Одномембранные органоиды: их виды и функции. Одномембранные органоиды клетки растений
Цитоплазма клетки
Строение цитоплазмы
Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества (гиалоплазмы) и находящихся в нем разнообразных внутриклеточных структур (органоидов и включений).
Гиалоплазма (матрикс) — водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении.
Цитоплазматические структуры клетки представлены органоидами и включениями. Органоиды (органеллы) — постоянные и обязательные компоненты большинства клеток, имеющие определенную структуру и выполняющие жизненно важные функции. Включения — непостоянные структуры цитоплазмы в виде гранул (крахмал, гликоген, белки) и капель (жиры).
Органоиды бывают мембранные (одномембранные и двумембранные) и немембранные.
Одномембранные органоиды клетки
К ним относят эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли, образующие единую мембранную систему клетки.
Эндоплазматический ретикулум (эндоплазматическая сеть) — система соединенных между собой полостей, трубочек и каналов, отграниченных от цитоплазмы одним слоем мембраны и разделяющих цитоплазму клеток на изолированные пространства. Это необходимо, чтобы отделить множество параллельно идущих реакций. Выделяют шероховатый эндоплазматический ретикулум (на его поверхности расположены рибосомы, на которых синтезируется белок) и гладкий эндоплазматический ретикулум (на его поверхности осуществляется синтез липидов и углеводов).
Аппарат Гольджи (пластинчатый комплекс) представляет собой стопку из 5-20 уплощенных дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков. Его функция — трансформация, накопление, транспорт поступающих в него веществ к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.
Лизосомы — мембранные пузырьки, содержащие гидролитические ферменты. Различают первичные и вторичные лизосомы. Первичные лизосомы — отшнуровывающиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор гидролитических ферментов. Вторичные лизосомы образуются после слияния первичных лизосом с субстратом, подлежащим расщеплению.
Ко вторичным лизосомам относят:
- пищеварительные вакуоли — образуются при слиянии первичных лизосом с фагоцитарными и пиноцитарными вакуолями (пищеварительные вакуоли простейших). Их функция — переваривание веществ, поступивших в клетку при эндоцитозе;
- остаточные тельца содержат непереваренный материал. Их функция — накопление непереваренных веществ и, обычно, выведение их наружу посредством экзоцитоза;
- аутолизосомы — образуются при слиянии первичных лизосом с отработанными органоидами. Их функция — разрушение отработанных частей клетки или клетки целиком (аутолиз).
Вакуоли — наполненные жидкостью мембранные мешки в цитоплазме клеток растений. Они образуются из мелких пузырьков, отщепляющихся от эндоплазматического ретикулума. Мембрана вакуоли называется тонопластом, а содержимое полости — клеточным соком. В клеточном соке содержатся запасные питательные вещества, растворы пигментов, отходы жизнедеятельности, гидролитические ферменты. Вакуоли участвуют в регуляции водно-солевого обмена, создании тургорного давления, накоплении запасных веществ и выведении из обмена токсичных соединений.
Пероксисомы — мембранные пузырьки, содержащие набор ферментов. Ферменты пероксисом (каталаза и др.) нейтрализуют токсичную перекись водорода (h3O2), образующуюся как промежуточный продукт при биохимических реакциях, катализируя ее распад на воду и кислород. Пероксисомы также участвуют в метаболизме липидов.
Двумембранные органоиды клетки
В клетках эукариот имеются органоиды, изолированные от цитоплазмы двумя мембранами — это митохондрии и пластиды. Они имеют собственную кольцевую молекулу ДНК, рибосомы мелкого размера и способны делиться. Это послужило основой появления симбиотической теории возникновения эукариот. Согласно этой теории в прошлом митохондрии и пластиды являлись самостоятельными прокариотами, перешедшими позднее к эндосимбиозу с другими клеточными организмами.
Митохондрии — двумембранные органоиды, присутствующие во всех эукариотических клетках. Могут быть палочковидной, овальной или округлой формы. Содержимое митохондрий (матрикс) ограничено от цитоплазмы двумя мембранами: наружной гладкой и внутренней, образующей складки (кристы). В митохондриях образуются молекулы АТФ. Для этого используется энергия, выделяющаяся при окислении органических соединений.
Пластиды — двумембранные органоиды, характерные только для клеток фотосинтезирующих эукариотических организмов. Имеют две мембраны и гомогенное вещество внутри — строму (матрикс). В зависимости от окраски различают следующие виды пластид.
- хлоропласты — зеленые пластиды, в которых протекает процесс фотосинтеза. Наружная мембрана гладкая; внутренняя — формирует систему плоских пузырьков (тилакоидов), которые собраны в стопки (граны). В мембранах тилакоидов содержатся зеленые пигменты хлорофилла, а также каратиноиды;
- хромопласты — пластиды, содержащие пигменты каротиноиды, придающие им красную, желтую и оранжевую окраску. Они придают яркую окраску цветам и плодам;
- лейкопласты — непигментированные, бесцветные пластиды. Содержатся в клетках подземных или неокрашенных частей растений (корней, корневищ, клубней). Способны накапливать запасные питательные вещества, в первую очередь крахмал, липиды и белки. Лейкопласты могут превращаться в хлоропласты (например, при цветении клубней картофеля) и редко в хромопласты (например, при созревании корнеплода у моркови), а хлоропласты — в хромопласты (например, при созревании плодов).
