Минеральное питание растений. Минеральное питание растений
Минеральное питание растений — Науколандия
Минеральное питание растений — это поглощение ими воды и растворенных в ней неорганических (минеральных) веществ. Минеральные вещества, необходимые растениям, содержат атомы таких химических элементов как азот, фосфор, калий, кальций, сера, бор, марганец, хлор и другие. В относительно больших количествах растение нуждается в азоте, фосфоре и калии, остальные элементы нужны в очень маленьких количествах. Однако, несмотря на это, отсутствие или недостаток любого элемента вызывает то или иное заболевание растения.
Высшие растения осуществляют минеральное питание с помощью корней. Корни находятся в почве и поглощают из нее воду и растворенные ней неорганические вещества. Исключением являются мхи. У них нет настоящих корней, хотя у многих видов есть ризоиды (примитивные корнеподобные образования). Мхи поглощают водный раствор не только ризоидами, но и надземными частями растения. Низшие растения в лице водорослей поглощают водный раствор всем своим телом.
Поскольку высшие растения поглощают минеральные вещества из почвы, важно, чтобы почва содержала эти вещества. Этим определяется плодородие почвы. В плодородных почвах все необходимые растениям минеральные вещества присутствуют в достаточных количествах.
Когда растения корнями поглощают водные растворы, то в почве минеральные вещества убывают. Почва обедняется. В природе, когда растения или их части отмирают, то в почве происходит их разложение. В результате минеральные вещества рано или поздно возвращаются в почву. Даже если растение было съедено животным, то когда оно погибнет, минеральные вещества все-равно вернуться.
Однако на сельскохозяйственных полях и в садах большая часть урожая забирается человеком. Минеральные вещества не возвращаются в почву. Поэтому требуется подкормка растений с помощью различных удобрений. Существуют специальные правила внесения тех или иных удобрений. Каждое удобрение вносится в определенном количестве и в определенное время, на определенном этапе развития растения. При этом следует помнить, что избыток удобрений так же вреден для растений как и недостаток. Кроме того, растения, выращенные с внесением большого количества удобрений, опасны для человека, так как содержат вредные для него вещества.
Растения поглощают воду и растворенные в ней минеральные вещества не всем корнем, а определенной зоной корня, которая находится ближе к кончику корня (но не на самом кончике). Эта зона называется зоной всасывания. Здесь покровные клетки имеют выросты — корневые волоски. Они очень мелкие и проникают между частичками почвы. Через мембраны корневых волосков проникает вода и растворенные в ней соли, содержащие необходимые для растений атомы химических элементов.
От покровных клеток с корневыми волосками водный раствор далее передвигается по паренхимной ткани к центру корня. Здесь находятся сосуды. По ним водный раствор поднимается вверх к стеблю и листьям за счет так называемого корневого давления и испарения воды листьями. Причиной корневого давления является различная концентрация растворенных минеральных веществ в различных частях растения.
Минеральные вещества, а точнее входящие в них атомы химических элементов, используются растениями в различных процессах жизнедеятельности. Так азот входит в состав белков. Белки — это главный строительный материал живых клеток. Поэтому азот способствует росту растений. Также для деления и роста клеток необходим калий. Фосфор входит в состав клеточных мембран и нуклеиновых кислот. Железо необходимо для синтеза хлорофилла, а магний входит в состав хлорофилла.
scienceland.info
Минеральное питание растений
МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей. При исследовании золы растений в ней было обнаружено множество химических элементов, в т. ч. редких, содержание которых в различных частях растений было не одинаковым. Это свидетельствует о том, что данные элементы необходимы растениям и накапливаются в них. Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор.
Для разных растений они необходимы в различных количествах. Полностью заменить одни элементы какими-либо другими невозможно. От степени их присутствия в почве зависит урожайность сельско-хозяйственных растений. В почвах средней полосы России обычно не хватает азота и фосфорной кислоты, реже калия, поэтому их вносят в качестве азотных и фосфорно-калийных удобрений.
Каждый химический элемент играет в жизни растения особую роль. Минеральные соединения азота и зольных элементов поглощаются наземными высшими растениями почти исключительно корнями. Соли, как и вода, поглощаются живыми клетками первичной коры корня и корневыми волосками, затем корневым давлением выталкиваются с водой в сосуды, разносятся транспирационным током по другим частям растения и снова принимаются живыми клетками стебля и листа. В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливают избирательную способность растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем теснее соприкосновение корня с частицами почвы, тем сильнее развита корневая система и тем полнее идёт поглощение солей.
