опишем основные функции органоидов животной клетки. Итак:
- Плазматическая мембрана – тонкая пленка вокруг клетки состоящая из липидов и белков. Очень важный органоид, который обеспечивает транспортировку в клетку воды, минеральных и органических веществ, удаляет вредные продукты жизнедеятельности и защищает клетку.
- Цитоплазма – внутренняя полужидкая среда клетки. Обеспечивает связь между ядром и органоидами.
- Эндоплазматическая сеть – она же сеть каналов в цитоплазме. Принимает активное участие в синтезе белков, углеводов и липидов, занимается транспортировкой полезных веществ.
- Митохондрии – органоиды, в которых окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. По сути митохондрии это органоид клетки, синтезирующий энергию.
- Пластиды (хлоропласты, лейкопласты, хромопласты) – как мы упоминали выше, встречаются исключительно у растительных клеток, в целом их наличие является главной особенностью растительного организма. Играют очень важную функцию, например, хлоропласты, содержащие зеленый пигмент хлорофилл, у растения отвечают за явление фотосинтеза.
- Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Осуществляют синтез жиров и углеводов на мембране.
- Лизосомы — тельца, отделенные от цитоплазмы мембраной. Имеющиеся в них особые ферменты ускоряют реакцию расщепления сложных молекул. Также лизосома является органоидом, обеспечивающим сборку белка в клетках.
- Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ; они регулируют содержание воды в клетке.
В целом все органоиды являются важными, ведь они регулируют жизнедеятельность клетки.
Основные органоиды клетки, видео
И в завершение тематическое видео про органоиды клетки.
www.poznavayka.org
Функции и строение органоидов клетки
Любой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами — это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.
Но сначала давайте разберёмся, что же вообще такое органоид.
Органоид — это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему. Органоиды ещё называют органеллами.
Растительные органеллы
Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.
Ядро и цитоплазма
Ядро (ядерный аппарат) — один из самых важных органоидов. Оно отвечает за передачу наследственной информации — ДНК (дезоксирибонуклеиновую кислоту). Ядро — органелла округлой формы. У него есть подобие скелета — ядерный матрикс. Именно матрикс отвечает за морфологию ядра, его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.
Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме — жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы — передача веществ между органоидами для поддержания жизни. Так как цитоплазма — это жидкость, то внутри клетки происходит незначительное движение органелл.
Мембранная оболочка
Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку. Она не сплошная — оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.
Вакуоли
Вакуоли — это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.
Аппарат, лизосомы и митохондрии
- Аппарат, или комплекс Гольджи, — это органелла, предназначенная для выведения побочных, ненужных веществ за пределы мембранной оболочки.
- Лизосома — органоид, окружённый специальной защитной мембраной. Внутри лизосомы всегда поддерживается кислотная среда. В её функции входит внутриклеточное переваривание макромолекул, превращение их в полезные вещества.
- Митохондрии — своеобразные «энергостанции», имеют сферическую или эллипсоидную форму. Они обеспечивают клетку энергией. Процесс, происходящий в митохондриях, иногда называют «внутриклеточным дыханием». Эти органеллы, окисляя органические соединения, образуют АТФ (аденозинтрифосфат) — универсальный источник энергии для органоидов.
Хлоропласты, лейкопласты и хромопласты
Пластиды — двумембранные органоиды клетки, делящиеся на три вида — хлоропласты, лейкопласты и хромопласты:
- Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество — пигмент хлорофилл, участвующий в процессе фотосинтеза.
- Лейкопласты — органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
- Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.
Эндоплазматическая сеть
Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей — большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее.
Полирибосома — это множество рибосом, транслирующих одну большую молекулу вещества.
Органоиды животной клетки
Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.
Название органоида клетки | В растительной | В животной |
Ядро и все его составляющие | Имеется; отличий нет | Имеется; отличий нет |
Мембранная оболочка | Имеется; защищена клеточной стенкой снаружи | Имеется, клеточная стенка отсутствует |
Цитоплазма | Имеется; отличий нет | Имеется; отличий нет |
Вакуоли, пластиды | Имеются | Не имеются |
Аппарат Гольджи, лизосомы и митохондрии | Имеются; отличий нет | Имеются; отличий нет |
Пиноцитозный пузырёк | Не имеется | Имеется |
Центриоли | Не имеются | Имеются |
Разберёмся с последними двумя:
- Центриоли — не до конца изученная органелла. Её функции до сих пор остаются загадкой, предполагается, что они определяют полюс животной клетки при её делении (размножении).
