нервная система растений. Нервная система у растений
нервная система растений
Результаты поиска по запросу нервная система растений: найдено 1000 страниц.
-
Нервная система растений
... реакции в клетке листа, электрические и химические сигналы об этом мгновенно распространяются особым типом клеток, клетками обкладки сосудистых пучков. Ученые сравнивают этот механизм с нервной системой у животных. Реакция растения, отметил Карпинский, менялась в зависимости от цвета излучения: в эксперименте наблюдались разные сигналы для красного, синего и белого света. Ученые считают, что ...
https://www.sunhome.ru/journal/127946
-
Нервная система
... здесь не имеет значения, насколько полны резервуары - внутренние органы не могут получить нормального питания нервной силой из-за нервной депрессии. Разница между нервным истощением и нервной депрессией заключается в том, что нервное истощение - это скорее глубоко сидящая общая слабость нервной системы, в то время как нервная депрессия может быть временным явлением. Беспокойство, горе, например, вызывают сильную ...
https://www.sunhome.ru/journal/11283
-
Нервная система
... говорит ещё и о поглощении праны и её распространении в организме по сети нервной системы. Прежде чем перейти к дальнейшему, необходимо дать общее описа-ние нервной системы. Нервная система человека состоит из двух отдельных больших систем — системы спинно-головного мозга и симпатической системы. Систему спинно-головного мозга составляют те части нашей нервной системы, которые входят в головной и спинной мозг с ответвлениями, идущими ...
https://www.sunhome.ru/religion/1481
-
Что такое нервная система? Что она отражает?
... прожилки — это основа его построения. Так и в любом организме — основа построения — нервная система. Неважно какое существо, важна его здоровая нервная система. Что она отражает? Вы изумитесь: возможность полного расслабления, релаксации. Непонятно? Да, да: чем ... легче относиться к событиям, спокойнее - тем меньше напряжение, и больше расслабление, и тем здоровее нервная система и она лучше строит тело. Но как же так? - скажете вы. На меня накричал пьяный злой человек, пугая ...
https://www.sunhome.ru/navigator/chto-takoe-nervnaya-sistema-chto-ona-otrazhaet.html
-
Успокоительные травы для нервной системы: народные рецепты
... нервной системы. Постоянные стрессы и недосыпы негативно влияют на эмоциональный фон. Избежать нервного напряжения и оставаться в хорошем настроении вам помогут успокоительные травяные настои. [preview] Невозможно недооценить влияние лекарственных трав на наш организм. Исследования и наблюдения, проводимые многие века, доказали положительное действие растений ... тревогу, вернете хорошее расположение духа и нормализуете работу нервной системы. Снять дневной стресс и нервозность помогут ванны с ...
https://www.sunhome.ru/journal/146762
-
Типы нервной системы
... обоим устроит учитель! Кстати, если события развивались по такому сценарию и учитель принимал активное участие в «боевых действиях», то у него, однозначно, была слабая нервная система. Человек со слабой нервной системой не только не может ждать (терпеть), он еще с трудом удерживает новую информацию (касающуюся себя и других) и постоянно «сливает» ее по дороге буквально на первого встречного. Именно ...
https://www.sunhome.ru/psychology/11979
-
Стресс и нервная система простых организмов
... которого приводит пресс-служба этого учебно-научного заведения. Группа Покока впервые сумела показать, что воздействие стресса запускает скрытые до поры механизмы в нервной системе простых организмов. Эти механизмы отчасти формируют стратегию ухода или преодоления неблагоприятных условий за счет того, что наделяют животных способностями по-новому воспринимать ...
https://www.sunhome.ru/journal/125687
-
Здоровье нервной системы
... тела важно не только для физического отдыха, но также важно для отдыха мозга и успокоения нервной системы. Психическое расслабление Упражнение для умственного расслабления Исходное положение: сидя в кресле. Выполнение: • расслабьтесь ... дыханием и мыслями, сконцентрированными на всеобъемлющем и совершенном отдыхе. Терапевтический эффект: • дает полный покой нервной системе; • благоприятно воздействует на сердце, систему кровообращения, снижает повышенное давление. Комплексный отдых в течение месяца ...
https://www.sunhome.ru/journal/17989
-
Функции прионного белка в нервной системе
... прионный белок. Его фрагменты поступают в шванновские клетки, давая им сигнал приступить к восстановлению миелина. По предварительным данным, прионный белок действует сходным образом и в центральной нервной системе. Если это подтвердится, придется в корне пересмотреть тактику потенциального лечения прионных инфекций: в настоящее время ученые ищут пути к устранению PrP как инфекционного ...
https://www.sunhome.ru/journal/123584
-
Вегетативная нервная система
... воздуха, если пытаюсь схватить его побольше, начивается машинально зевок, а воздух так и не поподает. Я обратилась к психотерапевту и он объяснил, что это нарушение работы вегетативной нервной системы. Действительно же я хватаю воздуха больше чем требуется, а не задыхаюсь. Врач прописал Феназепам- 7 дней. Помогло не очень. Потом был курс гипноза- 10 дней. После гипноза ...
https://www.sunhome.ru/psychology/18157
www.sunhome.ru
нервная система растений
Результаты поиска по запросу нервная система растений: найдено 1000 страниц.
-
Нервная система растений
... реакции в клетке листа, электрические и химические сигналы об этом мгновенно распространяются особым типом клеток, клетками обкладки сосудистых пучков. Ученые сравнивают этот механизм с нервной системой у животных. Реакция растения, отметил Карпинский, менялась в зависимости от цвета излучения: в эксперименте наблюдались разные сигналы для красного, синего и белого света. Ученые считают, что ...
https://www.sunhome.ru/journal/127946
-
Нервная система
... здесь не имеет значения, насколько полны резервуары - внутренние органы не могут получить нормального питания нервной силой из-за нервной депрессии. Разница между нервным истощением и нервной депрессией заключается в том, что нервное истощение - это скорее глубоко сидящая общая слабость нервной системы, в то время как нервная депрессия может быть временным явлением. Беспокойство, горе, например, вызывают сильную ...
https://www.sunhome.ru/journal/11283
-
Нервная система
... говорит ещё и о поглощении праны и её распространении в организме по сети нервной системы. Прежде чем перейти к дальнейшему, необходимо дать общее описа-ние нервной системы. Нервная система человека состоит из двух отдельных больших систем — системы спинно-головного мозга и симпатической системы. Систему спинно-головного мозга составляют те части нашей нервной системы, которые входят в головной и спинной мозг с ответвлениями, идущими ...
https://www.sunhome.ru/religion/1481
-
Что такое нервная система? Что она отражает?
... прожилки — это основа его построения. Так и в любом организме — основа построения — нервная система. Неважно какое существо, важна его здоровая нервная система. Что она отражает? Вы изумитесь: возможность полного расслабления, релаксации. Непонятно? Да, да: чем ... легче относиться к событиям, спокойнее - тем меньше напряжение, и больше расслабление, и тем здоровее нервная система и она лучше строит тело. Но как же так? - скажете вы. На меня накричал пьяный злой человек, пугая ...
https://www.sunhome.ru/navigator/chto-takoe-nervnaya-sistema-chto-ona-otrazhaet.html
-
Успокоительные травы для нервной системы: народные рецепты
... нервной системы. Постоянные стрессы и недосыпы негативно влияют на эмоциональный фон. Избежать нервного напряжения и оставаться в хорошем настроении вам помогут успокоительные травяные настои. [preview] Невозможно недооценить влияние лекарственных трав на наш организм. Исследования и наблюдения, проводимые многие века, доказали положительное действие растений ... тревогу, вернете хорошее расположение духа и нормализуете работу нервной системы. Снять дневной стресс и нервозность помогут ванны с ...
https://www.sunhome.ru/journal/146762
Типы нервной системы
... обоим устроит учитель! Кстати, если события развивались по такому сценарию и учитель принимал активное участие в «боевых действиях», то у него, однозначно, была слабая нервная система. Человек со слабой нервной системой не только не может ждать (терпеть), он еще с трудом удерживает новую информацию (касающуюся себя и других) и постоянно «сливает» ее по дороге буквально на первого встречного. Именно ...
https://www.sunhome.ru/psychology/11979
-
Стресс и нервная система простых организмов
... которого приводит пресс-служба этого учебно-научного заведения. Группа Покока впервые сумела показать, что воздействие стресса запускает скрытые до поры механизмы в нервной системе простых организмов. Эти механизмы отчасти формируют стратегию ухода или преодоления неблагоприятных условий за счет того, что наделяют животных способностями по-новому воспринимать ...
https://www.sunhome.ru/journal/125687
Здоровье нервной системы
... тела важно не только для физического отдыха, но также важно для отдыха мозга и успокоения нервной системы. Психическое расслабление Упражнение для умственного расслабления Исходное положение: сидя в кресле. Выполнение: • расслабьтесь ... дыханием и мыслями, сконцентрированными на всеобъемлющем и совершенном отдыхе. Терапевтический эффект: • дает полный покой нервной системе; • благоприятно воздействует на сердце, систему кровообращения, снижает повышенное давление. Комплексный отдых в течение месяца ...
https://www.sunhome.ru/journal/17989
-
Функции прионного белка в нервной системе
... прионный белок. Его фрагменты поступают в шванновские клетки, давая им сигнал приступить к восстановлению миелина. По предварительным данным, прионный белок действует сходным образом и в центральной нервной системе. Если это подтвердится, придется в корне пересмотреть тактику потенциального лечения прионных инфекций: в настоящее время ученые ищут пути к устранению PrP как инфекционного ...
https://www.sunhome.ru/journal/123584
-
Вегетативная нервная система
... воздуха, если пытаюсь схватить его побольше, начивается машинально зевок, а воздух так и не поподает. Я обратилась к психотерапевту и он объяснил, что это нарушение работы вегетативной нервной системы. Действительно же я хватаю воздуха больше чем требуется, а не задыхаюсь. Врач прописал Феназепам- 7 дней. Помогло не очень. Потом был курс гипноза- 10 дней. После гипноза ...
https://www.sunhome.ru/psychology/18157
www.sunhome.ru
нервная система растений
Результаты поиска по запросу нервная система растений: найдено 1000 страниц.
