Батурицкая Н. В., Фенчук Т. Д. Удивительные опыты с растениями. 1991. Батурицкая Н. В., Фенчук Т. Д. Удивительные опыты с растениями. Удивительные опыты с растениями. Опыты с растениями зимой
Повышение морозоустойчивости тканей растений - Удивительные опыты с растениями
Для опыта нужен корнеплод свеклы столовой, 3 пробирки, штатив, термометр (на —25 °С), лед, поваренная соль, мешалка для льда.
В вакуолях клеток столовой свеклы содержится водорастворимый пигмент из группы антоцианов — бетацианин. Поскольку он, как и другие антоцианы, находится только в вакуолях, для выделения пигмента необходимо повредить мембрану.
Пробочным сверлом из корнеплода вырежьте 6 небольших одинаковых (2Х0,5 см) пластинок. Тщательно промойте их водой, чтобы удалить антоциан из разрезанных клеток (от этого будут зависеть результаты опыта).
Затем перенесите пластинки в пробирки. В первую налейте на 1/4 объема воду, во вторую — столько же 0,5
187
М раствора сахарозы, в третью — столько же 1,0 М раствора сахарозы. Количество раствора в пробирках и количество пластинок свеклы в них должно быть одинаковым.
Пробирки поместите в охлаждающую смесь: к 3 частям снега или мелко истолченного льда добавьте 1 часть поваренной соли и перемешайте. Измерьте температуру смеси. Когда она опустится до —20 °С, содержимое пробирок замерзнет.
Через 15—20 мин достаньте пробирки и поставьте в стакан с водой комнатной температуры для оттаивания, после чего сравните окраску раствора в пробирках. В контрольной — раствор окрашивается в красный цвет. Выход антоцианов из вакуолей в раствор означает, что клетки погибли, мембраны их разрушены и уже не могут удержать содержимое клетки.
В пробирках с 0,5 М и 1,0 М растворами сахарозы цвет отличается от контроля. Чем выше концентрация сахарозы, тем слабее окрашен раствор. Уменьшение выхода антоциана из тканей корнеплода свеклы, находившихся в растворах сахарозы, свидетельствуют о том, что сахароза оказала защитное действие на цитоплазму клеток при их замораживании. Степень защитного действия зависит от концентрации сахарозы: в более концентрированном (1,0 М растворе) повреждение тканей оказалось минимальным.
Внезапное, в течение 15—20 мин, понижение температуры от +20 до —20 °С вызывает в клетках корнеплода, находившегося в пробирке с водой, образование льда непосредственно в цитоплазме. Кристаллы
188
льда повреждают структуру клеток, клетки погибают. В природных условиях такие резкие перепады температуры характерны для весенних заморозков.
Защитное действие сахарозы во второй и третьей пробирках связано как с поступлением сахарозы из раствора в клетки, так и с выходом воды из клеток в наружный, более концентрированный раствор. Чем выше количество сахарозы в клетке, тем ниже температура замерзания цитоплазмы, поскольку сахароза, связывая внутриклеточную воду, уменьшает ее подвижность. Обезвоживание клеток также повышает их устойчивость к действию морозов, препятствуя внутриклеточному образованию льда. Не случайно у древесных растений зимой накапливается в клетках до 10 % Сахаров, а у озимых злаков — до 50 %.
Результаты опытов позволяют понять, почему для успешной зимовки, как озимых травянистых растений, так и древесных, важна солнечная осень. При пониженных ночных температурах, замедляющих отток Сахаров в другие части растения, в зеленых листьях накапливаются углеводы. Самая низкая температура, которую выдерживают наиболее морозостойкие сорта озимой ржи — около —30 °С на уровне почвы. Это не слишком высокая степень морозоустойчивости. Ведь почки древесных пород в Сибири выдерживают до —70 °С. Такая температура наблюдается в Якутии, где растут ель сибирская, сосна обыкновенная, береза пушистая, осина. Дополнительную морозостойкость почкам этих видов придает состояние глубокого покоя, переход в которое сопровождается сильным обезвоживанием клеток, накоплением жиров, углеводов, изменением состава белков.
189
Задание. Выясните, повысится ли после пребывания в 0,5 М и 1,0 М растворах сахарозы морозоустойчивость клеток мякоти яблок и других окрашенных антоцианами плодов, листьев свеклы столовой и капусты краснокочанной, лепестков цветков.73. Продолжительность периода глубокого покоя у разных видов растений
Для опыта нужны побеги липы мелколистной или клена остролистного, дуба черешчатого, тополя черного, березы бородавчатой, ивы козьей, сирени обыкновенной, черешни, форзиции пониклой.
Методика опыта проста, но для того, чтобы довести его до конца, требуется определенное терпение и настойчивость, а также объекты исследования в достаточном количестве. Необходимо раз в месяц или в 10 дней срезать по 2—3 небольших побега какого-либо из указанных выше растений. Этот перечень не является строго обязательным. Конечно, чем больше видов будет изучено, тем интереснее и полнее будут результаты, но не забывайте о бережном отношении к природе.
Срезанные побеги снабдите этикетками с названием растения и датой сбора, поставьте в сосуд с водой в теплом помещении, еженедельно подрезая стебли и меняя воду. Основная задача дальнейших наблюдений за побегами — отмечать дату распускания почек. Сведения о дате сбора побегов и распускания почек
190
заносите в таблицу, подсчитывая количество дней, прошедших со дня внесения данного побега в теплое помещение до начала роста почек.
Начинать опыт можно в октябре — ноябре, но наиболее полноценные наблюдения получаются в том случае, если к изучению покоя почек приступить еще до опадения листьев, в августе — сентябре. Заканчивайте опыт в апреле — мае.
Если опыт проводился длительное время и данных получено много, результаты лучше выразить графическим способом. На оси абсцисс отложите даты срезания побегов растений, на оси ординат — промежуток времени (в сутках) от срезания побега до распускания почек.
Наблюдения показывают, что зимой у исследованных в опыте видов есть период, когда их побеги, будучи перенесенными в благоприятные для роста условия, не способны к распусканию почек.
Если начать опыт в июле, можно заметить, что в начальном этапе формирования почек они еще способны к росту (при условии, что вы перед опытом уберете все листья с побега). Затем, по мере вхождения древесных растений в состояние покоя, почки полностью утрачивают способность к росту.
Это период так называемого глубокого покоя. У разных растений продолжительность глубокого покоя не одинакова. Почки липы мел» колистной приобретают способность к росту только в январе, тополя черного — в октябре — ноябре , а у сирени обыкновенной период глубокого покоя еще короче. У некоторых видов
191
период глубокого покоя может практически отсутствовать.
Способность к весеннему росту проявляется у почек после прекращения глубокого покоя постепенно. Например, в одном из опытов (рис. 48) при взятии побегов каждые 10 дней в период с 20 ноября по 10 января для распускания листовых почек форзиции пониклой понадобилось соответственно 23, 17, 15, 8 дней. Продолжительность же распускания цветочных почек практически не менялась, имели место лишь колебания в пределах 6—10 дней. Такое поведение почек форзиции обусловлено тем, что она цветет до распускания листьев, поэтому цветочные почки полностью формируются с осени. У вишни разрыв между цветением и распусканием листьев меньше, но все же цветение начинается раньше, поэтому сроки распускания цветочных почек у нее несколько меньше (21, 20, 18, 13 дней), чем листовых (28, 35, 16, 13 дней).
Если такие измерения проводились несколько лет подряд, то по усредненной кривой можно достаточно точно определить, за сколько дней до нужного срока необходимо срезать побеги для выгонки.
Период глубокого покоя заканчивается (ноябрь — январь) до наступления весеннего тепла. Уже готовые к росту почки не распускаются только потому, что отсутствуют благоприятные для роста условия внешней среды. Этот период покоя получил название вынужденного. Переход растений из состояния глубокого покоя в вынужденный происходит постепенно, что
192
Рис. 48. Продолжительность зимнего покоя листовых (а) и цветочных (б) почек форзиции пониклой.обусловлено крайне замедленным протеканием всех процессов жизнедеятельности в зимний период.
Что же происходит в почках растений в период покоя?
Для глубокого покоя почек древесных растений характерна внутренняя, физиологическая неготовность к возобновлению роста в самых благоприятных условиях. Все физиологические процессы (дыхание, синтез веществ, новообразование органелл клетки) в этот период замедлены, но не прекращены. Значение периода глубокого покоя в том, что даже при появлении кратковременных оттепелей почки не трогаются в рост в заведомо неблагоприятные периоды.
Главное условие возобновления роста почек — воздействие температуры от 0 до +5 °С в течение 3—5
193
недель. Оно воспринимается почками и вызывает прежде всего изменение гормонального режима.
Когда древесные растения в сентябре — октябре переходят в состояние глубокого покоя, содержание в почках гормонов (ауксинов, гиббереллинов), стимулирующих рост, уменьшается, а содержание ингибиторов роста (абсцизовой кислоты) нарастает. Под действием перенесенных морозов в клетках точек роста вновь начинается синтез гормонов роста, прежде всего гиббереллина. По мере накопления в почках гормонов — стимуляторов ростовых процессов — способность к росту в благоприятных условиях возобновляется, что свидетельствует об окончании периода глубокого покоя.
Содержание ингибиторов роста после выхода почек из состояния глубокого покоя падает постепенно. По мере снижения их количества уменьшаются сроки, необходимые для распускания почек на побегах.74. Цветы зимой
Результаты предыдущего опыта показывают, что, даже если период глубокого покоя у растения и окончился, энергия распускания почки весной значительно выше, чем зимой. Существует много способов ускорения выхода растений из состояния покоя: обработка почек эфиром, теплыми ваннами, поранение тканей почки уколами, впрыскивание воды. Действительно, эти методы ускоряют на 2—6 дней распускание почек, особенно листовых.
Надо иметь в виду, что легче всего поддаются выгонке растения, которые цветут до распускания листьев.
194
Период глубокого покоя у них очень короткий и никакой специальной обработки, если знать примерное время, необходимое для распускания почек в ноябре — апреле, не требуется. Чтобы получить цветущие ветки к Новому году, срежьте в ноябре — начале декабря побеги одного из перечисленных видов растений: форзиции пониклой, айвы японской, магонии падуболистной, вишни, черешни, алычи, абрикоса — и поставьте в воду.
В феврале — марте побеги срезайте за 6—12 дней до праздника. Более точные рекомендации можно получить, проведя в течение 2—3 лет последовательное изучение продолжительности глубокого покоя и скорости выхода из него почек каждого вида растений, которые мы собираемся использовать для выгонки.