Минеральное питание, потребляемое растением из почвы, условно делится на микроэлементы и макроэлементы.
Макроэлементы – такие элементы питания, которых необходимо для растений в большом количестве (N азот, P фосфор, K калий, S сера, Ca кальций, Mg магний, Fe железо и др.). Микроэлементы – такие элементы питания, которых необходимо очень малое количество, но не менее важные для нормального роста и развития растений (Cu медь, Zn цинк, Mo молибден, B бор, Co кобальт и др.).
Положительные результаты в деле выращивания посадочного материала в лесном питомнике во многом зависят от обеспеченности их элементами минерального питания. Эффективным приемом агротехнического ухода является применение удобрений при основной обработке почвы, перед посевом (посадкой) посадочного материала (семян) или совместно с посадкой и посевом, а также в ходе всего периода выращивания культур.
Минеральное удобрение оказывает разностороннее действие на почвенные условия: - первостепенное действие – пополнение питательных веществ в почве; - изменяют в положительную сторону реакцию почвенной среды; - улучшают физические свойства почвы; - повышают и улучшают жизнедеятельность почвенных микроорганизмов; - улучшают водный режим почв.
Важность и необходимость применения минеральных удобрений объясняется недостаточными плодородными свойствами почвы, а еще и тем, что во время выкопки посадочного материала с корневой системой и комом земли с участка вывозится плодородный слой почвы, который необходимо восполнять для возможности дальнейшего выращивания качественного и жизнеспособного посадочного материала.
Описание некоторых элементов
АЗОТ
Этот элемент входит в состав аминокислот, аминов, белков и многих других органических соединений и является самым дефицитным элементом питания. Процессы распада азотистых соединений в клетках растений заканчиваются образованием аммиака, который и является основным элементом азотного питания. Кроме этого растения способны поглощать анионы NO3. При недостатке азота замедляется рост растений, ослабляется образование боковых побегов, наблюдается мелколистность. Одно из ранних проявлений дефицита азота — бледно-зеленая окраска листьев, связанная с ослаблением синтеза хлорофилла. Длительное азотное голодание приводит к гидролизу белков и разрушению хлорофилла в старых листьях и его оттоку в молодые. При этом окраска старых листьев становится желтой, коричневой, красной и листья опадают.
ФОСФОР
Этот элемент входит в состав нуклеиновых кислот, белков, фосфолипидов, нуклеотидов и т. д. В растительных тканях фосфор присутствует в виде органических соединений и в виде ортофосфорной кислоты и ее солей. Фосфор поглощается в окисленной форме в виде анионов ортофосфатов Н2РО4. В таком виде он включается в состав органических молекул и переходит из одного соединения в другое не претерпевая изменений. Растения наиболее чувствительны к недостатку фосфора на ранних этапах развития. Внешним симптомом недостатка фосфора является сине-зеленый цвет листьев, нередко с пурпурным или бронзовым оттенком. При этом листья становятся мелкими и более узкими, задерживается переход к репродуктивной фазе развития растения. Симптомы при недостатке фосфора похожи на симптомы при дефиците азота, но имеются и отличия. Погибающие листья становятся темными, почти черными, а при недостатке азота — светлыми. При избытке фосфора нарушается усвоение цинка и железа и появляется межжилковый хлороз.
КАЛИЙ
Концентрация калия в клетках растений в 100—1000 раз превышает его содержание в воде. Наибольшее количество калия поглощается растениями в период наращивания вегетативной массы. При недостатке калия листья начинают желтеть с краев, затем их края и верхушки приобретают бурую окраску, на завершающем этапе эти участки отмирают. Дефицит калия тормозит процессы деления и размножения клеток, что приводит к появлению розеточных форм. В растении калий концентрируется в молодых растущих листьях и побегах, в старых листьях происходит его замещение на натрий. Содержится калий в клетках в виде катионов калия. Переизбыток его в аквариумной воде в 3-4 раза выше нормы по моим наблюдениям не приносит вреда растениям.
КАЛЬЦИЙ
По отношению к кальцию растения делятся на три вида: кальциефобы, кальциефилы и нейтральные виды. В клетках однодольных растений кальция меньше, чем в клетках двудольных. В растениях калий накапливается в старых листьях в виде нерастворимых солей органических кислот. При недостатке кальция листовые пластинки искривляются и скручиваются, кончики и края листьев сначала белеют, затем чернеют. Корни, листья и отдельные участки стебля сначала загнивают, потом отмирают.