Немембранные органоиды
К ним относят рибосомы, микротрубочки, микрофиламенты, клеточный центр.
Рибосомы — мелкие органоиды, образованные двумя субъединицами: большой и малой. Они состоят из белков и рРНК. Малая субъединица содержит одну молекулу рРНК и белки, большая — три молекулы рРНК и белки. Рибосомы могут либо свободно находиться в цитоплазме, либо прикрепляться к эндоплазматическому ретикулуму. На рибосомах происходит синтез белка. Белки, синтезируемые на рибосомах на поверхности эндоплазматического ретикулума, обычно поступают в его цистерны, а образовавшиеся на свободных рибосомах остаются в гиалоплазме.
Микротрубочки и микрофиламенты — нитевидные структуры, состоящие из сократительных белков и обусловливающие двигательные функции клетки. Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков — тубулинов. Микрофиламенты еще более тонкие, длинные, нитевидные структуры, состоящие из белков актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя ее цитоскелет, обусловливают циклоз (ток цитоплазмы), внутриклеточные перемещения органоидов, образуют веретено деления и т.д. Определенным образом организованные микротрубочки формируют центриоли клеточного центра, базальные тельца, реснички, жгутики.
Клеточный центр (центросома) обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг к другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек (9 + 0). Центриоли играют важную роль в делении клетки, образуя веретено деления.
Реснички, жгутики — органоиды движения, представляющие собой своеобразные выросты цитоплазмы клетки, покрытые плазматической мембраной. В основании ресничек и жгутиков лежат базальные тельца, служащие им опорой. Базальное тельце представляет собой цилиндр, образованный девятью триплетами микротрубочек (9 + 0). Базальные тельца способны восстанавливать реснички и жгутики после их потери. Остов реснички и жгутика также представляет собой цилиндр, по периметру которого располагаются девять парных микротрубочек, а в центре — две одиночные (9 + 2).
jbio.ru
Одномембранные структуры клетки Органеллы — постоянные
Описание презентации Одномембранные структуры клетки Органеллы — постоянные по слайдам
Одномембранные структуры клетки
Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномембранным.
Двумембранными компонентами являются пластиды , митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы — эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоли растительных и грибных клеток и др. К немембранным органеллам принадлежат рибосомы и клеточный центр
Одномембранные органеллы Эндоплазматическая сеть (ЭПС) или ретикулум — сложная система каналов и полостей различной формы (трубочки, цистерны), пронизывающая всю цитоплазму. а) Шероховатая или гранулярная эндоплазматическая сеть : мембраны покрыты мелкими гранулами – рибосомами. Функции : синтез полипептидов, их частичная модификация и транспорт б) Гладкая, или агранулярная, эндоплазматическая сеть : мембраны лишены рибосом, но здесь скапливаются ферменты липидного, углеводного обмена. Функции : синтез липидов, стероидов, углеводов, их транспорт.
Функции: • Соединяет все клеточные мембранные структуры в единую систему. • Является поверхностью, на которой происходят все внутриклеточные процессы (синтез мембранных белков, липидов и углеводов). • Пространственно разделяет клетку. • По системе каналов осуществляется транспорт веществ.
Комплекс Гольджи Есть почти во всех клетках ( исключение – эритроциты, сперматозоиды ). Строение: Система уложенных в стопку уплощенных мембранных мешочков – цистерн, трубочек и связанных с ними пузырьков. Функции: Транспорт веществ, главным образом белков и липидов, поступающих из эндоплазматической сети, предварительная их химическая перестройка, накопление, упаковка в пузырьки, формирование лизосом.
Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего в 1897 году
Комплекс Гольджи
Функции Комплекса Гольджи 1) сортировка, накопление и выведение секреторных продуктов 2) завершение посттрансляционной модификации белков 3) накопление молекул липидов и образование липопротеидов 4) образование лизосом 5) синтез полисахаридов для образования гликопротеидов, восков, слизей, веществ матрикса клеточных стенок растений (гемицеллюлоза, пектины) 6) формирование клеточной пластинки после деления ядра в растительных клетках 7) участие в формировании акросомы ; формирование сократимых вакуолей простейших.
Функции Аппарата Гольджи: В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны , белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации — гликозилирование и фосфорилирование.
Разделение белков на 3 потока: 1. лизосомальный — гликозилированные белки (с маннозой) поступают в цис-отдел комплекса Гольджи, некоторые из них фосфорилируются, образуется маркёр лизосомальных ферментов — манноза-6 -фосфат. В дальнейшем эти фосфорилированные белки не будут подвергаться модификации, а попадут в лизосомы. 2. конститутивный экзоцитоз (конститутивная секреция). В этот поток включаются белки и липиды, которые становятся компонентами поверхностного аппарата клетки, в том числе гликокаликса, или же они могут входить в состав внеклеточного матрикса. 3. Индуцируемая секреция — сюда попадают белки, которые функционируют за пределами клетки, поверхностного аппарата клетки, во внутренней среде организма. Характерен для секреторных клеток.