Уход за побегами состоит в еженедельной смене воды, подрезании стеблей, ежедневном опрыскивании водой (набухание почек весной происходит в основном путем поглощения ими воды или влажного воздуха).
Весьма заманчиво получить к Новому году цветущие побеги сирени, чубушника. В отличие от вишни, форзиции, сирень и чубушник принадлежат к группе растений, у которых цветки появляются позже листьев. Для полного развития цветков требуется приток питательных веществ из листьев. Поэтому окрашенные соцветия сирени легче получить в декабре, когда в стеблях еще велик запас питательных веществ. Если осень была благоприятна для фотосинтеза и в стеблях накоплен запас углеводов, если понижение температуры было
195
достаточным для завершения гормональной перестройки тканей цветочных почек, то срезанные в начале декабря побеги сирени дают соцветия без дополнительных обработок.
Более надежен другой способ. В начале ноября срежьте несколько побегов сирени с хорошо развитыми цветочными почками, удалите низкорасположенные почки. Для защиты от высыхания упакуйте в полиэтиленовую пленку и выдержите 4—5 недель в холодильнике при температуре от +4 °С и ниже (побеги сирени выдерживают понижение температуры до —20 °С). В начале декабря достаньте побеги из холодильника и поставьте в сосуд с водой комнатной температуры. Ежедневно побеги опрыскивайте водой, а стебли периодически отмывайте от слизи и подрезайте. Для улучшения питания растений в воду добавьте сахарозу или глюкозу из расчета 8— 10 г на 100 мл воды. Рекомендуются и более сложные рецепты, включающие, например, 15 г сахара, 0,8 г алюмокалиевых квасцов, 0,3 г хлорида калия и 0,2 г поваренной соли на 1 л воды. В растворах Сахаров создаются благоприятные условия для развития гнилостных бактерий, в целях борьбы с ними можно бросить в сосуд с побегами несколько кусочков древесного угля или чайную ложку поваренной соли на 1 л воды. Окраска соцветий сирени будет ярче, если побеги получат дополнительное освещение.
Ускорить выход растений из состояния глубокого покоя можно, используя также искусственные приемы воздействия на покоящиеся почки. Познакомимся с некоторыми из них.
196
75. Теплые ванны для растения
Ускорить выход растений из состояния глубокого покоя можно также с помощью теплых (35—40 °С) ванн.
Для опыта нужны побеги растений, находящиеся в глубоком покое, термос.
Опыт проводите в октябре — ноябре. Срезанные побеги разделите на 2 группы. Контрольную полностью погрузите в воду комнатной температуры (15—20 °С), опытную—в термос с теплой (35—40 °С) водой. Через 9—15 ч достаньте побеги, поставьте в сосуды с водой. Уход за побегами состоит в опрыскивании почек и обрезке концов стеблей. Теплая вода стимулирует распускание почек (через 3— 5 недель), тогда как почки побегов, получивших холодные ванны, остаются в состоянии покоя.
В начале декабря срежьте ветки сирени и полностью погрузите в теплую воду (30 °С) на 12 ч. После этого обновите срезы веток и при комнатной температуре поставьте в сосуд с раствором, содержащим 30 г сахара, 0,8 г алюмокалиевых квасцов, 0,3 г хлорида калия на 1 л кипяченой воды.
С началом распускания почек перенесите букет в более прохладное место (15—17 °С). Через неделю раствор замените свежим, но уже без сахара. Стебли обмойте, концы немного обрежьте.
Улучшает распускание постоянное опрыскивание веток, которое прекращайте, когда цветки начнут распускаться (через 15— 18 дней после срезки).
197
С началом зацветания ветки перенесите в раствор лимонной кислоты (2—3 г/л). Букет сирени сохранится около 7 дней.
Задание. Проверьте, происходит ли передача по растению воспринятого частью побега теплового воздействия. Для этого срежьте ветку с двумя побегами. Один побег выдержите 9—15 ч в теплой ванне, второй оставьте без обработки. Поставьте ветку в теплое светлое место и проследите за скоростью распускания почек на обоих побегах.
Стимулирующее действие теплых ванн на выход растений из состояния покоя во многом обусловлено вымыванием из почек ингибиторов роста. Накопление ингибиторов роста всегда сопутствует переходу почек, семян, видоизмененных зимующих органов в состояние покоя, а возобновление роста связано с уменьшением их количества. Набор ингибиторов роста достаточно обширен: это может быть уже знакомая вам абсцизовая кислота или вещества негормональной природы (бензойная, коричная, салициловая кислоты, алкалоиды, дубильные вещества и др.). Поскольку это хорошо растворимые вещества, их можно извлечь из покоящихся почек и изучить влияние на рост.76. Почки осенние и весенние
В осенних почках ивы обнаружен ингибитор роста негормональной природы — изосалипурпозид. По химическому строению он близок к салициловой кислоте, впервые полученной из коры ивы.
Для опыта нужны почки ивы (любого вида), собранные с растений осенью, 6 пробирок, ступка с пестиком, свежесрезанные побеги ивы.
198
Опыт проводится в 2 этапа. Первый этап — сентябрь, октябрь. В этот период почки большинства растений содержат много ингибиторов. Основная задача осеннего этапа — собрать около 10 г почек с побегов любого вида ивы и сохранить их до весны в сухом месте при комнатной температуре.
Второй этап можно провести в феврале — мае, когда распускание почек происходит легко и дружно.
Ингибитор роста, содержащийся в почках ивы, хорошо растворим в воде. Заготовленные осенью почки разотрите в ступке, залейте небольшим (около 30 мл) объемом теплой воды, перемешайте. Экстракт отфильтруйте и разлейте в 3 пробирки (опытный вариант). Можно приготовить растворы различного разбавления. Оставшиеся пробирки заполните тем же объемом воды (контрольный вариант). Свежесрезанные побеги ивы, находящиеся в вынужденном покое, поместите по одному в пробирки с экстрактом почек и чистой водой. Штатив с пробирками поставьте в теплое и светлое место Сравните сроки распускания почек в опытном и контрольном вариантах.
Результаты одного из опытов изображены на рис. 49. Поставленные в воду побеги контрольного варианта начинали рост уже через неделю, тогда как почки побегов опытного варианта оставались в состоянии покоя.
Можно сделать вывод, что осенью почки ивы действительно содержат ингибиторы роста. Извлеченные из осенних почек, они по сосудам стебля поступают в готовые к росту почки весенних побегов и, накапливаясь в них, тормозят распускание.
199
Рис. 49. Распускание почек ивы осенью (а) и весной (б), черенок обработан ингибитором, выделенным из почек осеннего черенка (в).Задание. Выясните, какое влияние окажут ингибиторы, выделенные из осенних почек ивы, на прорастание семян, например огурцов. Для этого семена прорастите в двух чашках Петри: в одной на фильтровальной бумаге, смоченной водой, в другой — вытяжкой из почек.
Можно выделить ингибиторы прорастания из семян, например караганы древовидной, и изучить их влияние на прорастание семян ржи, пшеницы.77. Покой семян
Переход в состояние покоя — широко распространенный у растений способ переживания неблагоприятных условий. В покоящееся со-
200
стояние переходят не только зимующие почки, но и семена большинства растений. Покоящиеся семена имеют много общего с покоящимися почками: большие запасы питательных веществ (3/4 всех семенных растений накапливают в семенах в качестве запасного питательного вещества жиры), уменьшение содержания воды, снижение обмена веществ. При переходе в состояние покоя семена обезвоживаются значительно сильнее, чем почки, что повышает их устойчивость в неблагоприятных для жизни условиях. У семян, как и у почек, есть периоды глубокого и вынужденного покоя. Благодаря резкому снижению интенсивности обмена веществ, семена могут сохранять жизнеспособность (всхожесть) довольно длительное время Например, семена ржи, кукурузы, капусты, томатов сохраняют всхожесть около 5 лет; пшеницы, овса, ячменя, тыквенных — около 10 лет. У многих растений, относящихся к семейству бобовых,— 50 — 100 лет. Возраст сохранивших жизнеспособность семян люпина арктического, добытого из отложений торфа, определили в 10 000 лет.
В чем же секрет долголетия семян мелкосемянных бобовых растений?
Для опыта нужны семена любого вида бобовых растений с мелкими семенами (клевера, люцерны, донника, вики), 2 чашки Петри, фильтровальная бумага, немного песка для обработки семян. Продолжительность опыта 15—16 дней.
Отсчитайте 100 семян, уложите их в чашку Петри на увлажненную фильтровальную бумагу для проращивания. Уже через 2 суток видно, что не все семена, находящиеся в чашке
201
Петри, способны к набуханию и росту. В зависимости от вида растения, способа сбора количество проросших семян может колебаться от 3 до 50 Семена, способные прорасти сразу же, как только попадут в благоприятные условия, называют мягкими, имея в виду, что их оболочка легко пропускает воду Семена, которые спустя 10 дней остаются ненабухшими и непроросшими, относят к твердым Они светло-желтые или коричневые, лежат на влажной фильтровальной бумаге, как камешки (поэтому их еще называют твердокаменными семенами) В любой партии посевного материала могут быть просто невсхожие семена. Их легко отличить они черные, набухают, но не дают проростков, к концу опыта ослизняются.
На 10—12-й день проращивания подсчитайте количество проросших семян (это будет фракция мягких семян), невсхожих, сгнивших и ненабухших (твердых) семян. Полученные результаты занесите в таблицу.