-
Нервная система растений
... реакции в клетке листа, электрические и химические сигналы об этом мгновенно распространяются особым типом клеток, клетками обкладки сосудистых пучков. Ученые сравнивают этот механизм с нервной системой у животных. Реакция растения, отметил Карпинский, менялась в зависимости от цвета излучения: в эксперименте наблюдались разные сигналы для красного, синего и белого света. Ученые считают, что ...
https://www.sunhome.ru/journal/127946
-
Нервная система
... здесь не имеет значения, насколько полны резервуары - внутренние органы не могут получить нормального питания нервной силой из-за нервной депрессии. Разница между нервным истощением и нервной депрессией заключается в том, что нервное истощение - это скорее глубоко сидящая общая слабость нервной системы, в то время как нервная депрессия может быть временным явлением. Беспокойство, горе, например, вызывают сильную ...
https://www.sunhome.ru/journal/11283
-
Нервная система
https://www.sunhome.ru/religion/1481
-
Что такое нервная система? Что она отражает?
... прожилки — это основа его построения. Так и в любом организме — основа построения — нервная система. Неважно какое существо, важна его здоровая нервная система. Что она отражает? Вы изумитесь: возможность полного расслабления, релаксации. Непонятно? Да, да: чем ... легче относиться к событиям, спокойнее - тем меньше напряжение, и больше расслабление, и тем здоровее нервная система и она лучше строит тело. Но как же так? - скажете вы. На меня накричал пьяный злой человек, пугая ...
https://www.sunhome.ru/navigator/chto-takoe-nervnaya-sistema-chto-ona-otrazhaet.html
-
Успокоительные травы для нервной системы: народные рецепты
... нервной системы. Постоянные стрессы и недосыпы негативно влияют на эмоциональный фон. Избежать нервного напряжения и оставаться в хорошем настроении вам помогут успокоительные травяные настои. [preview] Невозможно недооценить влияние лекарственных трав на наш организм. Исследования и наблюдения, проводимые многие века, доказали положительное действие растений ... тревогу, вернете хорошее расположение духа и нормализуете работу нервной системы. Снять дневной стресс и нервозность помогут ванны с ...
https://www.sunhome.ru/journal/146762
-
Типы нервной системы
... обоим устроит учитель! Кстати, если события развивались по такому сценарию и учитель принимал активное участие в «боевых действиях», то у него, однозначно, была слабая нервная система. Человек со слабой нервной системой не только не может ждать (терпеть), он еще с трудом удерживает новую информацию (касающуюся себя и других) и постоянно «сливает» ее по дороге буквально на первого встречного. Именно ...
https://www.sunhome.ru/psychology/11979
-
Стресс и нервная система простых организмов
... которого приводит пресс-служба этого учебно-научного заведения. Группа Покока впервые сумела показать, что воздействие стресса запускает скрытые до поры механизмы в нервной системе простых организмов. Эти механизмы отчасти формируют стратегию ухода или преодоления неблагоприятных условий за счет того, что наделяют животных способностями по-новому воспринимать ...
https://www.sunhome.ru/journal/125687
-
Здоровье нервной системы
... тела важно не только для физического отдыха, но также важно для отдыха мозга и успокоения нервной системы. Психическое расслабление Упражнение для умственного расслабления Исходное положение: сидя в кресле. Выполнение: • расслабьтесь ... дыханием и мыслями, сконцентрированными на всеобъемлющем и совершенном отдыхе. Терапевтический эффект: • дает полный покой нервной системе; • благоприятно воздействует на сердце, систему кровообращения, снижает повышенное давление. Комплексный отдых в течение месяца ...
https://www.sunhome.ru/journal/17989
-
Функции прионного белка в нервной системе
... прионный белок. Его фрагменты поступают в шванновские клетки, давая им сигнал приступить к восстановлению миелина. По предварительным данным, прионный белок действует сходным образом и в центральной нервной системе. Если это подтвердится, придется в корне пересмотреть тактику потенциального лечения прионных инфекций: в настоящее время ученые ищут пути к устранению PrP как инфекционного ...
https://www.sunhome.ru/journal/123584
-
Вегетативная нервная система
... воздуха, если пытаюсь схватить его побольше, начивается машинально зевок, а воздух так и не поподает. Я обратилась к психотерапевту и он объяснил, что это нарушение работы вегетативной нервной системы. Действительно же я хватаю воздуха больше чем требуется, а не задыхаюсь. Врач прописал Феназепам- 7 дней. Помогло не очень. Потом был курс гипноза- 10 дней. После гипноза ...
https://www.sunhome.ru/psychology/18157
www.sunhome.ru
Нервная система | Лекарственные растения
Инжир или фига (фиговое дерево, смоковница и др.) – это листопадное дерево рода Фикус, семейства Тутовые. Растет в странах с субтропическим климатом и во многих культивируется как ценная плодовая культура. В России инжир выращивают в Крыму и Краснодарском крае. Популярно это растение и в комнатном цветоводстве. Плоды инжира широко используются в кулинарии и виноделии, а также, вместе с листьями и корнями, в народной медицине.
Хохлатка (чубатка пустая и др.) - это многолетнее или однолетнее травянистое растение семейства Маковые. Является ядовитым и медоносным. Произрастает в Северном полушарии с умеренным климатом. Хохлатку выращивают в садах и парках как декоративное растение, а также используют в кулинарии и народной медицине.
Белокудренник черный (белокудренник сорный, собачья мята др.) - многолетнее травянистое растение семейства Яснотковые. Растет на территории Средиземноморья, Европы, Азии, Аргентины, Африки, США и Новой Зеландии. Предпочитает обочины дорог и сорные места, засоряет огороды. Иногда это растение выращивают в качестве декоративного. Белокудренник черный используется в народной медицине как растение обладающее спазмолитическим, седативным и рядом других ценных лечебных свойств.
Дербенник иволистный или плакун-трава — это многолетнее травянистое медоносное растение семейства Дербенниковые. Предпочитает берега водоемов, заливные луга, болота. Растет на территории Европы, Азии, Новой Зеландии, Северной Африки. Дербенник иволистный используется в народной медицине, как растение обладающее множеством ценных лечебных свойств. Также дербенник выращивается в декоративном садоводстве.
Кувшинка белая (одолень-трава, нимфея и др.) - это многолетнее водное ядовитое растение семейства Кувшинковые с очень красивыми цветами. Занесено в Красную Книгу. Произрастает в стоячих или медленно текущих водоемах не глубже 2 метров на территории России, Европы, Белоруссии, Средней Азии. Гибридные сорта кувшинки выращивают в декоративных водоемах. Кувшинка белая используется в народной медицине, косметологии и кулинарии.
Кедровый стланик или сосна стланиковая — это стелющееся древовидное вечнозеленое хвойное растение семейства Сосновые. Растет подлеском в хвойных лесах, а также в лиственных. Распространено на территории Дальнего Востока, Восточной Сибири, Якутии, встречается в Центральной и Южной Европе. Кедровый стланик популярен в декоративном растениеводстве, в кулинарии, медицине и косметологии.
Шафран или крокус посевной — это многолетнее клубнелуковичное растение семейства Ирисовые. Произрастает на территории Средней Азии, Азербайджана, Северного Кавказа, Крыма. В Европе крокус культивируют. Это растение широко используется в кулинарии как пряность, а также в народной медицине и косметологии.
Прострел луговой или сон-трава — это многолетнее травянистое растение с крупными красивыми цветками семейства Лютиковые. Является ядовитым. Прострел растет на песчаных холмах, сухих склонах, в хвойных лесах на территории Европы, Дальнего Востока и Прибайкалья. Широко используется в гомеопатии и народной медицине. Популярен прострел и в декоративном садоводстве, как цветок-первоцвет.
Тамаринд индийский или индийский финик — это вечнозеленое дерево семейства Бобовые. Произрастает в Африке, Индии, Австралии, Южной Азии, Океании. В других странах культивируется. Тамаринд широко используют в кулинарии, традиционной восточной и народной медицине, а также косметологии.