Заканчивая рассмотрение строения и работы такой сложной мембранной органеллы, как аппарат Гольджи , необходимо подчеркнуть, что несмотря на кажущуюся морфологическую однородность его компонентов, вакуоли и цистерны, на самом деле, это не просто скопище пузырьков, а стройная, динамичная сложно организованная, поляризованная система.
Лизосомы Встречаются во всех клетках, рассеяны по цитоплазме. Строение: Одномембранные пузырьки разнообразной формы и размеров; содержат различные протеолитические ферменты (около 40). Функции: Участвуют во внутриклеточном пищеварении, т. е. расщеплении крупных молекул. Могут разрушать и структуры самой клетки, вызывая ее гибель – аутолиз.
Лизосома — клеточныйорганоидразмером 0, 2— 0, 4 мкм. Эти одномембранные органоиды.
Лизосомы были впервые описаны в 1955 году Кристианом де Дювом в животной клетке, а позже были обнаружены и в растительной.
Лизосомы У растений к лизосомам по способу образования отчасти и по функциям близкивакуоли. Наличие лизосом характерно для клеток всехэукариот. Упрокариотлизосомы отсутствуют, так как у них отсутствуетфагоцитози нет внутриклеточного пищеварения.
Признаки лизосом Один из признаков лизосом— наличие в них ряда ферментов (кислыхгидролаз), способных расщеплять белки, углеводы, липидыи нуклеиновые кислоты.
Образование лизосом и их типы Лизосомы формируются из пузырьков (везикул), отделяющихся отаппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества приэндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.
Лизосомы — гетерогенные органеллы, имеющие разную форму, размеры, ультраструктурные и цитохимические особенности. «Типичные» лизосомы животных клеток обычно имеют сферическую или овальную форму. Число лизосом варьирует от одной (крупная вакуоль во многих клетках растений и грибов) до нескольких сотен или тысяч (в клетках животных).
Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне— путем фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки).
Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов: Ранняя эндосома — в нее поступают эндоцитозные (пиноцитозные) пузырьки. Поздняя эндосома — в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами.
классификация Лизосома — в нее из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
классификация Фагосома — в нее попадают более крупные частицы (бактерии ит. п. ), поглощенные путем фагоцитоза. Фагосомы обычно сливаются с лизосомой.
классификация Аутофагосома — окруженный двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.
классификация Мультивезикулярные тельца — обычно окружены одинарной мембраной, содержат внутри более мелкие окруженные одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию, но содержат материал, полученный извне. По стадии формирования соответствуют ранней эндосоме.
классификация Остаточные тельца (телолизосомы) — пузырьки, содержащие непереваренный материал (липофусцин). В нормальных клетках сливаются с наружной мембраной и путем экзоцитоза покидают клетку. При старении или патологии накапливаются.
Функции лизосом переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток) аутофагия— уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки
автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела. Функции лизосом
Клиническое значение. Болезни, связанные с нарушением работы лизосом Иногда из-за неправильной работы лизосом развиваются болезни накопления, при которых ферменты из-за мутаций не работают или работают плохо. Примером болезней накопления может служить амавротическая идиотия при накоплении гликогена. Разрыв лизосомы и выход вгиалоплазмурасщепляющих ферментов сопровождается резким повышением их активности. Такого рода повышение активности ферментов наблюдается, например, в очагахнекрозапри инфаркте миокарда и при действии излучения.
Вакуоль Вакуоли — одномембранные органоиды, представляют собой «емкости» , заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и комплекс Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).
Вакуоль животной клетки растительной клетки • фагоцитозная • пищеварительная • аутофагическая • сократительная Центральная вакуоль
Строение вакуоли тонопластклеточный сок вода нитраты фосфаты хлориды моносахариды дисахариды танины органические кислоты соли органических кислот p. H 2 -5 полисахариды белки
Функция № 1 Поддержание тургорного давления. Вакуоль функционирует в качестве осмометра и придает клетке необходимую прочность и тургисцентность. Функция № 2 Иногда в вакуолях содержатся растворимые пигменты. В эту группу входят антоцианы, имеющие красную, синюю или пурпурную окраску, и некоторые родственные соединения, окрашенные в желтый или кремовый цвет. Именно эти пигменты главным образом и определяют окраску цветов. Накопление запасных веществ и «захоронение» отбросов, т. е. конечных продуктов метаболизма клетки. Иногда вакуоли разрушают токсичные или ненужные клетке вещества. Функция №
Пероксисомы — это мельчайшие пузырьки, содержащие набор ферментов. Функции: 1) Пероксисомы содержат в себе белки на поверхности мембраны, который выполняет функции в качестве рецептора распознающего сигналы на вносимом белке. Из всех белков пероксимом, больше известен фермент из группы гидропероксидаз – каталаза 2) Участвуют в обменных реакциях: в метаболизме липидов, холестерина и др.
Пероксисомы • Пероксисома (лат. peroxysoma ) — обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот , уратоксидазы и каталазы). Имеет размер от 0, 2 до 1, 5 мкм, отделена от цитоплазмы одной мембраной
Функции пероксисом Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фитановой кислоты и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O 2 в клетке. В пероксисоме обычно присутствуют ферменты, использующие молекулярный кислород для отщепления атомов водорода от некоторых органических субстратов с образованием перекиси водорода : Каталаза использует образующуюся для окисления множества субстратов — например, фенолов, муравьиной кислоты, формальдегида и этанола: Этот тип окислительных реакций особенно важен в клетках печени и почек, пероксисомы которых обезвреживают множество ядовитых веществ, попадающих в кровоток. Почти половина поступающего в организм человека этанола окисляется до ацетальдегида этим способом. Кроме того, реакция имеет значения для детоксикации клетки от самой перекиси водорода.