Для следующего этапа работы нужны только твердые семена Поэтому проросшие семена удалите, полученную фракцию твердых семян разделите на 2 части Одну часть уложите в чашку Петри на увлажненную фильтровальную бумагу для проращивания без дополнительной обработки Это контрольная группа семян Другую часть поместите в ступку, добавьте немного песка и осторожно перетрите с песком, примерно в течение 1 мин Песчинки повреждают оболочку, на ней появляются трещины Из-за небольшого размера семян и песчинок эти царапины незаметны, поэтому очень важно не растереть сами семена Можно заменить
202
перетирание энергичным встряхиванием с песком в течение получаса. Обработанные семена отделите от песка и уложите во вторую чашку Петри на увлажненную фильтровальную бумагу
Результаты опыта станут очевидны уже через 3—4 дня обработанные песком семена энергично прорастают, контрольные — остаются в набухшем состоянии
Следовательно, в твердых семенах клевера, люцерны зародыш сформирован и семя не прорастает потому, что покрыто плотной, водонепроницаемой оболочкой
Разрушение целостности семенной оболочки твердых семян называется скарификацией Этот прием широко используется в сельском хозяйстве, поскольку количество твердых семян в посевном материале может колебаться от 50 до 97 %
В природе растрескивание оболочки происходит под влиянием многократного высыхания, замораживания, она разрушается бактериями. Поэтому сохраниться непроросшими в течение сотен лет твердые семена могут только при постоянном воздействии неблагоприятных условий — под слоем торфа и льда
Задание Сравните способность к образованию твердых семян у дикорастущей и культурной люцерны.
topuch.ru
Опыт с растениями "Цветы зимой" - ОПЫТЫ С РАСТЕНИЯМИ - Каталог файлов
Результаты предыдущего опыта показывают, что, даже если период глубокого покоя у растения и окончился, энергия распускания почки весной значительно выше, чем зимой. Существует много способов ускорения выхода растений из состояния покоя: обработка почек эфиром, теплыми ваннами, поранение тканей почки уколами, впрыскивание воды. Действительно, эти методы ускоряют на 2–6 дней распускание почек, особенно листовых.Надо иметь в виду, что легче всего поддаются выгонке растения, которые цветут до распускания листьев. Период глубокого покоя у них очень короткий, и никакой специальной обработки, если знать примерное время, необходимое для распускания почек в ноябре–апреле, не требуется. Чтобы получить цветущие ветки к Новому году, срежьте в ноябре–начале декабря побеги одного из перечисленных видов растений – форзиции пониклой, айвы японской, магонии падуболистной, вишни, черешни, алычи, абрикоса – и поставьте в воду.В феврале–марте побеги срезайте за 6–12 дней до праздника. Более точные рекомендации можно получить, проведя в течение 2–3 лет последовательное изучение продолжительности глубокого покоя и скорости выхода из него почек каждого вида растений, которые мы собираемся использовать для выгонки.Уход за побегами состоит в еженедельной смене воды, подрезании стеблей, ежедневном опрыскивании водой (набухание почек весной происходит в основном путем поглощения ими воды или влажного воздуха).Весьма заманчиво получить к Новому году цветущие побеги сирени, чубушника. В отличие от вишни, форзиции сирень и чубушник принадлежат к группе растений, у которых цветки появляются позже листьев. Для полного развития цветков требуется приток питательных веществ из листьев. Поэтому окрашенные соцветия сирени легче получить в декабре, когда в стеблях еще велик запас питательных веществ. Но если осень была благоприятна для фотосинтеза и в стеблях накоплен запас углеводов, если понижение температуры было достаточным для завершения гормональной перестройки тканей цветочных почек, то срезанные в начале декабря побеги сирени дают соцветия без дополнительных обработок.Более надежен другой способ. В начале ноября срежьте несколько побегов сирени с хорошо развитыми цветочными почками, удалите низкорасположенные почки. Для защиты от высыхания упакуйте в полиэтиленовую пленку и выдержите 4–5 недель в холодильнике при температуре +4 °С и ниже (побеги сирени выдерживают понижение температуры до –20 °С). В начале декабря достаньте побеги из холодильника и поставьте в сосуд с водой комнатной температуры. Ежедневно побеги опрыскивайте водой, а стебли периодически отмывайте от слизи и подрезайте. Для улучшения питания растений в воду добавьте сахарозу или глюкозу из расчета 8–10 г на 100 мл воды. Рекомендуются и более сложные рецепты, включающие, например, 15 г сахара, 0,8 г алюмокалиевых квасцов, 0,3 г хлорида калия и 0,2 г поваренной соли на 1 л воды. В растворах сахаров создаются благоприятные условия для развития гнилостных бактерий, в целях борьбы с ними можно бросить в сосуд с побегами несколько кусочков древесного угля или чайную ложку поваренной соли на 1 л воды. Окраска соцветий сирени будет ярче, если побеги получат дополнительное освещение.Ускорить выход растений из состояния глубокого покоя можно, используя также искусственные приемы воздействия на покоящиеся почки. Познакомимся с некоторыми из них.
xn----btbgtbailwebq2b.xn--p1ai
Удивительные опыты с растениями - страница 8
Помимо органов с радиальной симметрией, есть органы и с двусторонней симметрией — листья, усики некоторых растений (гороха посевного) .
Благодаря различиям в строении, химическом составе клеток верхней и нижней сторон, они способны реагировать на диффузное, равномерное изменение условий среды вокруг листа, цветка. Движения такого типа называются настическими или просто настиями (от греч. «настое»—уплотненный). Термин возник в связи со способностью некоторых видов растений поднимать или опускать листья, плотно прижимая их друг к другу (рис. 32).
Названия настий, как и тропизмов, зависят от тех раздражителей, которые их вызывают. Различают фото-, термо-, никти-, хемо-, тигмо-, сейсмо-, электро-, травмонастии.
134Рис. 32. Настические движения листьев фасоли (а) и донника желтого (б).54. Наблюдения за движениями венчиков цветков
Для опыта нужны полоска миллиметровой бумаги длиной около 10 см, лист миллиметровой бумаги, цветущие растения: годеция крупноцветковая, деморфотека гибридная, ипомея пурпурная, маттиола двурогая, ноготки лекарственные, портулак крупноцветный, нивяник наибольший, табак душистый, эшшольция калифорнийская.
Никтинастии, обусловленные сменой дня и ночи, довольно медленные, плавные движения, поэтому определить среднее время открытия и закрытия цветка визуально не просто. Для получения более точных данных необходимо провести наблюдения за движением
135
лепестков в течение всего дня, лучше в солнечную погоду.
Основной показатель — расстояние между расположенными друг против друга лепестками венчика. Когда цветок закрыт, расстояние между лепестками минимально, по мере раскрытия венчика оно возрастает. Расстояние измеряйте полоской миллиметровой бумаги.
Опыт лучше начинать утром, когда венчики большинства цветков еще закрыты. Или, наоборот, раскрыты, как у табака душистого и магтиолы двурогой.
Для наблюдения отберите 2 молодых цветка изучаемого вида. На цветоножки повесьте небольшие этикетки с номером растения.
Измерения проводите с интервалом в 1—2 ч, заканчивая их вечером.
Полученные данные используйте для составления графика движения лепестков венчика в течение дня. На оси абсцисс отложите часы суток, в которые были проведены измерения, на оси ординат — расстояние (мм) между противоположно расположенными лепестками венчика. На кривой, описывающей движение венчика в течение дня, отметьте время начала раскрывания венчика, полного открытия его и закрытия. Полученные данные сведите в таблицу и на ее основе составьте местный вариант цветочных часов.
Наблюдения показывают, что у исследованных видов растений венчики способны открываться и закрываться в определенное, характерное для данного вида, время суток. Изменение условий, например дождь, облачность, приводит к сдвигу в ритмах движений венчиков. Это явление получило образное название «сна растений».
136
У календулы лекарственной венчики раскрываются около 10 ч утра и к 19—20 ч закрываются. Иной характер этих движений у ослинника двулетнего.
У большинства растений движения отчетливо выражены только у молодых цветков, а лепестки старых либо совсем не двигаются, либо их движения имеют несколько другой характер. Например, у портулака крупноцветкового цветки начинают открываться в 9 ч утра и в 11 ч все уже открыты. Молодые цветки «бодрствуют» до 15 ч, а старые тут же начинают закрываться и в 14 ч уже все «спят». Поэтому грядки портулака выглядят оригинально: в 14 ч часть цветков закрыта, часть открыта.
Наблюдения за движениями одного и того же цветка в течение нескольких дней убеждают, что ритмические движения венчиков совершаются непрерывно до тех пор, пока цветок не состарится.
На рисунке 36 представлена запись движений венчика цветков картофеля в течение 3 дней. Каждый день цветки картофеля в 6—7 ч утра раскрывались и к 20—21 ч закрывались.
Способностью к движениям обладают и листья. Семядольные листочки лебеды раскидистой, томатов, перца овощного вечером поднимаются, а днем опускаются, подставляя листовые пластинки солнцу. Сходным образом ведут себя листочки сложных листьев клевера белого, горошка мышиного, кислицы, робинии лжеакации.
137
Перистые листья робинии лжеакации (белой акации) особенно чувствительны к суточным изменениям освещенности и температуры В течение суток листочки их могут несколько раз менять свое положение Утром они располагаются горизонтально, солнечный свет падает на всю поверхность листа. В полдень, когда интенсивность освещения возрастает, они
139
становятся ребром к солнечным лучам. С заходом солнца листочки свешиваются вниз.
Медленный, плавный характер многих никтинастий позволяет сделать вывод, что это ростовые движения Если клетки верхней стороны лепестка растут быстрее, венчик раскрывается. Замедление их роста по сравнению со скоростью роста клеток нижней стороны лепестка приводит к закрытию цветка.
Этот вывод подтверждается и наблюдениями за способностью к движениям венчиков молодых и старых цветков.
141
В лепестках стареющих цветков клетки заканчивают растяжение, поэтому на изменение условий освещения реагируют слабее Никтинастические движения листьев, а также лепестков некоторых растений представляют собой не ростовые, а тургорные движения Движения листа происходят вследствие быстрого увеличения или уменьшения объема клеток, расположенных у основания органа.
Никтинастии — результат совместного влияния изменяющихся в течение суток освещенности и температуры. Большую роль играют также внутренние раздражения — характерный для них суточный ритм движений растения сохраняют, находясь в течение нескольких суток в условиях равномерного освещения и температуры.
Задание. Изучите ритмы фотонастических движений венчиков дикорастущих растений, например представителей семейства сложноцветных (ястребинки волосистой, кульбабы осенней, осота огородного). Сравните способность к движению молодых и старых цветков культурных и дикорастущих видов.55. Термонастии цветка тюльпана
Для опыта нужны побеги тюльпанов, комнатный термометр, холодильник, часы.
Побеги с полностью раскрытыми цветками положите на нижнюю полку холодильника (около +5°С). Когда цветки полностью закроются, достаньте побеги из холодильника и перенесите в теплое помещение. Занесите в таблицу данные о времени, за которое лепестки открывались и закрывались.
142
Вид растения | Повторность | Продолжительность, мин | |
открытия | закрытия | ||
Тюльпан | 1 | ||
2 | |||
3 |
Для вывода о механизме этого вида движений проделайте опыт с состарившимися цветками.
И в природных условиях цветки тюльпанов, крокусов, галантуса белого (подснежника), портулака крупноцветного в холодные дни не раскрываются.
Несомненно, термонастические движения лепестков играют защитную роль, предохраняя завязь и пыльцу от переохлаждения и переувлажнения. И это особенно важно для раннецветущих растений: крокусов, галанту-сов, которые из-за капризов погоды порой могут оказаться под снегом.