Гинкго билоба или гингко двулопастный – это листопадное реликтовое дерево семейства Гинкговые. В диком виде гинкго произрастает в Китае, а в других странах культивируется с декоративными и лекарственными целями. Гинкго билоба используется в официальной и народной медицине. Особенно ценятся его целебные свойства, оказываемые на систему кровообращение и мозг.
ltravi.ru
Нервная система
Этапы развития нервной системы
В эволюции нервная система претерпела несколько этапов развития, которые стали поворотными пунктами в качественной организации её деятельности. Эти этапы отличаются по количеству и видам нейрональных образований, синапсов, признакам их функциональной специализации, по образованию группировок нейронов, связанных между собой общностью функций. Выделяют три основных этапа структурной организации нервной системы: диффузный, узловой, трубчатый.
Диффузная нервная система наиболее древняя, имеется у кишечнополостных (гидра) животных. Такая нервная система характеризуется множественностью связей соседних элементов, что позволяет возбуждению свободно распространяться по нервной сети во все стороны.
Этот тип нервной системы обеспечивает широкую взаимозаменяемость и тем самым большую надёжность функционирования, однако эти реакции имеют неточный, расплывчатый характер.
Узловой тип нервной системы типичен для червей, моллюсков, ракообразных.
Он характерен тем, что связи нервных клеток организованы определённым образом, возбуждение проходит по жёстко определённым путям. Такая организация нервной системы оказывается более ранимой. Повреждение одного узла вызывает нарушение функций всего организма в целом, но она по своим качествам быстрее и точнее.
Трубчатая нервная система характерна для хордовых, она включает в себя черты диффузного и узлового типов. Нервная система высших животных взяла всё лучшее: высокую надёжность диффузного типа, точность, локальность быстроту организации реакций узлового типа.
Ведущая роль нервной системы
На первом этапе развития мира живых существ взаимодействие между простейшими организмами осуществлялось через водную среду первобытного океана, в которую поступали химические вещества, выделяемые ими. Первой древнейшей формой взаимодействия между клетками многоклеточных организм является химическое взаимодействие посредством продуктов обмена веществ, поступающих в жидкости организма. Такими продуктами обмена веществ, или метаболитами, являются продукты распада белков, углекислота и др. это — гуморальная передача влияний, гуморальный механизм корреляции, или связи между органами.
Гуморальная связь характеризуется следующими особенностями:
- отсутствием точного адреса, по которому направляется химическое вещество, поступающее в кровь или другие жидкости тела;
- химическое вещество распространяется медленно;
- химическое вещество действует в ничтожных количествах и обычно быстро разрушается или выводится из организма.
Гуморальные связи являются общими и для мира животных, и для мира растений. На определённой ступени развития мира животных в связи с появлением нервной системы образуется новая, нервная форма связей и регуляций, которая качественно отличает мир животных от мира растений. Чем выше по своему развитию организм животного, тем большую роль играет взаимодействие органов через нервную систему, которое обозначается как рефлекторное. У высших живых организмов нервная система регулирует гуморальные связи. В отличие от гуморальной связи нервная связь имеет точную направленность к определённому органу и даже группе клеток; связь осуществляется в сотни раз с большей скоростью, чем скорость распространения химических веществ. Переход от гуморальной связи к нервной сопровождался не уничтожением гуморальной связи между клетками тела, а подчинением нервным связям и возникновению нервно-гуморальным связям.
На следующем этапе развития живых существ появляются специальные органы — железы, в которых вырабатываются гормоны, образующиеся из поступающих в организм пищевых веществ. Основная функция нервной системы заключается как в регуляции деятельности отдельных органов между собой, так и во взаимодействии организма как единого целого с окружающей его внешней средой. Любое воздействие внешней среды на организм оказывается, прежде всего, на рецепторы (органы чувств) и осуществляется через посредство изменений, вызываемых внешней средой и нервной системой. По мере развития нервной системы высший её отдел — большие полушария головного мозга — становится «распорядителем и распределителем всей деятельности организма».
Строение нервной системы
Нервная система образована нервной тканью, которая состоит из огромного количества нейронов — нервная клетка с отростками.
Нервная система условно подразделяется на центральную и периферическую.
Центральная нервная система включает головной и спинной мозг, а периферическая нервная система — нервы, отходящие от них.
Головной и спинной мозг представляют собой совокупность нейронов. На поперечном разрезе мозга различают белое и серое вещество. Серое вещество состоит из нервных клеток, а белое — из нервных волокон, являющихся отростками нервных клеток. В различных отделах центральной нервной системы расположение белого и серого вещества неодинаково. В спинном мозге серое вещество находится внутри, а белое — снаружи, в головном же (большие полушария, мозжечок), наоборот — серое вещество — снаружи, белое — внутри. В различных отделах головного мозга имеются отдельные скопления нервных клеток (серого вещества), расположенные внутри белого вещества, — ядра. Скопления нервных клеток находятся и за пределами центральной нервной системы. Они называются узлами и относятся к периферической нервной системе.
Рефлекторная деятельность нервной системы
Основной формой деятельности нервной системы является рефлекс. Рефлекс — реакция организма на изменение внутренней или внешней среды, осуществляемая при участии центральной нервной системы в ответ на раздражение рецепторов.
При всяком раздражении возбуждение с рецепторов передаётся по центростремительным нервным волокнам в центральную нервную систему, откуда через вставочный нейрон по центробежным волокнам оно идёт на периферию к тому или иному органу, деятельность которого изменяется. Весь этот путь через центральную нервную систему к рабочему органу, называется рефлекторной дугой образован обычно тремя нейронами: чувствительным, вставочным и двигательным. Рефлекс — сложный акт, в осуществлении которого принимает участие значительно большее количество нейронов. Возбуждение, попадая в центральную нервную систему, распространяется на многие отделы спинного мозга и доходит до головного. В результате взаимодействия многих нейронов осуществляется ответная реакция организма на раздражение.
Спинной мозг
Спинной мозг — тяж длиной около 45 см, диаметром 1 см, находится в канале позвоночника, покрыт тремя мозговыми оболочками: твёрдой, паутинной и мягкой (сосудистой).
Спинной мозг находится в позвоночном канале и представляет собой тяж, который вверху переходит в продолговатый мозг, а внизу заканчивается на уровне второго поясничного позвонка. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого, состоящего из нервных волокон. Серое вещество расположено внутри спинного мозга и окружено со всех сторон белым веществом.
На поперечном разрезе серое вещество напоминает букву Н. В нём различают передние и задние рога, а также соединяющую перекладину, в центре которой находится узкий канал спинного мозга, содержащий спинномозговую жидкость. В грудном отделе выделяют боковые рога. В них заложены тела нейронов, иннервирующих внутренние органы. Белое вещество спинного мозга образовано нервными отростками. Короткие отростки соединяют участки спинного мозга, а длинные составляют проводниковый аппарат двусторонних связей с головным мозгом.
Спинной мозг имеет два утолщения — шейное и поясничное, от которых отходят нервы к верхним и нижним конечностям. От спинного мозга отходит 31 пара спинномозговых нервов. Каждый нерв начинается от спинного мозга двумя корешками — передним и задним. Задние корешки — чувствительные состоят из отростков центростремительных нейронов. Их тела расположены в спинномозговых узлах. Передние корешки — двигательные — являются отростками центробежных нейронов расположенных в сером веществе спинного мозга. В результате слияния переднего и заднего корешка образуется смешанный спинномозговой нерв. В спинном мозге сосредоточены центры, регулирующие наиболее простые рефлекторные акты. Основные функции спинного мозга — рефлекторная деятельность и проведение возбуждения.
В спинном мозге человека заложены рефлекторные центры мышц верхних и нижних конечностей, потоотделения и мочеиспускания. Функции проведения возбуждения заключается в том, что через спинной мозг проходят импульсы от головного мозга ко всем областям тела и обратно. По восходящим проводящим путям в головной мозг передаются центростемительные импульсы от органов (кожа, мышцы). По нисходящим путям центробежные импульсы передаются от головного мозга в спинной, затем на периферию, к органам. При повреждении проводящих путей наблюдается потеря чувствительности в различных участках тела, нарушение произвольных сокращений мышц и способности к движению.
Эволюция головного мозга позвоночных
Образование центральной нервной системы в виде нервной трубки впервые появляется у хордовых. У низших хордовых нервная трубка сохраняется в течение всей жизни, у высших — позвоночных — в стадии эмбриона на спинной стороне закладывается нервная пластинка, которая погружается под кожу и сворачивается в трубку. В эмбриональной стадии развития нервная трубка образует в передней части три вздутия — три мозговых пузыря, из которых развиваются отделы мозга: передний пузырь дает передний и промежуточный мозг, средний пузырь превращается в средний мозг, задний пузырь образует мозжечок и продолговатый мозг . Эти пять отделов мозга характерны для всех позвоночных животных.
Для низших позвоночных — рыб и земноводных — характерно преобладание среднего мозга над остальными отделами. У земноводных несколько увеличивается передний мозг и в крыше полушарий образуется тонкий слой нервных клеток — первичный мозговой свод, древняя кора. У рептилий значительно увеличивается передний мозг за счет скоплений нервных клеток. Большую часть крыши полушарий занимает древняя кора. Впервые у рептилий появляется зачаток новой коры. Полушария переднего мозга наползают на другие отделы, вследствие чего образуется изгиб в области промежуточного мозга. Начиная с древних рептилий, полушария головного мозга становятся самым большим отделом головного мозга.