Немембранные органеллы Рибосомы — встречаются во всех типах клеток (включая и прокариотические). Могут свободно лежать в цитоплазме или соединяться с мембранами ЭПС. Есть в митохондриях, пластидах. Строение: Небольшие сферические тельца, образованные двумя неравными субъединицами – большой и малой, которые состоят из 3 -4 молекул рибосомальной РНК и более 50 молекул белков. В рибосомах всегда есть и ионы магния, поддерживающие их структуру. Функции: • синтез полипептидных цепочек (второй этап синтеза белка – трансляция).
Клеточный центр Встречается почти во всех клетках животных (кроме некоторых видов простейших) и некоторых растений. Отсутствует у цветковых и низших грибов. Строение: Состоит из двух центриолей, расположенных перпендикулярно другу. Центриоль – небольшая цилиндрическая органелла, стенку которой образует 9 групп (триплетов) из трех слившихся микротрубочек. Функции: • принимает участие в образовании веретена деления (ахроматинового веретена). Центриоли образуют базальные тельца ресничек, жгутиков.
Микротрубочки и Микрофиламенты Строение: Сложная система нитей, пронизывающая всю цитоплазму. Нити формируются из молекул различных сократительных белков (миозин, тубулин и др. ). Функции: • вместе с некоторыми другими элементами формируют цитоскелет клетки • обеспечивают внутриклеточное движение органелл, а также движение клеток, сокращение мышечных волокон • формируют нити митотического веретена
Красное — ядро Зеленое — микротрубочки Желтое — аппарат Гольджи
СПАСИБО ЗА ВНИМАНИЕ!
present5.com
Одномембранные органоиды: их виды и функции
Клетки эукариот характеризуются сложным строением. Основными ее составными частями является плазматическая мембрана, цитоплазма, в которой содержатся мембранные органоиды, включения, органоиды без мембран и ядро.
Мембранные органоиды имеют одну или две мембраны. Они являются постоянными элементами клетки, характеризуются своеобразным строением и выполняют соответствующие функции.
К двомембранным структурам клетки относится клеточное ядро, митохондрии, а также пластиды (хлоро-, хромо - и лейкопласты). Немембранными элементами являются рибосомы и клеточный центр.
В течение клеточного цикла элементы цитоскелета могут меняться. Так, например, во время процесса деления в клетке исчезают цитоплазматические трубочки, появляется новая структура - веретено деления.
Одномембранные органоиды: остановимся на их характеристике.
Данные структуры являются составными элементами эукариотических клеток, которые отделяются от цитозоля одной мембраной. Одномембранные органоиды клетки включают эндоплазматическую сетку, аппарат Гольджи и производные структуры от него - лизосомы.
Эндоплазматическая сеть - это замкнутая система канальцев, которые пронизывают весь цитозоль. Она разделяет клетку на отдельные части и отвечает за транспорт веществ. Эндоплазматический ретикулум открыт в 1945 году с помощью электронного микроскопа, который позволил увидеть особо рыхлую структуру по всей цитоплазме.
Эндоплазматическая сетка бывает гранулярная и агранулярная. Гладкая (агранулярная) эндоплазматическая сеть отвечает за синтез липидов и полисахаридов, а гранулярная содержит на своей поверхности рибосомы, в которых образуются белки. Данная структура способствует переносу разных соединений по всей клетке, обеспечивая циркуляцию питательных веществ.
Стоит отметить, что цистерны гранулярного ретикулума связываются с оболочкой ядра и принимают участие в формировании новых оболочек ядер, которые образуются после деления клетки.
Аппарат Гольджи может быть различной формы, но в большинстве случаев имеет вид утолщенных дисков, которые образуют диктиосому. От диктиосом отходят трубочки, на конце которых сосредоточены пузырьки. В аппарате Гольджи накапливаются вещества, которые синтезируются в клетке и выносятся из нее. Данная органелла хорошо развита в железистых клетках.
Ее пузырьки принимают участие в формировании цитоплазматической мембраны, а также отдельных органоидов - первичных лизосом.
Лизосомы являются мембранными структурами округлой формы, содержащими ферменты, с помощью которых клетка способна расщеплять различные органические вещества. Эти одномембранные органоиды выполняют еще одну функцию - расщепляют некоторые структурные элементы клеток без ущерба для ее функционирования, обеспечивая дополнительный источник питания при недостаточном поступлении питательных веществ. Кроме этого, лизосомы отвечают за уничтожение отмерших и ненужных органоидов.
Следует отметить, что все одномембранные органоиды являются важными для сохранения клеточного гомеостаза, поскольку обеспечивают нормальное функционирование клеток.
fb.ru
Одно-дву-немембранные
Двумембранные органоиды клетки.
Митохондрии. Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты — кристы. Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки.