Задание. Сравните скорость термонастических движений портулака крупноцветного и эшшольции калифорнийской. Выясните зависимость скорости движений венчика от возраста цветков (считая первым днем день раскрытия бутона).56. Как движутся листья кислицы обыкновенной и робинии лжеакации
У небольшой группы растений имеются специализированные — моторные, или двигательные — клетки. Благодаря особому механизму их работы, реакция листочков и чувствительных волосков на раздражающие стимулы может наступать уже через несколько секунд,
143
Эти сейсмонастические движения — ответная реакция растений на толчки, сотрясения (при ветре, дожде, прикосновении насекомых). Наиболее детально изучены движения листьев мимозы стыдливой — полукустарника с двоякоперистыми листьями родом из Бразилии. В нашей стране мимоза выращивается только в оранжереях. У мимозы днем листочки сложного листа и сам лист располагаются горизонтально. Если встряхнуть все растение, происходят одновременно 3 движения: главный черешок отгибается вниз, весь лист повисает, прижимаясь к стеблю; опускаются по направлению к главному черешку 4 листа; листочки сложного листа поднимаются вверх и прижимаются друг к другу (рис. 39). Эти движения у мимозы могут происходить и в медленном темпе, под влиянием смены дня и ночи.
Чувствительность мимозы удивительна. Если слегка ударить по какому-нибудь листу, волна возбуждения быстро распространяется по растению и листья начинают поочередно складываться.
В белорусской флоре тоже есть, хоть и менее чувствительные, но все же интересные в этом отношении растения — кислица обыкновенная, робиния лжеакация.
Для опытов необходимы растения кислицы, листья робинии лжеакации, часы, линейка, лист миллиметровой бумаги.
Кислица медленно раскрывает и складывает свои листья и лепестки венчика при смене дня и ночи (никтинастии) и намного быстрее в ответ на резкие механические (сейсмонастии) и температурные (термонастии) воздействия. Чувствительность кислицы по сравне-
144
нию с мимозой значительно ниже, поэтому легкого прикосновения к листу может быть недостаточно. Нужно слегка ударить палочкой по черешку листа. Отметьте начало опыта. Обратите внимание на поведение черешка, трех листочков сложного листа и частей листовой пластинки. Определите скорость реакции листьев на раздражение и скорость возврата в исходное состояние.
Графическое изображение движений листочков и их половинок облегчит восприятие и анализ результатов. Методика построения кривых описана в опыте «Наблюдения за движениями венчиков цветков», только интервал времени между двумя измерениями сократите до 1—2 мин. Лучше всего всю сложную систему движений листьев кислицы представить серией фотографий.
Исследование реакции листьев кислицы на механическое раздражение показывает, что реакция органа (складывание листьев) протекает немного быстрее, чем восстановление исходного состояния. Это характерная особенность процесса возбуждения всех клеток.Рис. 39. Реакция мимозы стыдливой на раздражение.Обращает на себя внимание согласованность движений черешка, листочков и половинок листовой пластинки. Координация их обусловлена преобразованием механического раздражения в электрический сигнал. Он быстро распространяется по растению (у мимозы, например, скорость его передвижения около 2 см/с) и доходит до основания черешков. У основания черешка листа и черешков сложных листьев имеются особые утолщения — листовые подушечки (рис. 40) со специализированными моторными (двигательными)Рис. 40. Срез сочленовой подушечки мимозы.
145
клетками. Под влиянием электрических сигналов резко изменяется проницаемость мембран, вода выталкивается из вакуолей в межклетники и клетки быстро теряют тургор. Поэтому сейсмонастические движения относят к группе тургорных движений. Уменьшение или увеличение объема листовых подушечек вызывает опускание и поднятие листьев кислицы, мимозы.
К группе тургорных движений относятся и никтинастии сложных листьев робинии лжеакации, различных видов клевера. Убедимся в этом.
Лист робинии лжеакации, листовая пластинка которого полностью развернута, поместите на несколько минут в стакан с водой, затем достаньте его и положите на стол.
146
Постепенно происходит обезвоживание листа, в том числе моторных клеток листовых подушечек. В результате начинается движение листочков сложного листа, они поднимаются вверх и складываются. Вновь поставьте лист в воду, пронаблюдайте за восстановлением тургора.
Задание. Выясните, существует ли зависимость сейсмонастических движений от возраста листа.57. Влияние ауксина на закручивание усиков гороха
Впервые этот опыт был проведен американским ученым А. Гэлстоном.
Для опыта необходимы растения гороха посевного с усиками на листьях, 50 мл раствора ауксина (гетероауксина) концентрацией 150 мг/л, 3 пробирки, 3 чашки Петри, деревянная палочка.
Ауксин плохо растворяется в холодной воде, поэтому раствор нужно готовить накануне опыта. Для получения нужной концентрации растворите 8 мг ауксина в 50 мл воды, нагревая до 80—90 °С. Ауксин (гетероауксин) можно приобрести в магазинах бытовой химии.
В стоящие в штативе пробирки с водой осторожно, не прикасаясь к усикам, поместите отрезки стебля гороха, несущие листья с молодыми, еще не закрученными усиками.
Рядом с пробирками поставьте 3 чашки Петри. В первые две налейте воду, в третью — раствор ауксина.
Концы усиков осторожно опустите в подготовленные чашки так, чтобы они не касались края.
147
Усик, находящийся в первой чашке,— контрольный. Если предыдущие этапы работы выполнены аккуратно, то он до конца опыта не закручивается.
Нижнюю сторону верхушки второго усика несколько раз слегка потрите палочкой, имитируя соприкосновение усика с опорой. Под влиянием раздражения он начнет постепенно закручиваться.
Усик же, опущенный в раствор ауксина, начинает закручиваться самопроизвольно, без дополнительного раздражения.
У гороха посевного в усик превращается верхняя часть сложного перистого листа, поэтому, как и лист, усик дифференцирован на верхнюю и нижнюю стороны, различающиеся по строению и свойствам. Поступающие из раствора дополнительные количества ауксина стимулируют рост только верхней стороны, что и приводит к закручиванию усика.
Перераспределение ауксина, увеличение его содержания в клетках верхней стороны усика — ответная реакция его на прикосновение.
Самой высокой степенью раздражимости обладает верхняя треть усика, причем у гороха — нижняя его сторона. У некоторых растений чувствительность усиков настолько высока, что они могут воспринимать раздражение от прикосновения шерстяной, нитки массой 0,025 мг.
Таким образом, результаты проведенного опыта показывают, что закручивание усика гороха посевного регулируется ауксином.
148
Задание. Проведите наблюдения за движениями усиков огурца посевного и тыквы обыкновенной, которые в отличие от усиков гороха являются видоизмененными побегами, т. е. имеют не двустороннюю, а радиальную симметрию. В какой части их усиков располагается зона, воспринимающая раздражение? Одинакова ли чувствительность различных сторон (пометьте одну из них краской)? Какова скорость закручивания усиков?58. Хмель завивается...
Широко распространены у растений круговые или колебательные движения верхушки стебля — нутации. В большей или меньшей степени они характерны для верхушек всех молодых растений, но наиболее отчетливо выражены у вьющихся. Благодаря непрерывным круговым движениям верхушки (у хмеля диаметр круга, описываемого верхушкой, достигает 50 см) растение обвивается вокруг опоры.
Направление движения у различных видов не одинаково: для одних (хмель обыкновенный) характерно правое (по часовой стрелке), для других (фасоль многоцветковая, вьюнок полевой) — только левое (против часовой стрелки), у третьих (горец вьюнковый) возможно вращение в обоих направлениях. Любопытно, что у растений преобладает левовинтовое движение.
Определите направление и скорость движения верхушки стебля хмеля обыкновенного.
Для опыта нужны молодые вьющиеся растения хмеля обыкновенного, картон или фанера (20Х20 см), бумага (20Х20 см), отвес (нитка, к которой за шляпку привязан гвоздь), часы, кнопки.
149
Около стебля растения положите лист картона с приколотой чистой бумагой. В картоне сделайте прорезь, чтобы зафиксировать стебель. К верхушке растения, не касаясь ее, поднесите отвес так, чтобы гвоздь острием почти касался бумаги. Проекцию отвеса отметьте на бумаге карандашом в виде точки и заметьте время Каждые 10—30 мин повторяйте измерения. На бумаге стрелкой укажите направление движения. Окончите опыт, когда верхушка побега завершит оборот.
Скорость вращения довольно велика. Например, в одном из опытов верхушка хмеля описала круг диаметром 33 см за 2 ч
В основе вращения лежит неравномерный рост клеток внешней и внутренней сторон органа, причем усиление роста идет по оси Нутации — пример автономных, или эндогенных, движений, которые регулируются внутренними процессами, имеющими ритмичный характер, т. н. биологическими часами
Задание. Выясните, зависит ли скорость вращения верхушки хмеля от возраста растения, погодных условий.РАСТЕНИЯ ОСЕНЬЮ И ЗИМОЙБольшая часть территории Советского Союза расположена в зоне умеренного и холодного климата, для которого характерны длительные относительно сильные морозы до —20 °С, а в отдельных районах Восточной Сибири до —68 °С. Районов, где совсем бы не было зимы, в Советском Союзе нет.
Понижение температуры ниже нуля создает серьезные трудности для выживания растений. У большинства видов ростовые процессы могут идти только в интервале температур от —5 до +55 °С, а фотосинтез и накопление органического вещества—от +5 до +40 °С.
Жизнедеятельность растений прекращается зимой потому, что из замерзшей почвы в растения перестают поступать вода и минеральные соли. В периоды длительных морозов гибель тканей растения наступает от повреждающего действия кристаллов льда, образующихся в межклетниках и цитоплазме клеток.
Приспособление растений к выживанию в экстремальных условиях шло в процессе эволюции различными путями.
151
Так, однолетние травянистые растения заканчивают свой жизненный цикл до наступления морозов и зимуют в виде семян, клубней, луковиц, находящихся в состоянии покоя.
Травянистые многолетники с отмирающими на зиму листьями зимуют в виде заглубленных в почву корневищ (осот полевой, хвощ полевой, пырей ползучий).
Многие травянистые растения уходят под снег с листьями, а ранневесенние растения (хохлатка, ветреница) даже способны к подснежному росту.
Деревья и кустарники с наступлением холодов переходят в состояние покоя. Листопадные породы предварительно сбрасывают листву.
Переход от активного роста летом к глубокому покою зимой происходит постепенно, в течение осеннего сезона. Изменение условий внешней среды, прежде всего продолжительности дня, вызывает перестройку гормонального режима растений: постепенно уменьшается содержание гормонов, стимулирующих рост, и увеличивается количество ингибиторов роста (этилена, абсцизовой кислоты). Не случайно абсцизовую кислоту называют гормоном стресса, а этилен — гормоном старения. Увеличение содержания ингибиторов роста приводит к снижению интенсивности обмена веществ и постепенной остановке роста. Формируются приспособления, повышающие устойчивость растений к морозам: сбрасывание листвы, накопление Сахаров и других водорастворимых веществ, обезвоживание клеток, переход растений в состояние покоя.