В строении головного мозгаптиц и пресмыкающихся много общего. На крыше головного мозга — первичная кора, хорошо развит средний мозг. Однако у птиц по сравнению с рептилиями возрастают общая масса мозга и относительные размеры переднего мозга. Мозжечок крупный и имеет складчатое строение. У млекопитающих передний мозг достигает наибольшей величины и сложности. Большую часть мозгового вещества составляет новая кора, которая служит центром высшей нервной деятельности. Промежуточный и средний отделы мозга у млекопитающих невелики. Разрастающиеся полушария переднего мозга накрывают их и подминают под себя. У некоторых млекопитающих мозг гладкий, без борозд и извилин, но у большинства млекопитающих в коре мозга имеются борозды и извилины. Появление борозд и извилин происходит вследствие роста мозга при ограниченных размерах черепа. Дальнейший рост коры приводит к появлению складчатости в виде борозд и извилин.
Головной мозг
Если спинной мозг у всех позвоночных животных развит более или менее одинаково, то головной мозг существенно отличатся размерами и сложностью строения у разных животных. Особенно резкие изменения в ходе эволюции претерпевает передний мозг. У низших позвоночных передний мозг развит слабо. У рыб он представлен обонятельными долями и ядрами серого вещества в толще мозга. Интенсивное развитие переднего мозга связано с выходом животных на сушу. Он дифференцируется на промежуточный мозг и на два симметричных полушария, которые называются конечным мозгом. Серое вещество на поверхности переднего мозга (кора) впервые появляется у пресмыкающихся, развиваясь далее у птиц и особенно у млекопитающих. Действительно большими полушариями переднего мозга становятся только у птиц и млекопитающих. У последних они покрывают почти все другие отделы головного мозга.
Головной мозг расположен в полости черепа. В него входят ствол и конечный мозг (кора больших полушарий).
Ствол мозга состоит из продолговатого мозга, варолиева моста, среднего и промежуточного мозга.
Продолговатый мозг является непосредственным продолжением спинного мозга и расширяясь, переходит в задний мозг. Он в основном сохраняет форму и строение спинного мозга. В толще продолговатого мозга расположены скопления серого вещества — ядра черепно-мозговых нервов. В состав заднего моста входят мозжечок и варолиев мост. Мозжечок расположен над продолговатым мозгом и имеет сложное строение. На поверхности полушарий мозжечка серое вещество образует кору, а внутри мозжечка — его ядра. Как и спинной продолговатый мозг выполняет две функции: рефлекторную и проводниковую. Однако рефлексы продолговатого мозга более сложные. Это выражается в важном значении в регуляции сердечной деятельности, состоянии сосудов, дыхания, потоотделения. В продолговатом мозге расположены центры всех этих функций. Здесь же находятся центры жевания, сосания, глотания, отделения слюны и желудочного сока. Несмотря на малую величину (2,5–3 см), продолговатый мозг представляет собой жизненно важный отдел ЦНС. Повреждение его может стать причиной смерти вследствие прекращения дыхания и деятельности сердца. Проводниковая функция продолговатого мозга и варолиева моста заключается в передаче импульсов из спинного мозга в головной и обратно.
В среднем мозге расположены первичные (подкорковые) центры зрения и слуха, которые осуществляют рефлекторные ориентировочные реакции на световые и звуковые раздражения. Эти реакции выражаются в различных движениях туловища, головы и глаз в сторону раздражителей. Средний мозг состоит из ножек мозга и четверохолмия. Средний мозг регулирует и распределяет тонус (напряжение) скелетных мышц.
Промежуточный мозг состоит из двух отделов — таламус и гипоталамус, каждый из которых состоит из большого числа ядер зрительных бугров и подбугровой области. Через зрительные бугры центростремительные импульсы передаются к коре больших полушарий от всех рецепторов тела. Ни один центростремительный импульс, откуда бы он ни шёл, не может пройти к коре, минуя зрительные бугры. Таким образом, через промежуточный мозг осуществляется связь всех рецепторов с корой больших полушарий. В подбугровой области расположены центры, оказывающие влияние на обмен веществ, терморегуляцию и железы внутренней секреции.
Мозжечок находится позади продолговатого мозга. Он состоит из серого и белого вещества. Однако в отличие от спинного мозга и ствола серое вещество — кора — находится на поверхности мозжечка, а белое вещество расположено внутри, под корой. Мозжечок координирует движения, делает их чёткими и плавными, играет важную роль в сохранении равновесия тела в пространстве, а также оказывает влияние на тонус мышц. При поражении мозжечка у человека наблюдается падение тонуса мышц, расстройство движений и изменение походки, замедляется речь и т.д. Однако через некоторое время движения и мышечный тонус восстанавливаются благодаря тому, что неповреждённые участки центральной нервной системы берут на себя функции мозжечка.
Большие полушария — наиболее крупный и развитый отдел головного мозга. У человека они образуют основную массу головного мозга и по всей своей поверхности покрыты корой. Серое вещество покрывает полушария снаружи и образует кору головного мозга. Кора полушарий человека имеет толщину от 2 до 4 мм и слагается из 6–8 слоёв, образованных 14–16 млрд. клеток, различных по форме, величине и выполняемым функциям. Под корой находится белое вещество. Оно состоит из нервных волокон, связывающих кору с расположенными ниже отделами центральной нервной системы и отдельные доли полушарий между собой.
Кора головного мозга имеет извилины, разделённые бороздами, которые значительно увеличивают её поверхность. Три самые глубокие борозды делят полушария на доли. В каждом полушарии различают четыре доли: лобную, теменную, височную, затылочную. Возбуждение разных рецепторов поступают в соответствующие воспринимающие участки коры, называемые зонами, и отсюда передаются к определённому органу, побуждая его к действию. В коре выделяют следующие зоны. Слуховая зона расположена в височной доле, воспринимает импульсы от слуховых рецепторов.
Зрительная зона лежит в затылочной области. Сюда поступают импульсы от рецепторов глаза.
Обонятельная зона находится на внутренней поверхности височной доли и связана с рецепторами носовой полости.
Чувствительно-двигательная зона расположена в лобной и теменной долях. В этой зоне находятся главные центры движения ног, туловища, рук, шеи, языка и губ. Здесь же лежит и центр речи.
Полушария головного мозга — это высший отдел центральной нервной системы, контролирующий работу всех органов у млекопитающих. Значение больших полушарий у человека заключается ещё и в том, что они представляют собой материальную основу психической деятельности. И.П.Павлов показал, что в основе психической деятельности лежат физиологические процессы, происходящие в коре головного мозга. Мышление связано с деятельностью всей коры головного мозга, а не только с функцией отдельных её областей.
Отдел головного мозга | Функции | |
Продолговатый мозг | Проводниковая | Связь спинного и вышележащих отделов головного мозга. |
Рефлекторная | Регуляция деятельности дыхательной, сердечно-сосудистой, пищеварительной систем:
| |
Варолиев мост | Проводниковая | Соединяет полушария мозжечка между собой и с корой больших полушарий головного мозга. |
Мозжечок | Координационная | Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия |
Средний мозг | Проводниковая | Ориентировочные рефлексы на зрительные, звуковые раздражители (повороты головы и туловища). |
Рефлекторная |
| |
Промежуточный мозг | таламус
гипоталамус
|
Кора больших полушарий
Поверхность коры больших полушарий у человека составляет около 1500 см2, что во много раз превышает внутреннюю поверхность черепа. Такая большая поверхность коры образовалась благодаря развитию большого количества борозд и извилин, в результате чего большая часть коры (около 70%) сосредоточена в бороздах. Самые большие борозды больших полушарий — центральная, которая проходит поперёк обоих полушарий, и височная, отделяющая височную долю от остальных. Кора больших полушарий, несмотря на малую толщину (1,5–3 мм) имеет очень сложное строение. В ней насчитывают шесть основных слоёв, которые отличаются строением, формой и размерами нейронов и связями. В коре находятся центры всех чувствительных (рецепторных) систем, представительства всех органов и частей тела. В связи с этим к коре подходят центростремительные нервные импульсы от всех внутренних органов или частей тела, и она может управлять их работой. Через кору больших полушарий происходит замыкание условных рефлексов, посредством которых организм постоянно, в течение всей жизни очень точно приспосабливается к изменчивым условиям существования, к окружающей среде.
biouroki.ru
Энергетический подход к эволюции мозга
Нервная система живых существ в процессе эволюции прошла долгий путь от совокупности примитивных рефлексов у простейших до сложной системы анализа и синтеза информации у высших приматов. Что послужило стимулом к формированию и развитию мозга? Статья известного ученого и популяризатора науки Сергея Вячеславовича Савельева, автора книги «Происхождение мозга» (М.: ВЕДИ, 2005), представляет оригинальную теорию адаптивной эволюции нервной системы.