Внутреннее пространство митохондрий заполнено матриксом. В матриксе содержатся кольцевая молекула митохондриальной ДНК, специфические иРНК, тРНК и рибосомы (прокариотического типа) Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления. Функции митохондрий — кислородное расщепление углеводов, аминокислот, глицерина и жирных кислот с образованием АТФ и синтез митохондриальных белков. (Энергетическая)
Пластиды. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета, хлоропласты — зеленые пластиды. Пластиды образуются из пропластид – двумембранных пузырьков размером до 1 мкм. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.
Хлоропласты. Основная функция — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. Внутренняя среда хлоропластов — строма — содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии.
Ядро Хранение ДНК, транскрипцияРНК. Есть у всех эукариот. Содержит основную часть генома.
Немембранные органоиды клетки.
Рибосомы. Немембранные органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы. В состав рибосом входят белки и рибосомальные РНК (рРНК). Различают два основных типа рибосом: эукариотические и прокариотические. В состав рибосом эукариот входит 4 молекулы рРНК и около 100 молекул белка, прокариот — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы . В таких комплексах они связаны друг с другом одной молекулой иРНК. функция синтез белка на основе матричных РНК при помощи транспортных РНК
Клеточный центр. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек , соединенных между собой через определенные интервалы. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся центриолей. Центр организации цитоскелета. Необходим для процесса клеточного деления
Цитоскелет. Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Цитоскелет образован микротрубочками и микрофиламентами, определяет форму клетки, участвует в ее движениях, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов и отдельных соединений.
Одномембранные органоиды
Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (ЭПР) – одномембранный органоид. Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают три вида ЭПС: шероховатую (гранулярную), содержащую на своей поверхности рибосомы, и представляющую собой совокупность уплощенных мешочков, связанных друг с другом; гладкую (агранулярную), имеющую трубчатое строение, мембраны которой не несут рибосом; и промежуточную, соединяющую шероховатую и гладкую ЭПС. ЭПС отвечает за транспорт веществ. На гладкой ЭПС происходит синтез углеводов и липидов, на шероховатой – синтез белка. По каналам ЭПС молекулы белка транспортируются к комплексу Гольджи, отделяются от ЭПС в виде мембранных пузырьков с органическими молекулами, которые сливаются с комплексом Гольджи.
Аппарат Гольджи, комплекс Гольджи – одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка комплекса Гольджи обычно состоит из четырех-шести «цистерн». Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя – постепенно формируется за счет деятельности ЭПС. Функции комплекса Гольджи: накопление белков, липидов, углеводов; модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов; место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках
Лизосомы – одномембранные органоиды. Представляют собой мелкие пузырьки. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Функции лизосом. Таким образом, лизосомы отвечают за внутриклеточное разрушение макромолекул органических веществ – «пищеварительная система» клетки и за уничтожение ненужных клеточных и неклеточных структур.
Вакуоли – одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения. Функциизапас, поддержание гомеостаза, в клетках растений — поддержание формы клетки .
studfiles.net
Лекция. Одномембранные органоиды
Органоиды – постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. В зависимости от строения, органоиды можно разделить на две группы – мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов состоит из двух мембран.
Органоиды
Мембранные Немембранные
Одномембранные Двумембранные
1. Эндоплазматическая сеть 1. Митохондрии 1. Рибосомы
2. Комплекс Гольджи 2. Пластиды 2. Клеточный центр
3. Лизосомы 3. Ядро 3. Цитоскелет
4. Вакуоли 4. Жгутики прокариот
5. Пероксисомы 5. Хромосомы ядра
6. Реснички и жгутики эукариот 6. Миофибриллы
|
Рассмотрим строение и функции одномембранных органоидов.
Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (ЭПР) – одномембранный органоид. Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают три вида ЭПС: шероховатую (гранулярную), содержащую на своей поверхности рибосомы, и представляющую собой совокупность уплощенных мешочков, связанных друг с другом; гладкую (агранулярную), имеющую трубчатое строение, мембраны которой не несут рибосом; и промежуточную, соединяющую шероховатую и гладкую ЭПС.
ЭПС отвечает за транспорт веществ, образует компартменты («отсеки»), в которых происходят различные реакции. На гладкой ЭПС происходит синтез углеводов и липидов, на шероховатой – синтез белка. По каналам ЭПС молекулы белка транспортируются к комплексу Гольджи, отделяются от ЭПС в виде мембранных пузырьков с органическими молекулами, которые сливаются с комплексом Гольджи.
Аппарат Гольджи, комплекс Гольджи – одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи).
Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПР, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации. Важнейшая функция комплекса Гольджи – выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках – «экспортная система» клетки.
У аппарата Гольджи выделяют две разные стороны: формирующую (проксимальную, cis-полюс), обращенную к ЭПС, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды и зрелую (дистальную, trans-полюс), от которой постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы.
Каждая стопка комплекса Гольджи обычно состоит из четырех-шести «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены. Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).
Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя – постепенно формируется за счет деятельности ЭПР.
|
Функции комплекса Гольджи: накопление белков, липидов, углеводов; модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов; место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы – одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.
Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
|
|
Автолиз – саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.