- Пиноцитозный пузырёк — временная органелла, образующаяся во время пиноцитоза, процесса захвата капельки жидкости клеточной поверхностью. Сначала образуется пиноцитозный канал, от которого отходят пиноцитозные пузырьки. Пиноцитозный пузырёк предназначен для транспортировки полученного извне вещества, он движется, «гуляет» по цитоплазме до последующей переработки.
Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы — они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания — фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.
obrazovanie.guru
Главные рганоиды | Строение | Функции |
Цитоплазма | Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды |
|
ЭПС — эндоплазматическая сеть | Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая |
|
Рибосомы | Мелкие тельца диаметром 15—20 мм | Осуществляют синтез белковых молекул, их сборку из аминокислот |
Митохондрии | Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная — гладкая, и внутренняя — образует выросты-кресты, на которых расположены дыхательные ферменты |
|
Пластиды — свойственны только клеткам раститений, бывают трех типов: | Двумембранные органеллы клетки | |
хлоропласты | Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл | Используют световую энергию солнца и создают органические вещества из неорганических |
хромопласты | Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина | Придают различным частям растений красную и желтую окраску |
лейкопласты | Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) | В них откладываются запасные питательные вещества |
Комплекс Гольджи | Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце |
|
Лизосомы | Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов | Выполняют пищеварительную функцию — переваривают пищевые частицы и удаляют отмершие органоиды |
Органоиды движения клеток |
|
|
Клеточные включения | Это непостоянные компоненты клетки — углеводы, жиры и белки | Запасные питательные вещества, используемые в процессе жизнедеятельности клетки |
Клеточный центр | Состоит из двух маленьких телец — центриолей и центросферы — уплотненного участка цитоплазмы | Играет важную роль при делении клеток |
Строение органоидов цитоплазмы клетки и их функции |
Мембранные органоиды растительной клетки
Клетка. Строение растительной клетки
Клетка - это живая биологическая система, которая лежит в основе строения, развития и функционирования всех живых организмов. Это биологически автономная система, которой присущи все процессы жизнедеятельности: рост, развитие, питание, дыхание, ОВ, размножение и т.д. Клеточное строение растений и животных было открыто в 1665 г. английским ученым Робертом Гуком. Форма и строение клеток очень разнообразны. Различают:
1) паренхимные клетки - у них длина равна ширине;
2) прозенхимные клетки - длина этих клеток превышает ширину.
Молодые клетки растений покрыты цитоплазматической мембраной (ЦПМ). Она состоит из двойного слоя липидов и белковых молекул. Одни из белков лежат мозаично по обе стороны мембраны, образуя ферментные системы. Другие белки пронизывают липидные слои, образуя поры. ЦПМ придают структуры всем органоидам клетки и ядру; ограничивают цитоплазму от клеточной оболочки и вакуоли; обладают избирательной проницаемостью; обеспечивают обмен веществ и энергии с внешней средой.
Гиалоплазма - бесцветная, оптически прозрачная коллоидная система, объединяющая все клеточные структуры, выполняющие разнообразные функции. Цитоплазма - это субстрат жизни для всех органоидов клетки. Это живое содержимое клетки. Ей свойственны признаки: движение, рост, питание, дыхание и др.
В состав цитоплазмы входят: вода 75-85 %, белки 10-20%, жиры 2-3%, неорганические вещества 1%.
Мембранные органоиды растительной клетки
Мембраны внутри цитоплазмы образуют эндоплазматическую сеть (ЭПС) – систему мелких вакуолей и канальцев, соединенных друг с другом. Гранулярная ЭПС несет рибосомы, гладкая ЭПС лишена их. ЭПС обеспечивает транспорт веществ в клетке и между соседними клетками. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную, четвертичную структуры, синтезируются жиры, транспортируется АТФ.
Митохондрии- чаще всего эллиптические или округлые органоиды до 1 мкм. Покрыты двойной мембраной. Внутренняя мембрана образует выросты - кристы. В матриксе митохондрий находятся окислительно - восстановительные ферменты, рибосомы, РНК, кольцевая ДНК. Это дыхательный и энергетический центр клетки. В матриксе митохондрии происходит расщепление органических веществ с высвобождением энергии, которая идет на синтез АТФ (на кристах).
Комплекс Гольджи – это система плоских, дугообразноизогнутых, параллельных друг другу цистерн, ограниченных ЦПМ. От краев цистерн отчленяются пузырьки, транспортирующие образовавшиеся в комплексе Гольджи полисахариды. Они участвуют в построении клеточной стенки. В цистернах накапливаются продукты синтеза, распада веществ, они используются клеткой или выводятся наружу.