152
topuch.ru
ОСЕННИЕ КРАСКИ - Удивительные опыты с растениями
Это многообразие оттенков обусловлено различным сочетанием в осенних листьях трех групп пигментов: желто-оранжевых каротиноидов, зеленых хлорофиллов и красных антоцианов.
Изменение окраски листьев всегда начинается с прекращения синтеза хлорофилла. Имеющийся в хлоропластах хлорофилл начинает постепенно разрушаться: у одних видов —полностью (листья дуба), у других—частично (слива).
В хлоропластах зеленых листьев всегда присутствуют 2 группы пигментов: зеленые
171
хлорофиллы и желто-оранжевые каротиноиды. Каротиноиды маскируются хлорофиллом, поэтому в зеленых листьях не заметны. В отличие от хлорофиллов, каротиноиды более устойчивы, осенью распад их идет гораздо медленнее, а у некоторых видов количество их даже возрастает. В конечном итоге цвет листа будет зависеть от того, способен ли данный вид к синтезу в листьях антоцианов.
У деревьев и кустарников, не образующих в листьях антоцианы, в результате осеннего распада хлорофилла становятся заметными каротиноиды, листья приобретают различные оттенки желтого, желто-зеленого цвета.65. Влияние условий освещения на пожелтение листьев
Различные факторы внешней среды (освещенность растений, температура воздуха, водоснабжение) оказывают влияние на окраску листьев. Например, в зависимости от погодных условий цвет листьев клена меняется от желтого до пурпурно-красного.
Для опыта нужны листья нижних ярусов настурции большой, которые уже закончили рост, но еще не имеют внешних признаков старения, стакан, лист черной бумаги.
Половину листовой пластинки закройте с двух сторон черной бумагой. Лист поместите в стакан с водой и поставьте в хорошо освещенное место. Спустя 4—5 дней снимите бумагу, сравните цвет половинок листа. Хорошо заметны различия в окраске: освещенная часть зеленая, а затемненная — желтая.
172
Результаты опыта свидетельствуют, что снижение интенсивности и продолжительности освещения листьев ускоряет распад молекул хлорофилла в хлоропластах.
У разных видов растений скорость распада хлорофилла различна. Это проявляется в неодновременности развития осенней окраски. Например, у шелковицы белой разрушение хлорофилла происходит медленно, в течение 60 дней, а у магнолии быстрее — за 35 дней.
Задание. Сравните устойчивость хлорофилла в листьях различных видов растений, в молодых и старых листьях.66. Необходимость кислорода для разрушения хлорофилла
Стареющий, но еще сохранивший зеленый цвет лист любого светолюбивого растения опустите в стакан с водой так, чтобы только половина его находилась под водой.
Для этого закрепите лист в прорези укрывающей стакан плотной бумаги или пропитанной парафином марли. Стакан поставьте в темное место.
Через 3—5 дней станут заметны различия в окраске листа: находившая-Рис. 46 Необходимость кислорода для разрушения хлорофилла.ся в воде часть сохранит зеленый цвет, другая—пожелтеет (рис. 46).
Уменьшение скорости распада хлорофилла в той части листа, которая находилась в воде, свидетельствует, что в разрушении хлорофилла важную роль играет процесс дыхания. Содержание кислорода в воде намного ниже, чем в воздухе.67. Искусственная осень
Многие виды растений одновременно с распадом хлорофилла синтезируют и накапливают в вакуолях клеток красный пигмент антоциан. У таких растений цвет листьев будет определяться сочетанием желто-оранжевых каротиноидов, красных антоцианов и остаточных количеств хлорофилла.
Ярко-красная окраска листьев бывает, однако, далеко не каждую осень у тех видов, для которых она характерна. Необходимы определенные условия: ясная солнечная погода, достаточно высокие дневные температуры, прохладные ночи.
В ясные солнечные дни в листьях еще довольно интенсивно идет процесс фотосинтеза, накапливаются углеводы, но отток органических веществ из листа затруднен как пониженными ночными температурами, так и началом формирования отделительного слоя. В листе накапливается некоторый избыток Сахаров, которые и способствуют синтезу антоцианов.
Для опыта нужны растущие в естественных условиях растения, синтезирующие антоцианы в листьях: виноград девичий пятилисточковый,Рис. 47. Искусственная осень.
174
дерен красный, клен остролистный, груша и др.
В конце июля — начале августа на побеге растения сделайте поперечный, надрез примерно на 2/3 древесины
Спустя 2—3 недели сравните цвет листьев на надрезанном и неповрежденном побегах
Листья, расположенные на побеге выше надреза, приобретут ярко-красную окраску, тогда как на остальном растении они сохранят зеленый цвет (рис 47) Причина преждевременного усиления синтеза антоцианов в избыточном накоплении Сахаров в листьях, расположенных выше надреза
Задание Перерезав центральную жилку, изучите зависимость между накоплением углеводов и синтезом антоцианов на стареющих, но еще сохранивших зеленый цвет листьях дуба красного, груши обыкновенной, винограда девичьего
Условия освещения влияют на накопление Сахаров и, в свою очередь, на синтез антоцианов, образующихся не только в листьях, но и в созревающих плодах некоторых видов растений Проверьте эту зависимость на плодах яблонь.68. Надписи и рисунки на плодах
Для опыта нужны красноокрашенные яблоки, темный чехол с вырезанным рисунком или темная изолента.
Опыт проводите в саду в июле — августе, когда рост плодов уже заканчивается, но цвет еще остается зеленым В этот период клетки плода приобретают способность к синтезу ферментов, необходимых для
176
образования антоцианов из Сахаров.
Наденьте на яблоко чехол. Можно прикрепить к плоду фигурку из темной бумаги или изоленты.
Чехол остается на плодах до того времени, пока не покраснеют остальные плоды на дереве Снимите чехол, убедитесь, что антоцианы образовались только в тех местах, на которые падал свет. Затененные места приобрели бледно-желтый цвет
Результаты опыта свидетельствуют, что для образования антоцианов нужен свет. В садах довольно часто можно видеть плоды, на поверхности которых видны светло-желтые отпечатки листа, затенявшего созревающий плод. У многих деревьев, например клена остролистного, груши обыкновенной листва краснеет только на той стороне, которая лучше освещена, а в дождливую осень с обилием пасмурных дней остается желтой
Задание Проведите опыт с листьями растений, синтезирующими значительные количества антоцианов (дуб красный, груша обыкновенная, виноград девичий, ирга канадская).69. Тайны созревающих плодов
Созревание плодов — характерная примета осени Любой плод состоит из семян и околоплодника. Семена образуются из оплодотворенных семяпочек, а околоплодник — из разросшейся стенки завязи
Соответственно выделяют 2 этапа созревания плодов Первый связан с формированием и созреванием
177
семян. Семяпочки в неоплодотворенной завязи очень маленькие. После оплодотворения семя начинает расти, в нем формируется зародыш, эндосперм (или утолщаются семядольные листочки зародыша), семенная оболочка. К концу созревания семена обычно переходят в состояние покоя, поэтому для опыта мы предлагаем рожь и томаты, семена которых не имеют длительного периода покоя.
Второй этап — рост и созревание околоплодника. Маленькая завязь превращается в большой плод. Например, плоды томатов проходят всем хорошо знакомый путь от маленьких и очень зеленых до крупных зеленых. Затем рост прекращается, плоды белеют и через небольшое пожелтение переходят к красно-оранжевому цвету.
Что происходит в плодах? Почему околоплодник не растет безгранично? Что регулирует его рост? Почему семена не прорастают внутри плода? На все эти вопросы попытаемся дать ответ.
I часть опыта. Как растет околоплодник? Для роста и деления клеток обязательно нужен источник гормонов роста. В растении эти гормоны, конечно, образуются, но к периоду цветения и образования плодов способность растительных тканей к их синтезу значительно снижается. Поэтому вегетативные части растений не могут служить источником гормонов роста для плодов. Эта закономерность достаточно очевидна: из массы цветков дают плоды только те, которые были оплодотворены, в которых начал развиваться зародыш. Зародыш — очень молодое растение, все его клетки — места интенсивного образования гормо-
178
нов. Синтезирующиеся в зародышевом корешке, стебельке, листочках гормоны поступают в клетки завязи, где стимулируют их деление и рост.
Чтобы убедиться в роли семян для разрастания завязи, попробуйте удалить семена и посмотрите, что произойдет с созревающими плодами. Чаще семена находятся внутри плода и проделать такую операцию, не повредив плодов, невозможно. Выбор растений, у которых семена находились бы на поверхности плода, невелик: земляника лесная или садовая. У этих растений ягода представляет собой разросшееся цветоложе, на поверхности которого находятся мелкие сухие плодики (орешки). Такие образования называют ложными плодами.
Для опыта понадобятся 9 совсем зеленых молодых плодов. В опыте 3 варианта. Первый — контроль, для него отберите 3 плода. Обязательно повесьте на плодоножку этикетку — небольшую пластинку из пластмассы на нитке. Подпись делайте мягким простым карандашом.
У трех плодов, отобранных для второго варианта, очень осторожно иглой или крючком снимите плодики с одной половины земляничины.
В третьем варианте снимите все орешки с поверхности завязи.
Экспериментальная часть на этом заканчивается. Остается только внимательно наблюдать за ростом ягод и в конце опыта зарисовать либо сфотографировать плоды. Опыт закончен, когда созреют плоды контрольной группы растений. Сравните их размеры, форму с опытными ягодами. В контрольной группе
179
они значительно крупнее, имеют правильную, округлую форму. Плоды с удаленными с одной стороны семенами вырастают однобокими. С той стороны, где семян нет, завязь не разрастается. В третьем варианте размеры завязи остаются теми же, что и в начале опыта. Результаты свидетельствуют, что разрастание мякоти плода регулируется ростовыми веществами, поступающими из семян.
Задание. Осенью соберите в саду несколько округлых и неправильной формы плодов яблони, груши. Разрежьте. Сравните количество зрелых семян со степенью развития мякоти.
II часть опыта. Когда заканчивается созревание семян?
Эти наблюдения лучше провести с рожью либо с мелкоплодными кистевидными сортами томатов.
Суть опыта в том, чтобы через определенные промежутки времени, например через 6—10 дней (начав опыт как только можно будет выделить семена из плода), отбирать семена для проверки их способности к прорастанию. Выделенные семена промойте водой и разложите на влажной фильтровальной бумаге. Для удобства сравнения результатов желательно брать одинаковое количество семян в каждом опыте либо вычислять всхожесть в процентах. Опыт продолжайте до сбора урожая. Охарактеризуйте внешний вид плодов, их вкусовые качества.