Функции лизосом. Таким образом, лизосомы отвечают за внутриклеточное разрушение макромолекул органических веществ – «пищеварительная система» клетки и за уничтожение ненужных клеточных и неклеточных структур.
|
Пероксисомы – органоиды, сходные по строению с лизосомами, пузырьки с диаметром до 1,5 мкм с однородным матриксом, содержащим около 50 ферментов. Важнейшими ферментами являются оксидазы, катализирующие перенос двух атомов водорода с органических молекул (аминокислот, углеводов, жирных кислот) непосредственно на кислород, при этом образуется пероксид водорода, опасный для клетки окислитель:
АН2 + О2 → А + Н2О2
Образующуюся перекись водорода каталаза использует для окисления различных субстратов: Н2О2 + АН2 → А + 2Н2О. В клетках печени пероксисомы крупные и их много, каталаза окисляет этиловый спирт до уксусного альдегида. Избыток Н2О2 и Н2О2, образовавшийся в другом месте клетки, также разрушается каталазой (2Н2О2 → 2Н2О + О2). Наряду с митохондриями пероксисомы активно используют кислород в качестве окислителя. Существует гипотеза, согласно которой пероксисомы – древние органоиды, которые появились раньше митохондрий: когда появился кислород в атмосфере, токсичный для большинства клеток, пероксисомы снижали его концентрацию в клетках, одновременно используя его для окислительных реакций.
Образуются пероксисомы отпочковываваясь от ранее существующих, т.е. относятся к самовоспроизводящимся органоидам, несмотря на то, что не содержат ДНК. Растут благодаря поступлению в них ферментов, ферменты пероксисом образуются на шероховатой ЭПС и в гиалоплазме. В крупных пероксисомах выявляется плотная сердцевина – нуклеоид, соответствующий области конденсации ферментов.
Вакуоли – одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи.
Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна.
В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.
|
Аксонема образована 9 периферическими парами микротрубочек и одной центральной парой, напоминает велосипедное колесо: ось – пара микротрубочек, спицы – особые белки, соединяющие центральную пару микротрубочек с периферическими парами, и обод, образованный 9 парами микротрубочек. Реснички имеют клетки дыхательных путей человека, эпителий маточных труб. Жгутики у человека имеются только у мужских половых клеток – сперматозоидов. У прокариот строение жгутиков иное, и они не окружены мембраной.
Многие клетки могут иметь на поверхности тонкие выпячивания – микроворсинки для увеличения поверхности (клетки тонкого кишечника, извитых канальцев почек). В отличии от ресничек они не способны совершать движения, у них под мембраной отсутствуют микротрубочки аксонемы.
Похожие статьи:
poznayka.org
Лекция 6. Одномембранные органоиды Органоиды – постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение. В зависимости от строения, органоиды можно разделить на две группы – мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов состоит из двух мембран. Органоиды Мембранные Немембранные Одномембранные Двумембранные
Рассмотрим строение и функции одномембранных органоидов. Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (ЭПР) – одномембранный органоид. Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают три вида ЭПС: шероховатую (гранулярную), содержащую на своей поверхности рибосомы, и представляющую собой совокупность уплощенных мешочков, связанных друг с другом; гладкую (агранулярную), имеющую трубчатое строение, мембраны которой не несут рибосом; и промежуточную, соединяющую шероховатую и гладкую ЭПС. ЭПС отвечает за транспорт веществ, образует компартменты («отсеки»), в которых происходят различные реакции. На гладкой ЭПС происходит синтез углеводов и липидов, на шероховатой – синтез белка. По каналам ЭПС молекулы белка транспортируются к комплексу Гольджи, отделяются от ЭПС в виде мембранных пузырьков с органическими молекулами, которые сливаются с комплексом Гольджи. Аппарат Гольджи, комплекс Гольджи – одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи).Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПР, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации. Важнейшая функция комплекса Гольджи – выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках – «экспортная система» клетки. У аппарата Гольджи выделяют две разные стороны: формирующую (проксимальную, cis-полюс), обращенную к ЭПС, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды и зрелую (дистальную, trans-полюс), от которой постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы. Каждая стопка комплекса Гольджи обычно состоит из четырех-шести «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены. Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра). Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя – постепенно формируется за счет деятельности ЭПР. Рис. Комплекс Гольджи Функции комплекса Гольджи: накопление белков, липидов, углеводов; модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов; место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках. Лизосомы – одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями. А Рис. Образование лизосом втофагия – процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная везикула сливается с первичной лизосомой, в результате также образуется вторичная лизосома – автофагическая вакуоль, в которой эта структура переваривается. П Рис. . Образование экзоцитозных пузырьков (А), пищеварительных вакуолей (Б) и автофагических вакуолей (В). родукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.Автолиз – саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей. Функции лизосом. Таким образом, лизосомы отвечают за внутриклеточное разрушение макромолекул органических веществ – «пищеварительная система» клетки и за уничтожение ненужных клеточных и неклеточных структур.