Пластиды - в зависимости от наличия тех или иных пигментов различают три типа пластид: хлоропласты, хромопласты, лейкопласты.
Хлоропласты - овальные, размером 4-10 мкм двухмембранные органоиды всех зеленых частей растения. Внутренняя мембрана образует выросты – тилакоиды, группы которых образуют (наподобие стопки монет) граны. Тилакоиды лежат в строме и объединяют граны между собой. На внутренней поверхности тилакоидов находится пигмент зеленого цвета – хлорофилл. В строме хлоропластов содержатся ферменты, рибосомы, собственная ДНК. Основная функция хлоропластов - фотосинтез ( образование углеводов из СО2 и Н2О, минеральных веществ с использованием энергии солнца), а также синтез АТФ, АДФ, синтез ассимиляционного крахмала, собственных белков. Помимо хлорофилла в хлоропластах есть вспомогательные пигменты – каротиноиды.
Хромопласты – цветные пластиды - форма разнообразная; окрашены в красный, желтый, оранжевый цвет. Содержат пигменты - каротин (оранжевого цвета), ксантофилл (желтого цвета). Придают лепесткам цветков окраску, привлекающую насекомых – опылителей; окрашивают плоды, способствуя их распространению животными. Ими богаты плоды шиповника, смородины, томата, корнеплоды моркови, лепестки ноготков и т.д.
Лейкопласты - мелкие пластиды округлой формы, бесцветны. Служат местом отложения запасных питательных веществ: крахмала, белков, образуя крахмальные и алейроновые зерна. Содержатся в плодах, корнях, корневищах. Пластиды способны взаимопревращаться: лейкопласты на свету превращаются в хлоропласты (позеленение клубней картофеля), хромопласты превращаются в хлоропласты (позеленение корнеплодов моркови на свету в процессе роста).
Похожие статьи:
poznayka.org
Основные органоиды клетки растений и животных. Видеоурок. Биология 9 Класс
Мы рассмотрим основные органоиды клетки растений и животных – шероховатую и гладкую эндоплазматическую сеть, комплекс Гольджи, митохондрии, лизосомы, узнаем их функции и строение.
Все органеллы клетки делятся на две большие группы: мембранные и немембранные органоиды. Большинство клеточных структур принадлежит к мембранным органоидам, у которых содержимое отделено от цитоплазмы биологическими мембранами, к ним относится эндоплазматическая сеть, комплекс Гольджи, митохондрии, лизосомы и пластиды (Рис. 1).
Рис. 1. Мембранные органоиды
К немембранным органоидам принадлежат рибосомы и клеточный центр, постоянно присутствующие в клетке. Все эти органоиды встречаются у эукариот, у более примитивных – прокариот – присутствуют только рибосомы.
Эндоплазматическая сеть – внутренняя, находящаяся внутри цитоплазмы, представляет собой сложную систему в виде трубочек, мешочков, плоских цистерн разных размеров, которые объединены в единую замкнутую полость и ограничены от содержимого цитоплазмы биологической мембраной, образующей многочисленные складки и изгибы (Рис. 2).
Рис. 2. Эндоплазматическая сеть
Из плоских цистерн в клетках растений образуются вакуоли. Эндоплазматическая сеть разделяет цитоплазму на отдельные отсеки, в которых могут происходить различные химические процессы, не мешающие друг другу. При большом увеличении под микроскопом видно, что часть мембран сети покрыта рибосомами, эту часть называют шероховатой (гранулярной), ее основная функция – синтез белков в рибосомах, другая часть эндоплазматической сети не покрыта рибосомами и получила название гладкой (Рис. 3).
Рис. 3. Шероховатая и гладкая эндоплазматическая сеть
Гладкая эндоплазматическая сеть не только синтезирует и накапливает в своих цистернах различные вещества, но и участвует в их внутриклеточной транспортировке. Таким образом, эндоплазматическая сеть, с одной стороны, является транспортной системой клетки, а с другой стороны, в ней происходит синтез ряда веществ, необходимых не только самой клетке, но и нередко многим клеткам многоклеточного организма.
Образующиеся в клетке белки, жиры и углеводы далеко не всегда используются сразу же, их надо где-то хранить. Поэтому значительная часть синтезируемых клеткой веществ по каналам эндоплазматической сети поступает в особые полости, отделенные от цитоплазмы мембраной. Эти полости, уложенные своеобразными стопками, цистернами, получили название комплекса Гольджи (Рис. 4).