СЕРА
Этот элемент поглощается клетками только в окисленной форме — в виде сульфат ионов SO4. В растениях может содержаться в двух формах — окисленной в виде сульфат иона и восстановленной. Как и кальций сера накапливается в старых листьях растений. Внешними симптомами дефицита серы является бледный цвет и желтизна молодых листьев.
МАГНИЙ
Особенно много находится в молодых клетках, генеративных органах и запасающих тканях. Около 10-15 % магния входит в состав хлорофилла. Эта его функция уникальна, и никакой другой элемент не может заменить магний в молекуле хлорофилла. Участие магния в обмене веществ растительной клетки связано с его способностью регулировать работу части ферментов. В частности он является кофактором, катализирующим цикл Кребса. Недостаток магния в первую очередь сказывается на способности растений усваивать фосфор, поэтому внешние признаки однотипны с фосфорным голоданием. Также внешним признаком является межжилковый хлороз, связанный с появлением пятен и полос светло-зеленого а потом желтого цвета между зелеными жилками листа. Края листовых пластинок приобретают при этом желтый, оранжевый или красный цвет (до темно-красного включительно). Признаки магниевого голодания вначале проявляются на старых листьях, а затем переходят на молодые. Дольше всех держатся участки листа, непосредственно примыкающие к жилкам.
КРЕМНИЙ
Накапливается в больших количествах в клеточных стенках в виде гидратированных аморфных силикатов. Больше его в растениях, имеющих жесткий стебель.
ЖЕЛЕЗО
Этот элемент играет важную роль в дыхании растений. В окислительно-восстановительных процессах он является акцептором кислорода, участвует в синтезе предшественников хлорофилла. Признаки дефицита железа прежде всего появляются на молодых листьях прямостоячих побегов. На верхушках листьев возникает хлороз. При более сильном дефиците железа листья приобретают желто-зеленую, а в дальнейшем интенсивную желтую окраску. Рост растений замедляется, урожай значительно уменьшается. Признаки дефицита железа проявляются в течение всего сезона вегетации и сохраняются в период покоя.
МАРГАНЕЦ
Этот элемент необходим для протекания процесса фотосинтеза, процессов синтеза белковых веществ, жиров и др. Признаки его дефицита, прежде всего, проявляются на молодых листьях растущих побегов. Сначала листья приобретают светло-зеленый цвет, а в дальнейшем желтый. При более сильном дефиците марганца верхушечные листья прямостоячих побегов становятся желтыми, со светло-бурой верхушкой и отмирают.
biofile.ru
МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это... Что такое МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ?
совокупность процессов поглощения, передвижения и усвоения химич. элементов, необходимых для жизни растит, организма, в форме ионов минеральных солей. Среди элементов М. п. р. различают макроэлементы (N. S. Р, К, Са, Mg) и микроэлементы. Азот поглощается растениями в форме аниона NO3 или катиона NH+ , фосфор и сера — в форме анионов h3PO4 и SO2- , металлы — в форме катионов К+ , Са2+ и Mg2+. Одноклеточные организмы и водные растения поглощают элементы М. п. р. всей поверхностью, высшие наземные растения — поверхностными клетками корня, гл. обр. корневыми волосками. Катионы проникают в клетку через окружающую её плазмалемму пассивно, анионы (а также К+ при наруж. концентрациях меньше 1 мМ) — активно, с затратой метаболич. энергии. Активное поглощение обеспечивается работой молекулярных ионных насосов плазмалеммы. Внутри клетки ионы перемешиваются с помощью кругового движения цитоплазмы (циклоза) и неравномерно перераспределяются между ней и органоидами (компартментация). От клетки к клетке ионы передвигаются либо по плазмодесмам, объединяющим все клетки ткани воедино — в симпласт, либо по клеточным оболочкам, также объединённым в апопласт. В теле растения ионы перемещаются с водным током по сосудам ксилемы, пронизывающим корень, стебель и лист. Восходящий транспорт элементов М. п. р. направлен гл. обр. к формирующимся плодам и молодым листьям. По мере старения ниж. листьев элементы М. п. р. оттекают из них в растущие органы, где могут использоваться повторно (реутилизация). Вовлечение поглощённых элементов М. п. р. в обший обмен веществ происходит во всех клетках растения. Азот входит в состав аминокислот и белков, а также аминов, амидов, алкалоидов, хлорофилла, нуклеиновых кислот, нуклеотидов, мн. гормонов и витаминов. Сера включается в аминокислоты цистеин, цистнн и метионин, фосфор — в аденозинтрифосфат (АТФ) и др. аденозинфосфаты, играющие ключевую роль в энергетич. обмене клетки, а также в фосфолипиды клеточных мембран и в нуклеиновые к-ты. Калий, кальций и магний остаются гл. обр. в ионной форме, обеспечивая стабильность субклеточных структур и активность ферментов (примерно 10% Mg листовых клеток входит в состав хлорофилла). Вместе с фотосинтезом М. п. р. составляет единый процесс питания растений. Регуляция М. п. р. с помощью удобрений — один из важнейших путей повышения продуктивности с.-х. культур.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