Результаты опыта убеждают, что созревание семян и околоплодника происходит неодновременно, но взаимосвязанно. Созревание семян заканчивается гораздо раньше. По вре-
180
мени оно совпадает с началом изменения окраски плода, например с зеленой на красную у томатов. Одновременно прекращается рост плода, так как созревшие семена, как и стареющие растения, перестают синтезировать гормоны роста. У сухих плодов околоплодник засыхает, а у сочных начинается интенсивный процесс его созревания, в ходе которого происходят изменения, делающие плод привлекательным для животных: плоды меняют маскирующий их зеленый цвет на более яркий, кислый вкус на сладкий, твердую консистенцию на мягкую.
III часть опыта. Почему семена не прорастают внутри плода?
Если семена полностью созревают до окончания созревания плода», то почему они не прорастают внутри его?
Для опыта необходимы созревшие томаты. Из плодов выделите семена и отожмите сок. Семена тщательно промойте, чтобы отделить от них слизистую оболочку. Можно, как это обычно делают при получении семян томатов, залить их водой и оставить на несколько дней.
Опытные семена разделите на 2 части. Одну поместите в чашке Петри на фильтровальной бумаге, смоченной водой, другую — на фильтровальной бумаге, смоченной соком, выжатым из зеленых плодов. Через несколько дней семена в первом варианте начнут прорастать, тогда как семена, находящиеся на фильтровальной бумаге, смоченной соком плодов, останутся непроросшими. Следовательно, в мякоти плодов находятся вещества, тормозящие прорастание семян — ингибиторы роста. Если плоды имеют плотную
181
оболочку, как, например, у тыквы, то в процессе хранения происходит постепенное разрушение ингибиторов, и семена начинают прорастать внутри плода.ПОКОЙ — ЭТО ТОЖЕ ЖИЗНЬПосле созревания плодов и семян у растений наступает период покоя, когда резко снижаются скорость роста и интенсивность обмена веществ. Но все же жизнь растений продолжается.
В течение лета в листьях накапливается много органических и минеральных веществ, в том числе таких важных для растений, как азот, фосфор, калий. Несмотря на то что.над каждым квадратным метром земной поверхности находится 7,5 т молекулярного азота, усваивать его, использовать на построение бел1' ков и других азотсодержащих веществ многоклеточные растения не могут. Содержание минеральных азотистых веществ в почве крайне мало, а органические формы азота растения усваивают слабо. Вынужденные всю жизнь экономить питательные вещества, растения перед сбрасыванием старых листьев, а тем более перед полным удалением листвы в период листопада, повторно используют многие содержащиеся в старых листьях вещества. Под влиянием специально образующихся к этому времени ферментов белки старых листьев распадаются до
182
аминокислот, крахмал — на растворимые сахара, освобождаются фосфор, калий. По ситовидным трубкам они оттекают из отмирающих листьев либо к молодым побегам, если растение еще молодо, либо к запасающим органам (древесине, корням, клубням, луковицам), если растение готовится к переходу в состояние покоя. В сущности опадает не тот, наполненный жизнью лист, что мы видели летом, а лишь оболочка его.70. Много ли питательных веществ в опавших листьях
Убедиться в способности растений экономить питательные вещества можно с помощью метода крахмальной пробы.
Для опыта нужны раствор Люголя, 50—100 мл 96-процентного этилового спирта.
Осенью с одного растения сорвите 2 листа: один с верхушки побега, зеленый, другой — у основания, желтый. Прокипятите листья в воде до полного отмирания клеток, затем выдержите в горячем спирте (на водяной бане) для удаления пигментов. Обесцвеченные листья обработайте раствором Люголя. Разница в окраске старых и молодых листьев очевидна: молодой лист под действием йода окрашивается в синий цвет, а старый остается желтым. Посинение листа происходит в результате взаимодействия йода с крахмалом, следовательно, желтые, опадающие листья крахмала не содержат. Перед листопадом крахмал превращается в растворимые сахара, которые по проводящим пучкам перемещаются в запасающие органы: стебель и корень (древесные растения), семена (травянистые одно-, дву-, многолетники).
183
В клетках стебля и корня из растворимых сахаров снова синтезируется крахмал. Разумеется, далеко не все вещества листьев повторно используются растением, например, избыточные количества солей кальция остаются в листьях и удаляются таким образом из растения.
Продолжите опыт и проследите за крахмалом, который после опадения листьев накапливается в стебле.71. Судьба запасного крахмала
Для опыта нужны ветки липы мелколистной или березы бородавчатой, раствор Люголя.
Осенью запасной крахмал скапливается в виде крахмальных зерен в живых клетках древесины, сердцевины. Убедитесь в этом, расщепив старую ветку и обработав ее раствором Люголя. Интенсивность синего окрашивания зависит от количества крахмала в стебле.
Запасной крахмал служит энергетическим материалом, за счет которого растения живут зимой. Он повышает устойчивость клеток к морозам, благодаря ему происходит рост растений весной до появления листьев.
Зимой, несмотря на то что растения находятся в состоянии покоя и процессы видимого роста у них приостановлены, в клетках происходит постепенный распад крахмала и накопление растворимых Сахаров и жиров.
В зависимости от характера превращения запасного крахмала древесные растения делят на 2 группы: крахмалистые (дуб, ива, сирень, лещина) и маслянистые (хвойные, а также береза, липа).
184
Проследите за превращением запасного крахмала в стеблях растений, относящихся к группе «маслянистых».
Опыт начните в октябре, сразу после окончания листопада. Один раз в месяц или 10 дней срезайте по 1—2 небольших побега липы мелколистной или березы бородавчатой и на продольном расщепе их с помощью раствора Люголя определяйте наличие крахмала.
Содержание крахмала выразите в баллах: 4 — иссиня-черный цвет (содержание крахмала высокое), 3—темно-синий (содержание среднее), 2 — светло-синий (содержание низкое), 1—голубой (следы крахмала), 0— желтый (крахмал отсутствует). Результаты занесите в таблицу. Закончите опыт в апреле — мае.
Результаты показывают, что содержание крахмала в стеблях липы колеблется. К середине зимы крахмал почти исчезает, однако с февраля его количество начинает постепенно возрастать.
Такие колебания в содержании запасного крахмала связаны с распадом крахмала и накоплением жиров в вакуолях клеток, нередко вместе с крахмалом, запасными белками, а также в цитоплазме.
Простыми методами трудно проверить, действительно ли в клетках стебля липы в декабре — январе появляется много жиров. Один из них описан в книге Н. Верзилина «По следам Робинзона», куда и отсылаем
185
интересующихся. Скорость превращения крахмала в жиры у маслянистых видов растений зависит от температуры окружающей среды. Наступление сильных холодов ускоряет этот процесс. Накопление жиров в клетках помогает перезимовать не только животным, но и растениям. Повышение температуры воздуха в конце зимы вызывает распад жиров и повторное накопление крахмала. К началу сокодвижения и распускания почек запасной крахмал окончательно распадается с образованием растворимых сахаров, которые используются растением на процессы роста. Чтобы убедиться в этом, не обязательно ждать весны.
Зимой внесите ветку сирени (дуба, ивы, лещины) в комнату, поставьте в воду на 3—4 недели. После появления листьев сделайте пробу на крахмал.
Механизм защитного действия жиров достаточно сложен. Он связан с регуляцией содержания воды в клетках. У морозостойких видов подготовка к зиме начинается заранее. Один из ее этапов — обезвоживание клеток. Жиры, накапливаясь в клетках, вытесняют из них воду. Оставшаяся вода прочно связана с молекулами белков, углеводов и теряет способность к кристаллизации. Поэтому у морозостойких видов кристаллы льда внутри клеток не образуются. При значительном понижении температуры кристаллы льда начинают образовываться в межклетниках. Кристаллы растут, оттягивая воду из клеток. Сильное обезвоживание также вредно: оно приводит к разрушению структуры мембран, белков, нуклеиновых кислот. Увеличение содержания жиров на поверхности протоплазмы препятствует дальнейшему выходу воды из клеток и тем
186
самым повышает устойчивость растений к морозам.
Морозостойкость связана с накоплением в клетках не только жиров, но и растворимых Сахаров. Например, накопление сахарозы и глюкозы в клетках характерно для листьев озимых злаков, а также зимующих видоизмененных органов — луковиц, корнеплодов моркови, свеклы.
Задание. Изучите сезонные изменения содержания крахмала в стеблях сирени обыкновенной, ивы козьей, дуба черешчатого. Сравните с результатами, полученными в опыте с побегами липы мелколистной.
topuch.ru
Удивительные опыты с растениями - Документ
Удивительные опыты с растениями.
Батурицкая Н. В., Фенчук Т. Д.
Удивительные опыты с растениями: Кн. для учащихся.—Мн.: Нар. асвета, 1991.—208 с.: ил.
Почему лепестки ромашки белые, а первые весенние листочки тополя красноватые? Как приготовить краску из цветков василька? Почему растения плохо растут на зеленом свету? Различают ли проростки стороны света? Почему табачный дым «убивает» листья? Как сделать косынку из крапивы? Почему кленовый сок сладкий? Можно ли заставить сирень зацвести в декабре?
На эти и другие вопросы вы получите ответы, проделав опыты, предлагаемые в книге.