Рис. 4. Комплекс Гольджи
Комплекс Гольджи состоит из цистерн, трубчатых структур, вакуолей и транспортных пузырьков, в клетке может быть один комплекс Гольджи или несколько. Основная его функция – накопление и упаковка химических соединений, культивируемых в клетке. Комплекс Гольджи взаимодействует с эндоплазматической сетью, получая от нее новообразованные белки и другие выделяемые в клетке вещества. В структурах комплекса Гольджи эти вещества накапливаются, сортируются и могут долгое время храниться в цитоплазме как запас, пока не будут востребованы.
Митохондрии – энергетические органоиды клеток, форма их различна – они могут быть овальными, округлыми, палочковидными (Рис. 5).
Рис. 5. Митохондрия
Митохондрии отделены от цитоплазмы двумя мембранами: наружной и внутренней. Наружная – гладкая, а внутренняя мембрана образует много складок называемых кристами. Митохондрии имеют собственную ДНК и способны к делению. Эти органоиды участвуют в процессах клеточного кислородного дыхания и преобразуют энергию, которая при этом освобождается в форме, доступной для использования другими структурами клетки. В разных клетках количество митохондрий разное, оно варьируется от нескольких сотен до двух тысяч органоидов.
Мы рассмотрели основные органоиды клетки: эндоплазматическую сеть, комплекс Гольджи, митохондрии и лизосомы, их устройство и функции. На следующем уроке мы продолжим рассмотрение мембранных и немембранных органоидов клетки, а также узнаем, чем животные клетки отличаются от растительных.
Список литературы
1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. – Дрофа, 2009.
2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/ Под ред. проф. И.Н. Пономаревой. – 2-е изд., перераб. – М.: Вентана-Граф, 2005.
3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. – М.: Дрофа, 2002.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Интернет-сайт «Вся биология» (Источник)
2. Интернет-сайт appteka.ru (Источник)
3. Интернет-сайт bioaa.info (Источник)
4. Интернет-сайт biology100.ru (Источник)
Домашнее задание
1. Что представляет собой эндоплазматическая сеть?
2. Каковы функции комплекса Гольджи?
3. Что является источником энергии у всех живых организмов?
interneturok.ru
Органеллы (органоиды) растительной клетки | Цитология. Реферат, доклад, сообщение, кратко, презентация, лекция, шпаргалка, конспект, ГДЗ, тест
см. Мембранные органоиды (ЭПС, комплекс Гольджи, лизосома, митохондрия, пластиды, хлоропласты), Немембранные органоиды (микротрубочки, микрофиламенты, рибосомы)
Пластиды
Пластиды присутствуют только в растительных клетках. Каждая пластида окружена оболочкой, состоящей из двух элементарных мембран. Внутри пластиды различают мембранную систему и гомогенное вещество — строму. В зависимости от содержащихся в них пигментов различают три типа пластид: хлоропласты, хромопласты и лейкопласты.
Хлоропласты
Хлоропласты содержат хлорофилл и каротиноиды, в них происходит фотосинтез (рис. 2).
Рис. 2. Строение хлоропласта |
Они имеют форму диска (рис. 3), в одной клетке могут находиться до 50 хлоропластов. Строма хлоропласта пронизана системой мембран, называемых тилакоидами. Как правило, тилакоиды собраны в стопки-граны, которые связаны друг с другом тилакоидами стромы. Пигменты находятся в мембранах тилакоидов.
Хлоропласты содержат рибосомы, ДНК, зерна первичного крахмала, липидные капли. Хромопласты очень разнообразны по форме (округлые, палочковидные, ромбические), в них содержатся каротиноиды, которые придают желтую и оранжевую окраску цветам, плодам и старым листьям. Хромопласты могут развиваться из хлоропластов в результате разрушения в них хлорофилла и внутренней мембранной структуры. Лейкопласты — бесцветные пластиды. В них происходит синтез крахмала, белков и липидов. Встречаются в корнях, корневищах, клубнях, семенах. На свету могут превращаться в хлоропласты.
Рис. 3. Хлоропласты в клетках |
В процессе развития клетки пластиды возникают из пропластид, а увеличение их численности в клетке происходит путем деления.
Митохондрии (рис. 4) окружены двумя элементарными мембранами. Внутренняя мембрана образует складки и выступы, называемые кристами, которые увеличивают внутреннюю поверхность митохондрий. Промежутки между кристами заполнены жидким матриксом, в котором находятся белки, ДНК, РНК, рибосомы и различные растворённые вещества. В митохондриях осуществляется процесс дыхания. Большинство растительных клеток содержит сотни и тысячи митохондрий, их число определяется потребностью клетки в АТФ.