Нервная система требуется далеко не всем живым существам. Она не нужна тем, кто был и будет неподвижен, то есть растениям. Для выживания им не требуется ни быстрой реакции, ни мгновенной перестройки организма. Есть и другая возможность существования без нервной системы – жить в чудесном месте, где много пищи и организм всегда защищен и согрет. Жизнь паразитического червя вполне соответствует этим требованиям. Поэтому он, как растение, не обладает нервной системой. Правда, у растений нервной системы никогда не было, а у солитера она полностью исчезла. И у растений и у солитера функции реагирования на изменение внешних условий выполняет не нервная система, а отдельные клетки, обладающие химической, электромагнитной и механической чувствительностью.
Однако судьба паразитических червей скорее исключение, чем правило в животном мире. Для большинства организмов окружающий мир слишком нестабилен и требует постоянного приспособления к нему. Органом быстрого и целостного реагирования на изменяющиеся внешние условия стала нервная система.
От реакции одной клетки — к многоклеточному организму
Наиболее древнее свойство нервной системы простейших живых существ – способность распространять информацию о контакте с внешним миром с одной клетки на весь многоклеточный организм. Самое первое преимущество, которое дала такая примитивная нервная система многоклеточным, – это способность реагировать на внешние воздействия так же быстро, как простейшие одноклеточные.
У животных, прикрепленных к конкретному месту, – актиний, асцидий, малоподвижных моллюсков с крупными раковинами, коралловых полипов – несложные задачи: фильтрация воды и захват проплывающей мимо пищи. Поэтому нервная система таких малоподвижных организмов по сравнению с нервной системой активных животных устроена очень просто. Она в основном представляет собой небольшое окологлоточное нервное кольцо с совокупностью примитивных рефлексов. Тем не менее даже эти простые реакции протекают на несколько порядков быстрее, чем у растений такого же размера.
Свободноживущим кишечнополостным требуется более обширная нервная сеть. У них нервная система распределена почти равномерно по всему телу или по большей его части (исключение составляют скопления нервных клеток у подошвы и в области окологлоточного кольца), что обеспечивает быструю согласованную реакцию всего организма на раздражители. Равномерно распределенную нервную систему обычно называют диффузной. На различные воздействия организм таких живых существ откликается быстро, но неспецифически, то есть однотипно. Например, пресноводная гидра при любых информационных сигналах – если качнуть лист, на котором она сидит, прикоснуться к ней щетинкой или вызвать движение воды – реагирует одинаковым образом – сжимается.
Появление органов чувств
Следующим этапом в эволюции нервной системы стало появление нового качества – упреждающей адаптации. Это означает, что организм успевает подготовиться к изменению окружающей среды заранее, до непосредственного контакта с раздражителем. Для этого природа создала огромное разнообразие органов чувств, в основе работы которых лежат три механизма: химическая, физическая и электромагнитная чувствительность мембраны нервной клетки. Химическая чувствительность может быть представлена обонянием и контактным органом вкуса, осморецептором и рецептором парциального давления кислорода. Механочувствительность реализуется в виде слуха, органов боковой линии, грави- и терморецепторов. Чувствительность к электромагнитным волнам обусловлена наличием рецепторов внешних или собственных полей, светочувствительностью либо способностью воспринимать магнитные поля планеты и Солнца.
Три типа чувствительности в процессе эволюции выделились в специализированные органы, что неизбежно привело к повышению направленной чувствительности организма. Рецепторы сенсорных органов приобрели возможность воспринимать различные воздействия на расстоянии. В процессе эволюции органы чувств возникли у нематод, свободноживущих плоских и круглых червей, кишечнополостных, иглокожих и многих других примитивных живых существ. Такая организация нервной системы в стабильной среде вполне оправдывает себя. Животное недорогой ценой приобретает высокие адаптивные возможности. До тех пор, пока нет внешнего стимула, нервная система «молчит» и не требует особых расходов на свое содержание. Как только ситуация меняется, она воспринимает это органами чувств и отвечает направленной активностью эффекторных органов.
Однако с появлением упреждающей адаптации у живых существ возникли проблемы.
Во-первых, одни сигналы идут от фоторецепторов, другие – от хеморецепторов, а третьи – от рецепторов электромагнитного излучения. Как сравнить столь разнородную информацию? Сопоставить сигналы можно только при их однотипной кодировке. Универсальным кодом, позволяющим сравнивать сигналы из разных органов чувств, стал электрохимический импульс, генерирующийся в нейронах в ответ на информацию, полученную от органов чувств. Он передается с одной нервной клетки на другую за счет изменения концентрации заряженных ионов по обе стороны клеточной мембраны. Такой электрический импульс характеризуется частотой, амплитудой, модуляцией, интенсивностью, повторяемостью и некоторыми другими параметрами.
Во-вторых, сигналы от разных органов чувств должны прийти в одно и то же место, где их можно было бы сравнить, и не просто сравнить, а выбрать самый важный на данный момент, который и станет побуждением к действию. Это реально осуществить в таком устройстве, где были бы представлены все органы чувств. Для сравнения сигналов от разных органов чувств необходимо скопление тел нервных клеток, которые отвечают за восприятие информации различной природы. Такие скопления, называемые ганглиями или узлами, появляются у беспозвоночных. В узлах располагаются чувствительные нейроны или их отростки, что позволяет клеткам получать информацию с периферии тела.
Но вся эта система бесполезна без управления ответами на сигналы – сокращением или расслаблением мышц, выбросом различных физиологически активных веществ. Для осуществления функций как сравнения, так и управления у хордовых возникает головной и спинной мозг.
Формирование памяти
В постоянно меняющихся условиях окружающей среды простых адаптивных реакций становится недостаточно. К счастью, изменения среды подчиняются неким физическим и планетарным законам. Сделать адекватный поведенческий выбор в нестабильной среде можно, только сравнивая разнородные сигналы с аналогичными сигналами, полученными ранее. Поэтому в процессе эволюции организм вынужден был приобрести еще одно важное преимущество – возможность сравнивать информацию во времени, как бы оценивая опыт предыдущей жизни. Это новое свойство нервной системы называется памятью.
В нервной системе объем памяти определяется числом нервных клеток, вовлекаемых в процесс запоминания. Чтобы запомнить хоть что-то, надо иметь примерно 100 компактно расположенных нейронов, как у актиний. Их память краткосрочна, неустойчива, но эффективна. Если собрать актиний и поместить в аквариум, то все они воспроизведут предыдущую природную ориентацию. Следовательно, каждая особь помнит, в каком направлении «смотрело» ее ротовое отверстие. Еще более сложное поведение актинии обнаружили в экспериментах по обучению. К одним и тем же щупальцам этих животных в течение 5 дней прикладывали несъедобные кусочки бумаги. Актинии сначала отправляли их в рот, проглатывали, а потом выбрасывали. Через 5 дней они перестали есть бумагу. Затем исследователи стали прикладывать бумажки к другим щупальцам. На этот раз животные прекратили поедание бумаги значительно быстрее, чем в первом эксперименте. Этот навык сохранялся в течение 6–10 дней. Такие эксперименты демонстрируют принципиальные отличия животных, обладающих памятью, от существ, не имеющих никаких способов сохранять информацию о внешнем мире и о себе.
Нервная система после выхода позвоночных на сушу
Роль нервной системы стала особенно значительной после выхода позвоночных на сушу, который поставил бывших первичноводных в крайне сложную ситуацию. Они прекрасно приспособились к жизни в водной среде, которая мало походила на наземные условия обитания. Новые требования к нервной системе были продиктованы низким сопротивлением среды, увеличением массы тела, хорошим распространением в воздухе запахов, звуков и электромагнитных волн. Гравитационное поле предъявило крайне жесткие требования к системе соматических рецепторов и к вестибулярному аппарату. Если в воде упасть невозможно, то на поверхности Земли такие неприятности неизбежны. На границе сред сформировались специфические органы движения – конечности. Резкое повышение требований к координации работы мускулатуры тела привело к интенсивному развитию сенсомоторных отделов спинного, заднего и продолговатого мозга. Дыхание в воздушной среде, изменение водно-солевого баланса и механизмов пищеварения обусловили развитие специфических систем контроля этих функций со стороны мозга и периферической нервной системы.
В результате возросла общая масса периферической нервной системы за счет иннервации конечностей, формирования кожной чувствительности и черепно-мозговых нервов, контроля над органами дыхания. Кроме того, произошло увеличение размеров управляющего центра периферической нервной системы – спинного мозга. Сформировались специальные спинномозговые утолщения и специализированные центры управления движениями конечностей в заднем и продолговатом мозге. У крупных динозавров эти отделы превысили размеры головного мозга. Важно и то, что сам головной мозг стал крупнее. Увеличение его размеров вызвано повышением представительства в мозге анализаторов различных типов. В первую очередь это моторные, сенсомоторные, зрительные, слуховые и обонятельные центры. Дальнейшее развитие получила система связей между различными отделами мозга. Они стали основой для быстрого сравнения информации, поступающей от специализированных анализаторов. Параллельно развились внутренний рецепторный комплекс и сложный эффекторный аппарат. Для синхронизации управления рецепторами, сложной мускулатурой и внутренними органами в процессе эволюции на базе различных отделов мозга возникли ассоциативные центры.
Энергопотребление нервной системы
Насколько новые функции нервной системы окупают затраты на ее содержание? Этот вопрос является ключевым в понимании направления и основных путей эволюции нервной системы животных.