минера́льное пита́ние расте́нийсовокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей. При исследовании золы растений в ней было обнаружено множество химических элементов, в т.ч. редких, содержание которых в различных частях растений было не одинаковым. Это свидетельствует о том, что данные элементы необходимы растениям и накапливаются в них. Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор. Для разных растений они необходимы в различных количествах. Полностью заменить одни элементы какими-либо другими невозможно. От степени их присутствия в почве зависит урожайность с.-х. растений. В почвах средней полосы России обычно не хватает азота и фосфорной кислоты, реже калия, поэтому их вносят в качестве азотных и фосфорно-калийных удобрений. Каждый химический элемент играет в жизни растения особую роль. Фосфор усваивается растением в виде солей фосфорной кислоты (фосфатов) и находится в нём в свободном состоянии или совместно с белками и другими органическими веществами, входящими в состав плазмы и ядра. В свободном состоянии, возможно, регулирует в клетке кислотную и щелочную среду. Сера поглощается растением в виде солей серной кислоты, входит в состав белков и эфирных масел. Калий сосредоточен в молодых органах, богатых плазмой, а также в органах накопления запасных веществ – семенах, клубнях, вероятно, играет роль нейтрализатора кислой реакции клеточного сока и участвует в тургоре. Магний содержится в растении там же, где и калий, и, кроме того, входит в состав хлорофилла. Кальций накапливается во взрослых органах, особенно в листьях, служит нейтрализатором вредной для растения щавелевой кислоты и защищает его от токсического действия различных солей, участвует в образовании механических оболочек. Железо находится в растении в малых количествах, но входит в состав протопластов, и при его недостатке развивающиеся листья не зеленеют, а остаются белыми (явление хлороза). Кроме указанных жизненно необходимых элементов, определённое значение имеют хлористый натрий (накапливаясь в клетках галофитов, позволяет увеличить осмотическое давление до 100 атмосфер, благодаря чему они могут противостоять физиологической сухости почвы), марганец, фтор, йод, бром, цинк, кобальт, стимулирующие рост растений, и др. Минеральные соединения азота и зольных элементов поглощаются наземными высшими растениями почти исключительно корнями. Соли, как и вода, поглощаются живыми клетками первичной коры корня и корневыми волосками, затем корневым давлением выталкиваются с водой в сосуды, разносятся транспирационным током по другим частям растения и снова принимаются живыми клетками стебля и листа. В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливают избирательную способность растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем теснее соприкосновение корня с частицами почвы, тем сильнее развита корневая система и тем полнее идёт поглощение солей. Кроме того, корни обладают растворяющей способностью. Несомненно, что мощная, сильно разветвлённая корневая система способствует лучшему питанию растения.
.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)
.
dic.academic.ru
Минеральное питание растений и фотосинтез, корень и корневище как органы питания (6 класс)
Растения, в отличие от животных, сами производят органические вещества, то есть, являются автотрофами. Обеспечение себя питательными веществами происходит за счёт фотосинтеза и минерального питания растений. Фотосинтез осуществляется в зелёных частях растений, а органом минерального питания является корень.
Что такое минеральные вещества
В состав клеток растений входят все химические элементы, даже драгоценные и радиоактивные. Минеральными веществами называют элементы и их соединения, которые жизненно важны для организма, но содержание их в организме невелико.
Минеральные вещества не содержат энергии. Их ценность в том, что они входят в состав разных веществ:
- ферментов;
- витаминов;
- гормонов.