Рис. . Пероксисома. В центре – нуклеоид.Пероксисомы – органоиды, сходные по строению с лизосомами, пузырьки с диаметром до 1,5 мкм с однородным матриксом, содержащим около 50 ферментов. Важнейшими ферментами являются оксидазы, катализирующие перенос двух атомов водорода с органических молекул (аминокислот, углеводов, жирных кислот) непосредственно на кислород, при этом образуется пероксид водорода, опасный для клетки окислитель: АН2 + О2 → А + Н2О2 Образующуюся перекись водорода каталаза использует для окисления различных субстратов: Н2О2 + АН2 → А + 2Н2О. В клетках печени пероксисомы крупные и их много, каталаза окисляет этиловый спирт до уксусного альдегида. Избыток Н2О2 и Н2О2, образовавшийся в другом месте клетки, также разрушается каталазой (2Н2О2 → 2Н2О + О2). Наряду с митохондриями пероксисомы активно используют кислород в качестве окислителя. Существует гипотеза, согласно которой пероксисомы – древние органоиды, которые появились раньше митохондрий: когда появился кислород в атмосфере, токсичный для большинства клеток, пероксисомы снижали его концентрацию в клетках, одновременно используя его для окислительных реакций. Образуются пероксисомы отпочковываваясь от ранее существующих, т.е. относятся к самовоспроизводящимся органоидам, несмотря на то, что не содержат ДНК. Растут благодаря поступлению в них ферментов, ферменты пероксисом образуются на шероховатой ЭПС и в гиалоплазме. В крупных пероксисомах выявляется плотная сердцевина – нуклеоид, соответствующий области конденсации ферментов. Вакуоли – одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи.Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна. В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения. Функции. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки. Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга. Р Рис. Строение жгутиков и ресничек эукариот еснички и жгутики. Эти органоиды участвуют в процессах движения и представляют собой каркас из микротрубочек, называемый аксонемой, окруженный плазмалеммой. Длина ресничек – до 10 мкм, жгутики отличаются только размерами и их длина достигает 70 мкм. В основании ресничек и жгутиков находится базальное тельце, в котором 9 триплетов микротрубочек.Аксонема образована 9 периферическими парами микротрубочек и одной центральной парой, напоминает велосипедное колесо: ось – пара микротрубочек, спицы – особые белки, соединяющие центральную пару микротрубочек с периферическими парами, и обод, образованный 9 парами микротрубочек. Реснички имеют клетки дыхательных путей человека, эпителий маточных труб. Жгутики у человека имеются только у мужских половых клеток – сперматозоидов. У прокариот строение жгутиков иное, и они не окружены мембраной. Многие клетки могут иметь на поверхности тонкие выпячивания – микроворсинки для увеличения поверхности (клетки тонкого кишечника, извитых канальцев почек). В отличии от ресничек они не способны совершать движения, у них под мембраной отсутствуют микротрубочки аксонемы. Ключевые термины и понятия 1. Гранулярная, гладкая, промежуточная ЭПС. 2. Цис-, транс-полюса комплекса Гольджи. 3. Диктиосома. 4. Первичные, вторичные лизосомы. 5. Автофагические вакуоли, автолиз. 6. Нуклеоид пероксисомы. 7. Тонопласт. 8. Вакуолярная сеть клетки. 9. Алейроновые зерна. 10. Аксонема. Основные вопросы для повторения
|
dereksiz.org
Мембранные органоиды
Органоиды (от греч. органон - орудие, орган и идос - вид, подобие) - это надмолекулярные структуры цитоплазмы, выполняющие специфичные функции, без которых невозможна нормальная деятельность клетки. По своей структуре органоиды подразделяют на немембранные (не содержащие мембранных компонентов) и мембранные (имеющие мембраны). Мембранные органоиды (эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии и пластиды) характерны только для эукариотических клеток. К немембранным органоидам относятся клеточный центр эукариотических клеток и рибосомы, имеющиеся в цитоплазме как эу- , так и прокариотических клеток. Таким образом, единственным универсальным для всех типов клеток органоидом являются рибосомы.
Мембранные органоиды
Основным компонентом мембранных органоидов является мембрана. Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом. В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.
Одна из основных функций мембран – создание границы между клеткой и окружающей средой и различными отсеками клетки. Липидный бислой проницаем в основном для жирорастворимых соединений и газов, гидрофильные вещества переносятся через мембраны с помощью специальных механизмов: низкомолекулярные – с помощью разнообразных переносчиков (каналов, насосов и др.), а высокомолекулярные – с помощью процессов экзо- и эндоцитоза.
При эндоцитозе определенные вещества сорбируются на поверхности мембраны (за счет взаимодействия с белками мембраны). В этом месте образуется впячивание мембраны внутрь цитоплазмы. Затем от мембраны отделяется пузырек, внутри которого содержится переносимое соединение. Таким образом, эндоцитоз – это перенос в клетку высокомолекулярных соединений внешней среды, окруженных участком мембраны. Обратный процесс, то есть экзоцитоз – это перенос веществ из клетки наружу. Он происходит путем слияния с плазматической мембраной пузырька, заполненного транспортируемыми высокомолекулярными соединениями. Мембрана пузырька сливается с плазматической мембраной, а его содержимое изливается наружу.
Каналы, насосы и другие переносчики – это молекулы интегральных белков мембраны, обычно образующие в мембране пору. Кроме функций разделения пространства и обеспечения избирательной проницаемости мембраны способны воспринимать сигналы. Эту функцию осуществляют белки-рецепторы, связывающие сигнальные молекулы. Отдельные белки мембраны являются ферментами, осуществляющими определенные химические реакции.