Обладатели развитой нервной системы столкнулись с неожиданными проблемами. Память обременительна. Ее надо поддерживать, «бесполезно» тратя энергию организма. Ведь воспоминание о каком-либо явлении может пригодиться, а может и никогда не понадобиться. Следовательно, роскошная возможность что-либо запоминать – удел энергетически состоятельных животных, животных с высокой скоростью обмена веществ. Но обойтись без нее нельзя – она нужна существам, активно адаптирующимся к внешней среде, использующим разные органы чувств, хранящим и сравнивающим свой индивидуальный опыт.
С появлением теплокровности требования к нервной системе еще более возросли. Любое повышение скорости метаболизма приводит к увеличению потребления пищи. Совершенствование приемов добывания пищи и постоянная экономия энергии – актуальные условия выживания животного с высоким метаболизмом. Для этого необходим мозг с развитой памятью и механизмами принятия быстрых и адекватных решений. Активная жизнь должна регулироваться еще более активным мозгом. Мозгу необходимо работать с заметным опережением складывающейся ситуации, от этого зависят выживание и успех конкретного вида. Однако повышение метаболизма мозга приводит к неизбежному возрастанию затрат на его содержание. Возникает замкнутый круг: теплокровность требует усиления обмена веществ, которое может быть достигнуто только повышением метаболизма нервной системы.
Энергетические издержки большого мозга
По устоявшейся, но необъяснимой традиции под размерами нервной системы понимают массу головного мозга. Относительную его массу вычисляют как отношение массы мозга к массе тела. «Рекордсменом» по величине относительного размера мозга считается колибри. Масса ее мозга составляет 1/12 массы тела. Для птиц и млекопитающих это рекордное отношение. Оно выше только у новорожденного ребенка – 1/7. Относительные массы головных ганглиев пчелы и муравья сопоставимы с относительными размерами головного мозга оленя, а одиночной осы – с мозгом льва... Следовательно, несмотря на общепринятые представления, относительную массу мозга нельзя рассматривать в качестве параметра для оценки интеллекта.
Исходя из величины относительной массы мозга обычно определяют и долю энергетических затрат, приходящуюся на «содержание» нервной системы. Однако в этих подсчетах, как правило, остается неучтенной масса спинного мозга, периферических ганглиев и нервов. Тем не менее все эти компоненты нервной системы, так же как и мозг, потребляют кислород и питательные вещества, а общая масса спинного мозга и периферической нервной системы может существенно превышать массу головного мозга.
На самом деле общий баланс энергетических затрат на функционирование нервной системы складывается из нескольких компонентов. Помимо мозга постоянно в активном состоянии находятся все периферические отделы, поддерживающие тонус мускулатуры, контролирующие дыхание, пищеварение, кровообращение и т. д. Понятно, что отключение одной из таких систем приведет к гибели организма. Нагрузка на эти системы постоянна, но нестабильна. Она меняется в зависимости от поведения. Если животное потребляет пищу, то активность пищеварительной системы возрастает и расходы на содержание ее нервного аппарата увеличиваются. Аналогично повышаются расходы на иннервацию и контроль за скелетной мускулатурой, если животное находится в активном движении. Однако различие между этими энергозатратами в активном состоянии и состоянии покоя относительно невелико, так как тонус мускулатуры или активность кишечника организм вынужден поддерживать постоянно.
***
Головной мозг тоже активен всегда. Память – это динамический процесс передачи нервного импульса с одного нейрона на другой. Поддержание как наследуемой (видоспецифической), так и приобретенной памяти крайне энергозатратно. Многие органы чувств работают, постоянно воспринимая и обрабатывая проходящий сигнал из внешней среды, что тоже требует непрерывного расходования энергии. Но все же потребление энергии мозгом в разных физиологических состояниях сильно различается. Если животное находится в состоянии относительного покоя, то мозг потребляет минимальное количество энергии. Если животное активно добывает пищу, пытается избежать опасности или находится в брачном периоде, затраты организма на содержание мозга существенно увеличиваются. Сытая и сонная львица затрачивает на содержание своего мозга намного меньше энергии, чем голодная во время охоты.
Энергетические затраты на содержание мозга различаются у животных разных систематических групп. Например, для первичноводных позвоночных характерны относительно небольшой головной, но высокоразвитый спинной мозг и периферическая нервная система. У ланцетника головной мозг не имеет четкой анатомической границы со спинным и идентифицируется только по топологическому положению и цитологическим особенностям строения. У круглоротых, хрящевых, лопастеперых, лучеперых и костистых рыб головной мозг невелик по сравнению с размерами тела. В этих группах доминирует периферическая нервная система. Она, как правило, в несколько десятков, а то и в сотни раз больше головного и спинного мозга вместе взятого. Например, у акул-нянек при массе тела около 20 кг головной мозг весит только 7–9 г, спинной – 15–20 г, а вся периферическая нервная система, по приблизительным оценкам, весит около 250–300 г, то есть головной мозг составляет только 3% массы всей нервной системы. Такой маленький мозг даже в состоянии высокой активности не может существенно повлиять на изменение энергетических затрат. Следовательно, бo'льшую часть энергетических расходов в нервной системе рыб можно считать постоянной. За счет этого они легко осуществляют мобилизацию организма при смене форм поведения. Избегание опасности, поиск добычи, преследование конкурирующей особи происходят в любой последовательности, прекращаются и начинаются почти мгновенно. Все, кто содержал аквариумных рыбок, много раз наблюдали подобные ситуации.
Для теплокровных животных с относительно большим мозгом становится критичным размер тела. Маленьким «головастикам» без высококалорийного интенсивного питания просто не обойтись. Мелкие насекомоядные съедают ежедневно огромное количество пищи. Бурозубка ежедневно потребляет в несколько раз больше массы собственного тела. Обильно питание мелких летучих мышей и птиц. У более крупных млекопитающих отношение масса нервной системы/масса тела увеличивается в пользу тела. Вместе с уменьшением относительных размеров нервной системы снижается и доля потребляемой ею энергии. В связи с этим крупное животное с большим мозгом находится в более благоприятном положении, чем небольшое.
Энергетические затраты на содержание мозга становятся ограничителем интеллектуальной активности для мелких животных. Допустим, что американский крот-скалепус решил попользоваться своим мозгом так же интенсивно, как приматы или человек. Крот массой 40 г обладает головным мозгом массой 1,2 г и спинным мозгом вместе с периферической нервной системой массой примерно 0,9 г. Имея нервную систему, составляющую более 5% массы тела, крот затрачивает на ее содержание около 30% всех энергетических ресурсов организма. Если он задумается над решением шахматной задачи, то расходы его организма на содержание мозга удвоятся, а сам крот моментально погибнет от голода. Мозгу крота потребуется столько энергии, что возникнут неразрешимые проблемы со скоростью получения кислорода и доставки компонентов обмена веществ из желудочно-кишечного тракта. Появятся трудности с выведением продуктов метаболизма нервной системы и ее охлаждением. Таким образом, мелким насекомоядным и грызунам не суждено стать шахматистами.
Однако даже при небольшом увеличении размеров тела возникает качественно иная ситуация. Серая крыса (Rattus rattus) обладает нервной системой массой примерно 1/60 массы тела. Этого уже достаточно, чтобы достигнуть заметного снижения относительного метаболизма мозга. И активность, основанная на опыте животного, для крыс несопоставима с таковой у кротов и землероек.
У многих небольших животных с относительно большим мозгом возник механизм защиты организма от перерасхода энергии – торпидность, или впадание на несколько часов в спячку. Мелкие теплокровные вообще могут находиться в двух основных состояниях: гиперактивности и спячки. Промежуточное состояние малоэффективно, поскольку энергетические расходы не компенсируются поступающей пищей.
В физиологии крупных млекопитающих торпидность невозможна, но все же крупные теплокровные тоже различными способами защищают себя от повышенных энергозатрат. Всем известна длительная зимняя псевдоспячка медведей, которая позволяет не расходовать энергию во время неблагоприятного для добычи пищи периода. В отношении экономии энергии еще более показательно поведение кошачьих. Львы, гепарды, тигры и пантеры, как и домашние кошки, основное время проводят в полудреме. Подсчитано, что кошачьи около 80% времени неактивны, а 20% тратят на поиск добычи, размножение и выяснение внутривидовых отношений. Но у них даже спячка не означает почти полной остановки жизненных процессов, как у небольших млекопитающих, амфибий и рептилий.
Питание и развитие мозга
Из каких источников берет энергию мозг? Если у любого млекопитающего потребление кислорода мозгом становится меньше 12,6 л/(кг·ч), наступает смерть. При уменьшении количества кислорода мозг может сохранять активность только 10–15 секунд. Через 30–120 секунд угасает рефлекторная активность, а спустя 5–6 минут начинается гибель нейронов. Собственных кислородных ресурсов у нервной ткани практически нет. Тем не менее совершенно неверно связывать интенсивность метаболизма мозга с общим потреблением кислорода. Энергетические затраты на содержание мозга складываются еще и из потребления питательных веществ, а также из поддержания водно-солевого баланса. Мозг получает кислород, воду с растворами электролитов и питательные вещества по законам, не имеющим никакого отношения к интенсивности метаболизма других органов. К примеру, у землеройки потребление кислорода составляет 7,4 л/ч, а у слона – 0,07 л/ч на 1 кг массы тела. Тем не менее величины потребления всех «расходных» компонентов не могут быть ниже определенного уровня, который обеспечивает функциональную активность мозга.