Например, кобальт входит в состав витамина В12.
Железо в составе ферментов участвует в процессе дыхания.Выделяют две группы элементов по концентрации в растениях:
- макроэлементы;
- микроэлементы.
Макроэлементы
К макроэлементам относят:
- кремний;
- калий;
- азот;
- фосфор;
- кальций;
- серу;
- магний;
- натрий;
- алюминий.
Магний входит в состав хлорофилла, без него невозможен фотосинтез. Кремний придаёт прочность стеблям. Калий участвует в образовании углеводов.
Важнейшими в минеральном питании являются азот, фосфор и калий. Минеральные удобрения, как правило, содержат именно эти три макроэлемента.
Растениям одинаково вреден и недостаток, и избыток какого-либо элемента. Развитие растений нарушается в обоих случаях.
Рис. 1. Признаки недостатка калия на листьях.
Микроэлементы
Содержатся эти элементы в растении в чрезвычайно малых количествах. Но при этом обладают высокой биологической активностью и без них нельзя получить высокие урожаи. К микроэлементам относят:
- бор;
- цинк;
- медь;
- марганец;
- железо;
- молибден;
- кобальт.
Где находятся минеральные вещества
Минеральные вещества могут находиться:
- в растворённом состоянии в почвенной воде;
- в составе органических веществ почвы;
- в составе горных пород почвы.
Чтобы полноценно использовать органические удобрения, их вносят в почву заблаговременно. Это нужно, чтобы микроорганизмы разложили крупные молекулы органических веществ до простых, которые могут поступить в корень.
Как осуществляется почвенное питание
Корневые волоски всасывают почвенную воду.
Рис. 2. Корневые волоски.
Затем вода перемещается в сосуды ксилемы, по которым поднимается в надземные органы.
Всасывание происходит за счёт осмоса. Это физическое явление обозначает движение воды в область более высокой концентрации растворённых веществ. Конечно, содержание минеральных веществ в корне выше, чем в почве, и поэтому вода всасывается корнем.
Рис. 3. Схема передвижения воды в корне.
Корневище, клубень и старые корни не всасывают воду. Поглощение происходит только в растущих корнях, в области до 5 см от верхушек.
Что мы узнали?
Изучая в 6 классе данную тему, мы узнали, что минеральное питание растений осуществляется корневой системой и проводящими тканями. Минеральные вещества необходимы для жизни растений, но содержатся в очень малых количествах.
Тест по теме
obrazovaka.ru
Необходимые растению элементы минерального питания
Содержание и необходимость элементов
95 % сухой массы растительных тканей составляют четыре элемента - С, О, Н, N, называемые органогенами.
5 % приходится на зольные вещества - минеральные элементы, содержание которых обычно определяют в тканях после сжигания органического вещества растений.
Содержание золы зависит от вида и органа растений, условий выращивания. В семенах содержание золы составляет в среднем 3 %, в корнях и стеблях – 4…5, в листьях – 5…15 %. Меньше всего золы в мертвых клетках древесины (около 1 %). Как правило, чем богаче почва и чем суше климат, тем больше в растениях содержание зольных элементов.
Растения способны поглощать из окружающей среды практически все элементы периодической системы Д. И. Менделеева. Причем многие элементы накапливаются в растениях в значительных количествах и включаются в природный круговорот веществ. Однако для нормальной жизнедеятельности самого растительного организма требуется лишь небольшая группа элементов, называемых питательными.
Питательными веществами называются вещества, необходимые для жизни организма.
Элемент считается необходимым, если его отсутствие не позволяет растению завершить свой жизненный цикл; недостаток элемента вызывает специфические нарушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредственно участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.
Необходимость элементов можно установить только при выращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллированную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготовления и хранения растворов.
Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам относятся 19 элементов: С (45 %), Н (6,5 %) и О2 (42 %) (усвояемых в процессе воздушного питания) + 7 (N, P, K, S, Ca, Mg, Fe) + Mn, Cu, Zn, Mo, B, Cl, Na, Si, Co.
Все элементы, в зависимости от их содержания в растениях делят на 3 группы: макроэлементы, микроэлементы и ультромикроэлементы.
Макроэлементы содержатся в количестве от целых до десятых и сотых долей процента: N, Р, S, К, Са, Mg; микроэлементы - от тысячных до 100-тысячных долей процента: Fe, Мn, Сu, Zn, В, Мо.