Одномембранные органоиды 1. Эндоплазматическая сеть (ЭПС)
ЭПС - это одномембранный органоид, состоящий из полостей и канальцев, соединенных между собой. Эндоплазматическая сеть структурно связана с ядром: от наружной мембраны ядра отходит мембрана, образующая стенки эндоплазматической сети. ЭПС бывает 2 видов: шероховатая (гранулярная) и гладкая (агранулярная). В любой клетке присутствуют оба вида ЭПС.
На мембранах шероховатой ЭПС располагаются многочисленные мелкие гранулы - рибосомы, специальные органоиды, с помощью которых синтезируются белки. Поэтому нетрудно догадаться, что на поверхности шероховатой ЭПС синтезируется белки, которые проникают внутрь шероховатой ЭПС и по ее полостям могут переместиться в любое место клетки.
Мембраны гладкой ЭПС лишены рибосом, но зато в ее мембранах встроены ферменты, осуществляющие синтез углеводов и липидов. После синтеза углеводы и липиды тоже могут перемещаться по мембранам ЭПС в любое место клетки Степень развития вида ЭПС зависит от специализации клетки. Например, в клетках, синтезирующих белковые гормоны, будет лучше развита гранулярная ЭПС, а в клетках , синтезирующих жироподобные вещества - агранулярная ЭПС.
Функции ЭПС:
1. Синтез веществ. На шероховатой ЭПС синтезируются белки, а на гладкой - липиды и углеводы. 2. Транспортная функция. По полостям ЭПС синтезированные вещества перемещаются в любое место клетки.
2. Комплекс Гольджи
Комплекс Гольджи (диктиосома) представляет собой стопку плоских мембранных мешочков, которые называются цистернами. Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи.
Функции комплекса Гольджи
1. В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды), полисахариды. 2. В комплексе Гольджи происходит накопление веществ и их временное «хранение» 3. Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке. 4. В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).
3. Лизосомы («лизис» - распад, растворение)
Лизосомы - мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.
Функции лизосом:
1. Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии. 2. Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки. 3. Осуществляют аутолиз (расщепление) клетки (рассасывание хвоста у головастиков, разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).
4. Вакуоли
Вакуоли - сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли, пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки - мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция - транспорт веществ по клетке, олсуществление взаимосвязи между органоидами.
В клетке растений на долю вакуолей приходится до 90% объема. В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки - тонопласт, ее содержимое - клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза.
В состав клеточного сока могут входить:
- запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки). - вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.) - фитогормоны, фитонциды, - пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды
Канальцево-вакуолярная система клетки (система транспорта и синтеза веществ)
ЭПС, комплекс Гольджи, лизосомы и вакуоли составляют единую канальцево-вакуолярную систему клетки. Все ее элементы имеют сходный химический состав мембран, поэтому возможно их взаимодействие. Все элементы КВС берут начало от ЭПС. От ЭПС отшнуровываются вакуоли, поступающие к комплексу Гольджи, от комплекса Гольджи отшнуровываются пузырьки, сливающиеся с мембраной клетки, лизосомы.
Значение КВС:
1. Мембраны КВС делят содержимое клетки на отдельные отсеки (компартменты), в которых протекают определенные процессы. Это делает возможным одновременное протекание в клетке различных процессов, иногда прямопротивоположных. 2. В результате деятельности КВС происходит постоянное обновление мембраны клетки.
Двумембранные органоиды Двумембранный органоид - это полая структура, стенки которой образованы двойной мембраной. Известно 2 вида двумембранных органоидов: митохондрии и пластиды. Митохондрии характерны для всех клеток эукариот, пластиды встречаются только в клетках растений. Митохондрии и пластиды являются компонентами энергетической системы клетки, так в результате их функционирования синтезируется АТФ.
Митохондрия – двумембранный полуавтономный органоид, осуществляющий синтез АТФ. Форма митохондрий разнообразна, они могут быть палочковидными, нитевидными или шаровидными. Стенки митохондрий образованы двумя мембранами: внешней и внутренней. Внешняя мембрана - гладкая, а внутренняя образует многочисленные складки - кристы. Во внутренней мембране встроены многочисленные ферментные комплексы, которые осуществляют синтез АТФ.
В клетках растений есть особые двумембранные органоиды - пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты. Хлоропласты имеют оболочку из 2 мембран. Наружная оболочка гладкая, а внутренняя образует многочисленные пузырьки (тилакоиды). Стопка тилакоидов - грана. Граны располагаются в шахматном порядке для лучшего проникновения солнечного света. В мембранах тилакоидов встроены молекулы зеленого пигмента хлорофилла, поэтому хлоропласты имеют зеленый цвет. С помощью хлорофилла осуществляется фотосинтез. Таким образом, главная функция хлоропластов - осуществление процесса фотосинтеза.
Хромопласты - пластиды, имеющие красную, оранжевую или желтую окраску. Окраску хромопластам придают пигменты каротиноиды, которые расположены в матриксе. Тилакоиды развиты слабо или вообще отсутствуют. Точная функция хромопластов неизвестна. Возможно, они привлекают к созревшим плодам животных.
Лейкопласты - бесцветные пластиды, расположены в клетках бесцветных тканей. Тилакоиды неразвиты. В лейкопластах накапливается крахмал, липиды и белки.
Пластиды могут взаимно превращаться друг в друга: лейкопласты - хлоропласты - хромопласты.
biofile.ru