СОДЕРЖАНИЕ
От авторов 5
ИГРА ЦВЕТОВ 7
БЕЛЫЙ ЦВЕТ 10
1 Почему лепестки цветков белые 12
КРАСНЫЙ РОЗОВЫЙ СИНИЙ ФИОЛЕТОВЫЙ 13
2 Выделение антоцнанов. Изменение цвета под действием кислот и щелочей 16
3 Приготовление индикаторной бумаги из растворов антоцианов 18
4 Изменение окраски цветков в букете 20
5 Надписи на лепестках 24
6 Муравьиные художества 25
7 Влияние ионов металлов на окраску цветков гортензии 26
8 Мозаика из всходов 29
9 Обесцвечивание антоцианов сернистым газом 31
10 Акварельные краски из антоцнанов 32
ЖЕЛТЫЙ ЦВЕТ 33
11 Получение облепихового (морковного) масла 35
12 Получение желтого красителя из сухой чешуи лука 38
КОРИЧНЕВЫЙ И ЧЕРНЫЙ ЦВЕТА 41
13 Обнаружение катехинов в клетках растений 44
14 Получение чернил из растительного материала 45
15 Почему органы растении после гибели чернеют 48
16 Многие ли растения содержат дубильные вещества 49
17 В какой части стебля накапливаются дубильные вещества 51
ЗЕЛЕНЫЙ ЦВЕТ —
18 Какие пигменты содержатся в зеленом листе 52
19 Разделение пигментов по методу Крауса 54
20 Действие щелочи на хлорофилл 55
21 Какого цвета хлорофилл 57
22 Взаимодействие хлорофилла с кислотой 60
23 Письмо на зеленом листе 61
24 Образование колец отмирания на листьях 62
25 Получение отпечатков фотографии с помощью раствора хлорофилла (по К А Тимирязеву) 64
26 Фотография жизнью (по К А Тимирязеву) 67
27 Фотографии на листьях 69
28 Окрашивание цветков искусственными красителями 71
РОСТ РАСТЕНИЙ 75
29 Периодичность роста древесных побегов 79
30 Выращивание растения с 2 стеблями из 1 семени 81
31 Причудливые стебли 83
32 Березовый сок и старение растении 86
33 Салициловая кислота— ингибитор роста растений 87
34 Влияние ростовых веществ дрожжей на укоренение черенков 89
35 Влияние качества света на рост растений 91
36 Тормозящее влияние света на рост растений 96
37 Влияние табачного дыма на рост растении 97
38 Срастание корневых систем древесных растений 98
39 Взаимное влияние растений 100
40 Влияние газообразных выделений растении на прорастание семян 103
41 Бактерицидное действие фитонцидов горчицы 104
РАЗДРАЖИМОСТЬ И ДВИЖЕНИЯ У РАСТЕНИИ 106
РАЗДРАЖИМОСТЬ РАСТЕНИЙ 107
42 Обнаружение токов повреждения в разрезанном яблоке 108
43 Опыт с зеленой горошиной 110
44 Стоит ли трогать растения без надобности 112
ГИГРОСКОПИЧЕСКИЕ ДВИЖЕНИЯ 114
45 Движения чешуи шишек хвойных сухого мха сухоцветов
46 Гигроскопические движения семян. Гигрометр из семян аистника 117
ТРОПИЗМЫ 120
47 Гидротропизм корня —
48 Влияние силы земного тяготения на рост стебля и корня 122
49 Влияние этилена на геотропическую реакцию проростков гороха 125
50 Как поднимаются полегшие стебли ржи 127
51 Изучение фототропизма растении 129
52 Движение корзинки подсолнечника 131
53 Магнитное поле Земли и рост корня 133
НАСТИИ 134
54 Наблюдения за движениями венчиков цветков 135
55 Термонастии цветка тюльпана 142
56 Как движутся листья кислицы обыкновенной и робинии лжеакации 143
57 Влияние ауксина на закручивание усиков гороха 147
58 Хмель завивается 149
РАСТЕНИЯ ОСЕНЬЮ И ЗИМОЙ 151
ЛИСТОПАД И ВЕТВЕПАД 153
59 Искусственный листопад
60 Опадение листьев под влиянием табачного дыма 155
61 Береза — растение комнатное? 157
62 Как сохранить естественную окраску засушиваемых цветов 161
63 Влияние листовой пластинки на длительность жизни черешка 163
64 Получение растительного волокна 165
ОСЕННИЕ КРАСКИ 171
65 Влияние условий освещения на пожелтение листьев 172
66 Необходимость кислорода для разрушения хлорофилла 173
67 Искусственная осень 174
68 Надписи и рисунки на плодах 176
69 Тайны созревающих плодов 177
ПОКОЙ - ЭТО ТОЖЕ ЖИЗНЬ 182
70 Много ли питагельных веществ в опавших листьях 183
71 Судьба запасного крахмала 184
72 Повышение морозоустойчивости тканей растений 187
73 Продолжительность периода глубокого покоя у разных видов растении 190
74 Цветы зимой 194
75 Теплые ванны для растения 197
76 Почки осенние и весенние 198
77 Покой семян 200
ОТ АВТОРОВ
«Без нас прожила бы природа — без нее мы не можем прожить»,— сказал поэт. Этим объясняется неиссякаемый интерес к познанию природы. А всякое познание начинается с любознательности. Совсем не обязательно быть ученым, чтобы увидеть поле ржи не малахитово-зеленым, а красным: достаточно посмотреть через синее стекло. Но чтобы объяснить увиденное, одного созерцания мало.
Еще в XVIII в. женевский пастор Жан Сенебье задумался над вопросом: почему этот зеленый мир зелен? Изучив действие солнечного света, он показал, что благодаря процессу образования кислорода и поглощения углекислого газа, происходящему в зеленом листе, питается растение, а через него и животный мир. Так было сделано одно из величайших открытий. Но вопрос о зеленой окраске листьев так и остался открытым.
Ученые-естествоиспытатели всего мира искали на него ответ. Более 35 лет отдал великий русский ученый Климент Аркадьевич Тимирязев изучению зеленого листа, запасающего впрок солнечные лучи. Была открыта важнейшая роль пигмента хлорофилла в процессе фотосинтеза и значение растений на Земле.
Огромное количество вопросов задает нам мир растений. И как интересно самостоятельно поискать ответы на них. Почему стебель растения растет вверх, а корень вниз? Откуда берется сахар в березовом соке? Почему растения, выращенные на синем свету, приземистые? Отчего зеленые листья осенью желтеют, краснеют? Почему семена не прорастают внутри плода? Можно ли вывести из состояния зимнего покоя «спящие» почки?
Сами по себе опыты прямых ответов не дают. Но они помогают добыть факты, без которых предположение, догадка так и не становятся
истинным знанием.
Большинство предлагаемых опытов было выполнено студентами факультета естествознания Брестского государственного педагогического института им. А. С. Пушкина и учащимися школ г. Бреста под руководством доцента Тамары Дмитриевны Фенчук.
В качестве объектов рекомендуются, как правило, широко распространенные в Белоруссии растения. При этом нельзя забывать о необходимости правильного поведения в природе, бережного к ней отношения. Из приведенных в перечне растений используйте в первую очередь комнатные, декоративные, сорные, растущие на пустырях и бросовых землях. Берите для опытов побеги деревьев и кустарников, которые хорошо переносят обрезку, быстро растут и возобновляются.
Нужные реактивы имеются в каждой школе. Желающих проделать опыты дома пусть не смущают трудности с приготовлением растворов нужной концентрации. Вполне удовлетворительные результаты можно получить с применением разбавленных растворов кислот и щелочей, например 1 объем кислоты и 10 объемов воды. Перед постановкой опыта получите консультацию у учителя.
Авторы будут признательны юным исследователям, которые сочтут возможным поделиться радостью маленьких открытий или трудностями на пути к этим открытиям.
ИГРА ЦВЕТОВ
Кто не восхищался красками цветущего луга, лесной опушки, осенней листвы, даров сада и поля? Но далеко не всем известно, откуда у природы такая богатая палитра цветов. Всей этой красотой обязаны мы специальным красящим веществам — пигментам, которых в растительном мире известно около 2 тысяч.
Цвет вещества, в том числе и пигмента, определяется его способностью к поглощению света. Если свет, падающий на вещество или какой-либо орган растения, равномерно отражается, они выглядят белыми. Если же все лучи поглощаются, объект воспринимается как черный. Человеческий глаз способен различать до 300 оттенков ахроматического, т. е. нецветного, серого цвета. Если вещество поглощает только отдельные участки видимой части солнечного спектра, оно приобретает определенную окраску.
Электромагнитные волны с длиной волны 400—700 нм составляют видимую часть солнечного излучения. В этой части спектра выделяются отдельные участки: с длиной волны 400—424 нм — фиолетовый цвет, 424—491 нм — синий, 491—550 нм — зеленый, 550—585 нм — желтый, 585—647 нм — оранжевый, 647—740 нм — красный. Излучение с длиной волны меньше 400 нм — ультрафиолетовая,
7
а с длиной волны более 740 нм — инфракрасная область спектра.
Зрительный аппарат человека способен различать до 10 млн различных хроматических, т. е. окрашенных, цветов и оттенков. Максимальное цветоразложение солнечного света приходится на 13—15 часов. Именно в это время луг, поле кажутся нам, наиболее ярко и пестро расцвеченными.
В растительных клетках чаще всего встречаются зеленые пигменты хлорофиллы, желто-оранжевые каротиноиды, красные и синие антоцианы, желтые флавоны и флавонолы. Каждая из этих групп представлена несколькими отличающимися по химическому строению, а следовательно, по поглощению света и окраске пигментами. Например, группа хлорофиллов высших растений включает 2 пигмента, а каротиноидов — свыше 300.
Растительные пигменты — это крупные органические молекулы, имеющие группировки, ответственные за поглощение света. Для этих группировок характерно наличие цепочки чередующихся простых и двойных связей (—С=С—С==С—). У желто-оранжевого пигмента бетта-каротина 11 двойных связей, у красного ликопина — 13. Кроме того, поглощение света усиливается при наличии в молекуле кольцевых структур. Так, желтые флавоны и флавонолы, сине-фиолетовые антоцианы, коричневые катехины содержат по 3 кольца. Цвет пигмента может меняться при изменении кислотности среды, температуры, при взаимодействии его с металлами, образовании солей.
В природе нет двух растений, которые имели
Рис. 1. Эписция: а — общий Вид. б — схема строения листа
бы абсолютно одинаковый цвет. Следовательно, окраска зависит не только от количества и типа пигментов, но и от строения ткани: ее толщины, количества межклетников, плотности находящегося на поверхности клеток воскового налета, химического состава клетки, особенно вакуолей.
Правда, не всегда окраска обусловлена избирательным поглощением света. Так, «металлический» цвет листьев некоторых растений объясняется преломлением света и рассеянием его с поверхности особых «оптических» чешуек или клеток. У эписции медной сильно опушенные коричневые листья, середина которых отливает перламутром от голубоватого до медного цвета (рис. 1). Особенность листьев эписции в том, что под прозрачным эпидермисом находятся клетки, отражающие свет в направлении падения лучей на предмет. Это вызывает эффект, напоминающий свечение дорожного знака в темноте при освещении его фарами.
Многие растительные пигменты используются в качестве красителей. Например, из корнеплодов моркови получают желтый, а из свеклы столовой — красный пищевые красители. Из листьев индигоферы красильной — синий краситель индиго, широко применяемый в текстильной промышленности, а из листьев лавсонии — хну, оранжево-красную краску, издавна используемую для окраски волос, шерстяных и шелковых тканей, пищевых продуктов. Из плодов барбариса амурского получают красный пищевой краситель, из рылец пестиков шафрана посевного — желтый.
Но даже, если орган не содержит никакого' пигмента, он все равно не прозрачен, а имеет свой цвет — белый.