Рис. 4. Строение митохондрии |
Эндоплазматический ретикулум, или сеть (ЭПС)
Эндоплазматический ретикулум, или сеть (ЭПС) — это сложная мембранная система, имеющая форму плоских цистерн или трубочек. Различают гладкую и шероховатую (гранулярную) ЭПС.
На мембранах шероховатой ЭПС находятся рибосомы, здесь происходит синтез белка. Эндоплазматический ретикулум выполняет функцию транспорта веществ как внутри клетки, так и между клетками, поскольку ЭПС соседних клеток соединяются с помощью цитоплазматических тяжей (плазмодесм). ЭПС является также местом синтеза клеточных мембран.
Аппарат Гольджи
Аппарат Гольджи — это группы плоских цистерн, имеющих вид парных мембран и пузырьков. Аппарат Гольджи выполняет секреторную функцию и участвует в образовании клеточной оболочки. Здесь происходит синтез и накопление полисахаридов, которые с помощью пузырьков доставляются к месту формирования клеточной оболочки.
Лизосомы
Лизосомы растительных клеток — это мелкие цитоплазматические вакуоли и пузырьки, отграниченные от гиалоплазмы мембраной и содержащие гидролитические ферменты, которые могут разрушать сложные органические соединения клетки (белки, нуклеиновые кислоты, полисахариды и др.). Основная их функция — разрушение отдельных участков цитоплазмы собственной клетки.
Микротельца
Микротельца — это сферические органеллы, окруженные одной мембраной. Они имеют гранулярное содержимое, иногда в них обнаруживаются кристаллические белковые включения. Микротельца обычно связаны с эндоплазматическим ретикулумом и играют важную роль в процессах обмена веществ, в них содержатся ферменты, участвующие в процессах дыхания, фотосинтеза и превращения веществ.
Микротрубочки
Микротрубочки — это тонкие цилиндрические структуры, состоящие из молекул белка. Они постоянно разрушаются и образуются на определённых стадиях клеточного цикла. Микротрубочки участвуют в образовании клеточной оболочки, ахроматинового веретена в делящейся клетке, жгутиков и ресничек.
Рибосомы
Рибосомы — маленькие частицы, состоящие из белка и РНК. Располагаются в цитоплазме клетки свободно или прикрепляются к эндоплазматическому ретикулуму. Рибосомы образуют комплексы, называемые полисомами, на них происходит синтез белка. Материал с сайта http://doklad-referat.ru
Вакуоли
Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости в цитоплазме, заполненные клеточным соком и отграниченные от неё тонопластом (вакуолярной мембраной). В молодой клетке обычно содержится множество мелких вакуолей, а по мере роста клетки они увеличиваются в размерах, и сливаются в одну крупную вакуоль. Клеточный сок представляет собой раствор различных веществ (углеводов, белков, органических кислот, минеральных солей и др.), которые являются продуктами жизнедеятельности протопласта. В вакуолях часто накапливаются пигменты из группы антоцианов, которые придают органам растений красную, фиолетовую, пурпурную, синюю и голубую окраску. Химический состав и концентрация клеточного сока зависит от вида растения, типа и состояния клетки.
Тонопласт обладает избирательной проницаемостью и играет важную роль в транспорте веществ. В условиях достаточного водоснабжения растения вода поступает в вакуоль, объём которой в результате этого увеличивается и в клетке возникает тургорное давление, обеспечивающее упругость органов и рост клеток. В этом заключается одна из главных функций вакуоли и тонопласта. Если же клетку поместить в раствор, концентрация которого выше концентрации клеточного сока, то вода будет выходить из клетки, объем вакуоли уменьшится, протопласт отойдет от клеточной оболочки по направлению к центру клетки, Это явление называется плазмолизом. Потеря тургора при плазмолизе вызывает завядание растений. Вакуоли являются местом накопления запасных веществ и конечных продуктов обмена, а также участвуют в разрушении крупных молекул.
Клеточная оболочка растительной клетки
см. Клеточная оболочка растительной клетки
На этой странице материал по темам:Органоиды клетки кратко шпаргалка
Сообщение органеллы
В каком органоиде растительной клетке находится пигменты антоцианы
Пигменты антоцианы в каком органоиде располагаются
Клетка лекция органелы
Какие типы пластид могут присутствовать в растительной клетке? Объясните их функции и отличительные особенности.
Каковы функции вакуоли в растительной клетке? Что такое клеточный сок?
Какие пигменты могут содержаться в клеточном соке? Укажите их значение в жизни растений. Приведите примеры растений, окраска органов которых обусловлена этими пигментами.
Что такое плазмолиз? Объясните причины его появления в клетке.
doklad-referat.ru