Стабильное снабжение мозга кислородом достигается в разных систематических группах за счет различий в скорости кровотока. Скорость кровотока зависит от частоты сердечных сокращений, интенсивности дыхания и потребления пищи. Чем меньше плотность капиллярной сети в ткани, тем выше должна быть скорость кровотока для обеспечения необходимого притока в мозг кислорода и питательных веществ.
Сведения о плотности расположения капилляров в головном мозге животных весьма отрывочны. Однако существует общая тенденция, показывающая эволюционное развитие капиллярной сети мозга. У прудовой лягушки длина капилляров в 1 мм3 ткани мозга составляет около 160 мм, у цельноголовой хрящевой рыбы – 500, у акулы – 100, у амбистомы – 90, у черепахи – 350, у гаттерии – 100, у землеройки – 400, у мыши – 700, у крысы – 900, у кролика – 600, у кошки и собаки – 900, а у приматов – 1200–1400 мм. Надо учесть, что при сокращении длины капилляров площадь их контакта с нервной тканью уменьшается в геометрической прогрессии. Поэтому для сохранения минимального уровня снабжения мозга кислородом у землеройки сердце должно сокращаться в несколько раз чаще, чем у приматов: у человека эта величина составляет 60–90, а у землеройки – 130–450 ударов в минуту. Кроме того, масса сердца человека составляет около 4%, а землеройки – 14% массы всего тела.
***
Итак, нервная система млекопитающих в процессе эволюции стала крайне «дорогим» органом. Расходы на содержание мозга млекопитающих сопоставимы с расходами на содержание мозга человека, на которые в неактивном состоянии приходится примерно 8–10% энергетических затрат всего организма. Мозг человека составляет 1/50 массы тела, а потребляет 1/10 всей энергии – в 5 раз больше, чем любой другой орган. Прибавим расходы на содержание спинного мозга и периферической системы и получим: около 15% энергии всего организма в соcтоянии покоя расходуется на поддержание активности нервной системы. По самым скромным оценкам, энергетические затраты только головного мозга в активном состоянии возрастают более чем в 2 раза. Учитывая общее повышение активности периферической нервной системы и спинного мозга, можно уверенно сказать, что около 25–30% всех расходов организма человека приходится на содержание нервной системы.
Чем меньше времени мозг работает в интенсивном режиме, тем дешевле обходится его содержание. Минимизация времени интенсивного режима работы нервной системы в основном достигается большим набором врожденных, инстинктивных программ поведения, которые хранятся в мозге как набор инструкций. В целях экономии энергии мозг почти не используется для принятия решений, основанных на личном опыте животного. Парадокс заключается в том, что в результате эволюции был создан инструмент для реализации самых сложных механизмов поведения, но энергоемкость такой суперсовершенной нервной системы оказалась очень высокой, поэтому все млекопитающие инстинктивно стараются использовать мозг как можно реже.
elementy.ru
Нервная система
Функции нервной системы. Особо важную роль в жизнедеятельности организма человека играет нервная система — совокупность различных структур нервной ткани. Функциями нервной системы являются: 1) регуляция жизнедеятельности тканей, органов и их систем; 2) объединение (интеграция) организма в единое целое; 3) осуществление взаимосвязи организма с внешней средой и приспособления его к меняющимся условиям среды; 4) определение психической деятельности человека как основы его социального существования.
В отличие от гуморальной регуляции процессов жизнедеятельности, осуществляемой железами внутренней секреции, нервная система обеспечивает быструю передачу информации (возбуждения) вполне определенным клеткам, тканям, органам.
Отделы нервной системы. Нервную систему — единое структурное и функциональное образование — условно подразделяют на центральную и периферическую части. К центральной нервной системе (ЦНС) относят головной и спинной мозг, к периферической — образования, лежащие за пределами ЦНС, а именно: отходящие от ЦНС нервы, узлы (ганглии), нервные сплетения и рецепторные аппараты.
В зависимости от структурных и функциональных особенностей иннервируемых органов выделяют соматический и вегетативный отделы нервной системы. Соматическая нервная система — часть нервной системы, регулирующая деятельность скелетной (произвольной) мускулатуры. Вегетативная нервная система — часть нервной системы, регулирующая деятельность гладкой (непроизвольной) мускулатуры внутренних органов, сосудов, кожи, мышцы сердца и желез. В свою очередь, в зависимости от анатомических и функциональных особенностей вегетативная нервная система подразделяется на два отдела: симпатический и парасимпатический.
Спинной мозг. Он расположен в позвоночном канале и представляет собой слегка уплощенный в переднезаднем направлении белый тяж длиной 40—45 см и толщиной около 1 см. В верхней своей части он переходит в продолговатый мозг, а в нижней оканчивается на уровне 2-го поясничного позвонка. Спинной мозг продольными бороздками разделяется на зеркально симметричные правую и левую половины. В центре имеется полость — спинномозговой канал, заполненный жидкостью. Спинной мозг покрыт тремя оболочками: наружной —твердой, средней —паутинной, и внутренней — сосудистой. Твердая оболочка — плотная и прочная соединительнотканная оболочка мозга, состоящая из двух слоев. Наружный слой выстилает кости черепа и позвоночный канал, а внутренний, гладкий и блестящий, обращен к мозгу. Функция твердой оболочки — защитная. Паутинная оболочка представляет собой тонкую мембрану, отделяющую твердую оболочку от сосудистой. Внутренняя сосудистая оболочка богата кровеносными сосудами, проникающими внутрь мозгового вещества. Она плотно прилегает к мозгу, заходя в борозды на его поверхности. Между паутинной и сосудистой оболочками имеется пространство, заполненное спинномозговой жидкостью. Ее назначение — смягчать толчки и ушибы спинного мозга.
На поперечном разрезе спинного мозга (рис. 13.1) видно, что его внутренняя часть, расположенная вокруг центрального спинномозгового канала, имеет вид бабочки. Она образована серым веществом, содержащим тела вставочных и центробежных нейронов. Короткие и широкие выступы серого вещества, идущие к передней поверхности мозга, называются передними рогами; в противоположном направлении вытягиваются узкие задние рога. В грудных сегментах спинного мозга имеются еще небольшие выступы серого вещества —боковые рога.
Рис. 13.1. Поперечный разрез спинного мозга: 1 — передний корешок спинномозгового нерва; 2 — спинномозговой смешанный нерв; 3 — спинномозговой узел; 4 — задний корешок спинномозгового нерва; 5 — задняя продольная борозда; 6 — спинномозговой канал; 7, $ — белое и серое вещество мозга соответственно; 9 — передняя продольная борозда.
Наружный слой спинного мозга представлен белым веществам, состоящим из отростков нейронов. Одни отростки тянутся вдоль спинного мозга и частично проходят в голозной мозг, образуя проводящие пути, связывающие нервные центры разных сегментов спинного мозга между собой и с нервными центрами головного мозга. Проводящие пути делятся на восходящие (чувствительные), передающие возбуждение в головной мозг, и нисходящие (двигательные), проводящие нервные импульсы от головного мозга к рабочим органам. Другие отростки нейронов выходят за пределы спинного мозга, где формируют передние и задние корешки. Передние корешки образованы отростками двигательных нейронов, а задние — чувствительных. Утолщения — ганглии — на задних корешках сформированы скоплениями тел чувствительных нейронов. Выйдя из позвоночного канала через межпозвоночные отверстия, передние и задние корешки объединяются друг с другом и образуют пару смешанных спинномозговых нервов. Их общее число составляет 31 пару. Каждая пара иннервирует определенную группу скелетных мышц и ограниченный участок кожи. В местах выхода спинномозговых нервов к верхним и нижним конечностям спинной мозг имеет два утолщения — шейное и поясничное.
Функции спинного мозга —рефлекторная и проводниковая. В спинном мозге находятся нервные центры (двигательные центры скелетной мускулатуры, сосудодвигательные центры, центры потоотделения, мочеиспускания, дефекации, половой деятельности и др.), которые непосредственно связаны с рецепторами и исполнительными (рабочими) органами. Благодаря этим центрам осуществляются многие простые, не затрагивающие головного мозга рефлексы. Примером такого рефлекса может служить коленный: при легком ударе по сухожилию под коленной чашечкой возникает резкое разгибание согнутой ноги. Все спинномозговые рефлексы являются врожденными, безусловными. Они передаются по наследству и сохраняются в течение всей жизни
Проводниковая функция спинного мозга заключается в проведении центростремительных импульсов к головному мозгу и центробежных импульсов от головного мозга ко всем частям тела. Деятельность спинного мозга контролируется головным мозгом, оказывающим регулирующее влияние на спинномозговые рефлексы.
Головной мозг. Он находится в мозговом отделе черепа, который защищает его от механических повреждений. Снаружи мозг покрыт тремя мозговыми оболочками. Масса мозга у взрослого человека обычно составляет около 1400—1600 г (у новорожденных его масса 330—400 г).