БЕЛЫЙ ЦВЕТ
В природе белый цвет распространен очень широко: белые цветки, белые стебли, белые пятна на листьях. Больше всего растений с белыми цветками в высокогорных и приполярных областях, где они составляют до 30—40% обитающих там видов. В средней
10
полосе их меньше (до 25% видов) и совсем мало в пустынях и степях.
Белый красящий пигмент называется бетулином (от лат. «бетула»—береза). Накапливаясь в клетках коры молодых деревьев, бетулин окрашивает ствол березы в тот прекрасный белый цвет, который так любим и воспет поэтами. Удивительно, что во флоре средней полосы Европейской части СССР береза — единственное растение, образующее этот пигмент.
Выделить из клеток коры березы бетулин можно, хотя и не очень просто. Для этого применяют метод возгонки: мелко измельченную сухую кору помещают в колбу и медленно нагревают. При этом бетулин выделяется из клеток и оседает на стенках колбы в виде белого налета.
У других растений причиной белой окраски венчиков являются обширные межклетники в сочетании с клетками, лишенными пигментов. Белые лепестки белы по той же причине, по какой снег белый. Каждая снежинка в отдельности бесцветна, так как свободно пропускает солнечные лучи. Но снежинки, падая друг на друга, отражают солнечные лучи, и снег кажется белым. А вот лед, не имеющий воздушных полостей, прозрачен, поскольку свет свободно проходит через него.
Убедиться в том, что белый цвет лепестков ромашки, белой лилии и других цветов обусловлен не наличием красящего вещества, а развитой системой межклетников, можно несколькими способами.
11
1. Почему лепестки цветков белые
Вариант I (самый простой). Лепесток осторожно сожмите пальцами. Воздух из межклетников выходит, и лепесток становится бесцветным и прозрачным, как лед.
Вариант II (более продолжительный). Погрузите лепестки в воду. Через несколько часов, когда вода через устьица проникнет в межклетники, лепестки станут бесцветными.
Вариант III (самый надежный). Лепестки поместите в шприц и заполните его водой. Установив шприц наконечником вверх (без иглы), задвиньте поршень, чтобы вытеснить воздух. После этого закройте пальцем отверстие наконечника и отведите поршень вниз. В результате создавшегося вакуума из воды и лепестков начнут выделяться пузырьки воздуха. Через 1—2 мин воздух из межклетников выйдет. Вновь задвиньте поршень в шприц. При этом вода поступит в межклетники и лепесток станет прозрачным.
Задание. Используя приведенные варианты опытов, проверьте, как изменяют окраску лепестки нивяника обыкновенного, ромашек, лилий, нарциссов, жасмина садового (чубушника), яблони.
КРАСНЫЙ, РОЗОВЫЙ, СИНИЙ. ФИОЛЕТОВЫЙ
Вы проходите мимо цветка? Наклонитесь, Поглядите на чудо,
Которое видеть вы раньше нигде не могли. Он умеет такое, что никто На земле не умеет Например. Он берет крупинку Мягкой черной земли, Затем он берет дождя дождинку, И воздуха голубой лоскуток, И лучик, солнышком пролитой. Все смршает потом (но где?! Где пробирок, и колб, И спиртовок рядьр!), И вот из одной и той же Черного цвета земли Он то красный, то синий, то сиреневый, то золотой!
В. Солоухин
Как этони удивительно, но эти цвета определяет одна группа пигментов — антоцианы (от греч. «антос» — цветок, «цианос» — голубой), впервые выделенные из цветков василька синего.
Антоцианы хорошо растворимы в воде. Содержатся в клеточном соке (вакуолях), значительно реже — в клеточных оболочках. Могут существовать в различных формах. При действии минеральных и органических кислот образуют соли красного, при действии щелочей — синего цвета. На цвет антоцианов влияет не только кислотность клеточного сока, но и способность этих пигментов образовывать комплексные соединения с металлами. Например, для проявления синего цвета необходимо наличие в клетках комплексного соеди-
13
нения антоцианов с магнием, алюминием, оловом, а также белками и сахарами.
Поскольку в клетках содержится обычно несколько различных антоцианов, а химический состав растений изменяется с возрастом, то окраска даже кратковременно живущих венчиков может изменяться на протяжении дня. Так, у чины весенней они сначала красные, затем зеленовато-синие. Иногда меняется окраска только части венчика. Например, у конского каштана желтое пятнышко на лепестке сначала становится оранжевым, потом красным, причем нектар выделяется только в желтой стадии.
Ярко-красные розы, голубые васильки, фиолетовые анютины глазки содержат растворенные в клеточном соке антоцианы. Яблоки, вишни, виноград, черника, голубика своим цветом обязаны антоцианам. Клеточный сок листьев и стеблей гречихи, краснокочанной капусты, листьев и корнеплодов столовой свеклы, молодая красная кора эвкалипта, красные осенние листья также содержат антоцианы. Больше всего антоцианов накапливают растения в местностях с суровыми климатическими условиями (Арктика, высокогорные луга), а также ранневесенняя флора. Антоцианы поглощают свет в ультрафиолетовой и зеленой областях спектра. Поглощенная энергия частично превращается в тепло, повышая на 1—4°С температуру листьев, пестиков, тычинок. Это создает более благоприятные условия как для фотосинтеза, так и для оплодотворения и прорастания пыльцы в условиях пониженных температур. У высокогорных растений антоцианы, поглощая избыток солнечной ра-
14
диации, защищают хлорофилл и наследственный аппарат клетки от повреждений. Несомненно, яркая окраска цветков и плодов играет большую роль в привлечении насекомых-опылителей и в распространении плодов. Интересно, что «антоциановые» растения обладают повышенной стойкостью к загрязнению воздуха кислыми газами промышленных предприятий.
Поступая в организм человека с фруктами и овощами, антоцианы проявляют действие, сходное с действием витамина Р: они поддерживают нормальное состояние кровяного давления и сосудов, предупреждая внутренние кровоизлияния. Образуя комплексы с радиоактивными элементами, антоцианы способствуют быстрому выведению их из организма. Кроме того, эти пигменты способны улучшать зрение.
Если орган растения имеет голубой, синий, фиолетовый цвет, то нет никакого сомнения в том, что его окраска обусловлена антоцианами. А вот с красной окраской несколько сложнее. У некоторых, немногочисленных по сравнению с «антоциановой» группой видов растений оранжевая, красно-коричневая окраска цветков (тагетес прямостоячий, настурция большая), плодов (томаты, шиповник, ландыш майский) обусловлена не растворенными в клеточном соке антоцианами, а находящимися преимущественно в желтых и оранжевых пластидах (хромопластах) пигментами группы каротиноидов (от лат. «карота» — морковь).
Наиболее распространен красный пигмент ликопин, близкий по строению к каротину
15
Каротиноиды не растворимы в воде, но хорошо извлекаются из пластид органическими растворителями. Их цвет, в отличие от антоцианов, не зависит от кислотности среды.
Используя свойство антоцианов изменять цвет в зависимости от реакции среды, можно поставить ряд интересных опытов.
2. Выделение антоцианов.
Изменение цвета под действием кислот и щелочей
Для опыта понадобятся листья краснокочанной капусты, фиолетовые цветки анютиных глазок или другие растения, содержащие антоцианы, 2 пробирки, 1-процентная соляная или 6-процентная уксусная кислоты, 0,001-процентный гидроксид натрия, индикаторная бумага.
Получить антоциановую вытяжку можно двумя способами. 0,5—1 г красных листьев или синих, фиолетовых лепестков поместите в пробирку. Залейте 5 мл воды и доведите до кипения над пламенем спиртовки. Нагревание выше 70°С приводит к разрушению мембран клеток. Антоцианы свободно выходят из клеток, окрашивая воду в розовый, синий или зеленоватый цвет. Отфильтруйте раствор в чистую пробирку через бумажный фильтр.
Вместо кипячения листья или лепестки можно измельчить в ступке с небольшим количеством песка, и, добавив около 5 мл воды, отфильтровать. Цвет раствора убеждает в том, что антоцианы — водорастворимые пигменты.
Начинать следующую часть работы лучше с рассмотрения действия кислот. В чистую
16i
пробирку отлейте 2—3 мл вытяжки пигментов, добавьте каплю разбавленной кислоты (1-процентной соляной, 6—9-процентной уксусной, 0,025-процентной лимонной) Если полученная вытяжка антоцианов имела первоначально буроватую окраску, то после добавления 1— 2 капель кислоты она примет красивый розово-красный цвет. Изменения окраски связаны с перестройками в молекуле антоциана.
К окрасившемуся в розовый цвет раствору добавляйте по каплям разбавленную щелочь (0,001-процентный раствор едкого натра) или немного, на самом кончике ножа, порошка питьевой соды. Розовая окраска исчезает.
Контролируя с помощью индикаторной бумаги изменение рН раствора, происходящее в результате постепенного добавления кислоты или щелочи, можно установить более точную зависимость цвета антоцианов от кислотности среды. У краснокочанной капусты исходная вытяжка имеет красно-фиолетовый цвет. В сильнокислой среде (рН 2—3) она приобретает красный, а при рН 4—5 —розовый цвет. В результате нейтрализации розово-красный цвет изменяется сначала на синий (нейтральная среда, рН 6—7), затем на зеленый (рН 8), желто-зеленый (рН 9—10) и в сильно щелочной среде на желтый (рН выше 10).
К зеленоватому или синему раствору добавьте еще несколько капель кислоты Наблюдается повторное появление красного окрашивания. Можно повторить весь цикл изменения окраски антоциановых растворов под действием кислот и щелочей несколько раз.
17
Вытяжка пигментов синих лепестков и листьев многих растений при добавлении щелочи окрашивается в зеленый цвет. Только у некоторых видов, например, у фиолетовых анютиных глазок, гибискуса (китайская роза), краснокочанной капусты, раствор антоциана приобретает под действием щелочи довольно устойчивую сине-фиолетовую окраску У василька синего голубая окраска устойчива даже в кислой среде (рН 4—6). Причина этого явления в том, что голубой и синий цвета появляются только в том случае, если молекула пигмента входит в состав сложного комплексного соединения с металлами (Fe, Ca, Mg и др.), углеводами, белками. У многих видов в процессе выделения пигментов из листьев происходит разрушение этого комплекса и утрата способности к проявлению голубого и синего цветов.
В клетках растений может содержаться одновременно несколько различающихся по цвету антоцианов. Так, в ягодах темноокрашенного винограда их найдено 11.
Задание Проследите изменения окраски растворов антоцианов под действием кислот и щелочей на других, не названных выше, растениях. Какие из них под действием щелочи сохраняют стойкую синюю окраску?
textarchive.ru