По строению и функциям головной мозг подразделяют на пять отделов: передний, промежуточный, средний, мозжечок и продолговатый (рис. 13.2). Все отделы головного мозга, исключая передний мозг, составляют ствол мозга, состоящий из белого вещества, й котором имеются скопления серого вещества —ядра, являющиеся центрами различных рефлекторных актов. В соответствии с выполняемыми функциями выделяют различные чувствительнее центры, центры вегетативных функций, двигательные центрь1, центры психических функций и т. п.
Рис. 13.2. Продольный разрез головного мозга: 1 — продолговатый мозг; 2 — варолиев мост; 3 — средний мозг; 4 — промежуточный мозг; 5 — гипофиз; 6 — четверохолмие; 7 — мозолистое тело; 8 — полушарие; 9 — мозжечок; 10 — червь.
От скоплений серого вещества разных отделов головного мозга отходит 12 пар черепно-мозговых нервов: обонятельный, зрительный, лицевой, слуховой и др. Все части головного мозга связаны друг С другом и со спинным мозгом проводящими путями, благодаря чему обеспечивается функционирование центральной нервной системы как единого целого. Спинномозговой канал продолжается в головном мозге, в котором он образует четыре расширения (желудочка), заполненных жидкостью.
Продолговатый мозг — жизненно важный отдел ЦНС, представляющий собой продолжение спинного мозга. Здесь расположены центры регуляции дыхания (центры вдоха и выдоха), сердечно-сосудистой деятельности, а также центры пищеварительных (слюноотделения, отделения желудочного и поджелудочного сока, жевания, сосания, глотания и др.) и защитных рефлексов (чихания, кашля, рвоты и др.). Повреждение продолговатого мозга приводит к мгновенной смерти в результате прекращения дыхания и остановки сердца.
Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.
Мозжеиок и варолиев мост образуют задний мозг. Через мост проходят нервные пути, связывающие передний и средний мозг с продолговатым и спинным. Мозжечок состоит из двух полушарий, соединенных небольшим образованием — червем. Серое вещество мозга располагается на поверхности, образуя извилистую кору, а белое вещество находится внутри мозжечка, под корой. Ядра мозжечка обеспечивают координацию движений, сохранение равновесия и позы тела, регуляцию мышечного тонуса. Поражение мозжечка сопровождается понижением тонуса мышц, исчезновением точности и направленности движений. Деятельность мозжечка связана с осуществлением безусловных рефлексов и контролируется корой больших полушарий мозга.
Средний мозг размешен между варолиевым мостом, в который переходит продолговатый мозг, и промежуточным мозгом. На верхней стороне среднего мозга лежат две пары бугорков четверохолмия, в толще которых расположено серое вещество, а на поверхности — белое. В передней паре бугорков четверохолмия находятся первичные (подкорковые)рефлекторные центры зрения, а в задней паре бугорков — первичные рефлекторные центры слуха. Они обеспечивают ориентировочные рефлекторные реакции на световые и слуховые раздражители, выражающиеся в различных движениях тела, головы, глаз в сторону нового звукового или слухового раздражителя, В среднем мозге находятся также скопления тел нервных клеток (красное ядро), принимающие участие в регуляции тонуса скелетных мышц.
Промежуточный мозг расположен над средним мозгом и под большими полушариями переднего мозга. Он имеет два главных отдела: зрительные бугры (таламус) и подбугровую область (гипоталамус). В зрительных буграх находятся нейроны, отростки которых идут к коре больших полушарий мозга. С другой стороны к ним подходят волокна проводящих путей от всех центростремительных нейронов. Поэтому ни один центростремительный импульс, откуда бы он ни шел, не может пройти к коре больших полушарий, минуя зрительные бугры. Таким образом, через эту часть ствола мозга осуществляется связь всех рецепторов с корой больших полушарий. При разрушении таламуса наблюдается полная потеря чувствительности.
В гипоталамусе находятся центры, регулирующие все виды обмена веществ (белковый, жировой, углеводный, водно-солевой), теплопродукцию и теплоотдачу (центр терморегуляции), деятельность желез внутренней секреции. В гипоталамусе расположены подкорковые центры регуляции вегетативных функций, поддержания постоянства параметров внутренней среды организма (гомеостаза). В гипоталамусе находятся также центры насыщения, голода, жажды, удовольствия. Ядра гипоталамуса участвуют в регуляции чередования сна и бодрствования.
Передний мозг — самый крупный и развитый отдел головного мозга. Он представлен большими полушариями и мозолистым телом. Снаружи полушария покрыты корой —слоем серого вещества мозга, толщина которого 1,5—4,5 мм. Около 16 млрд. клеток коры полушарий размещены в шесть слоев. Они различны по форме, размерам и выполняемым функциям. Одни из них являются чувствительными, воспринимающими возбуждение, приходящее с периферии от разных органов. Возбуждение двигательных клеток передается через спинной мозг соответствующим органам, например мышцам. Ассоциативные клетки связывают своими отростками разные участки коры, обеспечивая связь между чувствительными и двигательными зонами коры. В результате формируется адекватная форма ответной реакции человека.
Кора больших полушарий имеет извилины и борозды, которые значительно увеличивают ее поверхность — примерно до 1700—2500 см2. Три самые глубокие борозды делят каждое полушарие на четыре доли: лобную, теменную, височную й затылочную. Клетки коры трех разных видов и функций размещены неравномерно в разных ее участках, благодаря чему образуются так называемые зоны (поля) коры. Так, слуховая зона коры расположена в височных долях и воспринимает импульсы от слуховых рецепторов. Зрительная зона лежит в затылочных долях. Она воспринимает зрительные сигналы и формирует зрительные образы. Обонятельная зона расположена на внутренней поверхности височных долей. Чувствительная зона (болевой, температурной, тактильной чувствительности) размещена в теменных долях; ее поражение ведет к потере чувствительности. Двигательный центр речи лежит в лобной доле левого полушария. Самая передняя часть лобных долей коры имеет центры, участвующие в формировании личностных качеств, творческих процессов и влечений человека. В коре замыкаются условнорефлекторные связи, поэтому она является органом приобретения и накопления жизненного опыта и приспособления организма к постоянно меняющимся условиям внешней среды.
Таким образом, кора больших полушарий переднего мозга — это высший отдел ЦНС, регулирующий и координирующий работу всех органов. Он является также материальной основой психической деятельности человека.
Вегетативная нервная система. По своему строению и свой-ствам вегетативная нервная система(ВНС) отличается от соматической (СНС) следующими особенностями:
1. Центры ВНС расположены в разных отделах ЦНС: в среднем и продолговатом отделах головного мозга, грудино-поясничных и крестцовых сегментах спинного мозга. Нервные волокна, отходящие от ядер среднего и продолговатого мозга и из крестцовых сегментов спинного мозга, образуют парасимпатический отдел ВНС. Волокна, выходящие из ядер боковых рогов грудино-поясничных сегментов спинного мозга, образуют симпатический отдел ВНС.
2. Нервные волокна, выйдя из ЦНС, не доходят до иннервируемого органа, а прерываются и вступают в контакт с дендритом другой нервной клетки, нервное волокно которой уже доходит до иннервируемого органа. В местах контакта скопления тел нервных клеток образуют узлы, или ганглии, ВНС. Таким образом, периферическая часть двигательных симпатических и парасимпатических нервных путей построена из двух последовательно идущих друг за другом нейронов (рис. 13.3). Тело первого нейрона находится в ЦНС, тело второго — в вегетативном нервном узле (ганглии). Нервные волокна первого нейрона называют преганглионарны-ми, второго —постганглионарными
.
Рис. 13.3. Схема рефлекторной дуги соматического (а) и вегетативного (6) рефлексов: 1 — рецептор; 2 — чувствительный нерв; 3 — центральная нервная система; 4 — двигательный нерв; 5 —рабочий орган — мышца, железа; К — контактный (вставочный) нейрон; Г — вегетативный ганглий; 6,7 — пред- и постганглионарное нервное волокно.
3. Ганглии симпатического отдела ВНС располагаются по обе стороны позвоночника, образуя две симметричные цепи нервных узлов, соединенные друг с другом. Ганглии парасимпатического отдела ВНС находятся в стенках иннервируемых органов или вблизи них. Поэтому в парасимпатическом отделе ВНС пост-ганглионарные волокна в отличие от симпатических короткие.
4. Нервные волокна ВНС в 2—5 раз тоньше волокон СНС. Их диаметр составляет 0,002—0,007 мм, поэтому скорость проведения возбуждения по ним меньшая, чем по волокнам СНС, и достигает лишь 0,5— 18 м/с (для волокон СНС — 30-120 м/с). Большинство внутренних органов обладает двойной иннервацией, т. е. к каждому из них подходят нервные волокна как симпатического, так и парасимпатического отделов ВНС. Они оказывают противоположное воздействие на работу органов. Так, возбуждение симпатических нервов учащает ритм сокращений сердечной мышцы, сужает просвет кровеносных сосудов. Обратное действие связано с возбуждением парасимпатических нервов. Смысл двойной иннервации внутренних органов кроется в непроизвольности сокращений гладкой мускулатуры стенок. В этом случае надежную регуляцию их деятельности может обеспечить только двойная иннервация, оказывающая противоположный эффект.
sbio.info