Со необходим бобовым для симбиотической фиксации N, Na поглощается в относительно высоких количествах свеклой и необходим растениям, приспособленным к засоленным почвам), Si в больших количествах встречается в соломе злаков и необходим для риса, Cl накапливают мхи, хвощи, папоротники.
Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении
Значение элемента определяется ролью, которую он выполняет самостоятельно или в составе других органических соединений. Не всегда высокое содержание свидетельствует о необходимости того или иного элемента.
Азот (около 1,5 % СМ) входит в состав белков, нуклеиновых кислот, липоидных компонентов мембран, фотосинтетических пигментов, витаминов и других жизненно важных соединений.
Основными усвояемыми формами N являются ионы нитрата (NO3-)и аммония (Nh5+). Высшие растения способны также усваивать нитриты и водорастворимые N-содержащие органические соединения (аминокислоты, амиды, полипептиды и др.). В естественных условиях эти соединения редко бывают источником питания, поскольку их содержание в почве, как правило, очень мало.
Недостаток N тормозит рост растений. Одновременно снижается ветвление корней, но соотношение массы корней и надземной системы может увеличиваться. Это приводит к уменьшению площади фотосинтетического аппарата и сокращению периода вегетативного роста (раннее созревание), что снижает фотосинтетический потенциал и продуктивность посева.
Недостаток N а вызывает также серьезные нарушения энергетического обмена (хуже используют световую энергию, так как снижается интенсивность фотосинтеза, раньше наступает световое насыщение, а компенсационная точка находится при более высокой интенсивности света, интенсивность дыхания может возрастать, но уменьшаются сопряженность окисления с фосфорилированием), возрастают энергетические затраты на поддержание структуры цитоплазмы).
N-ое голодание влияет на водный режим (снижает водоудерживающую способность растительных тканей, так как уменьшает количество коллоидносвязанной воды, снижается возможность внеустьичного регулирования транспирации и возрастает водоотдача). Поэтому низкий уровень N-ого питания не только снижает урожай, но и уменьшает эффективность использования воды посевом.
Внешние признаки голодания: Бледно-зеленая, желтая окраска листьев, оранжевые, красные тона, высыхание, некрозы, низкорослость и слабое кущение, появляются признаки ксероморфизма (мелколистность).
Фосфор (0,2-1,2 % СМ). P поглощается и функционирует в растении только в окисленной форме - в виде остатков ортофосфорной кислоты (PO43- ).
P - обязательный компонент таких важнейших соединений, как НК, фосфопротеидов, фосфолипидов, P-ных эфиров сахаров, нуклеотидов, принимающих участие в энергетическом обмене (АТФ, НАД, ФАД и др.), витаминов.
P-ный обмен сводится к фосфорилированию и трансфосфорилированию. Фосфорилирование - это присоединение остатка P-ной кислоты к какому-либо органическому соединению с образованием эфирной связи, например фосфорилирование глюкозы, фруктозо-6-фосфата в гликолизе. Трансфосфорилирование - это процесс, при котором остаток P-ной кислоты переносится от одного органического вещества на другое. Значение образующихся при этом P-органических соединений огромно.
Недостаток P вызывает серьезные нарушения синтетических процессов, функционирования мембран, энергетического обмена.
Внешние признаки голодания: сине-зеленая окраска с пурпурным или бронзовым оттенком (задержка синтеза белков и накопление сахаров), мелкие узкие листья, корневая система буреет, слабо развивается, корневые волоски отмирают. Приостанавливается рост растений, задерживается созревание плодов.
Сера (0,2-1,0 % СМ). Поступает в растение в окисленной форме, в виде аниона SO42-. В органические соединения S входит только в восстановленной форме - в составе сульфгидрильных групп (-SH) и дисульфидных связей (-S-S-). Восстановление сульфата происходит преимущественно в листьях. Восстановленная S может вновь переходить в окисленную функционально неактивную форму. В молодых листьях S в основном находится в составе органических соединений, а в старых накапливается в вакуолях в виде сульфата.
S является компонентом важнейших биологических соединений - коэнзима А и витаминов (тиамина, липоевой кислоты, биотина), играющих важную роль в дыхании и липидном обмене.
Кофермент А (S образует макроэргическую связь) поставляет ацетильный остаток (СН3СО-S-KoA) в цикл Кребса или для биосинтеза жирных кислот, сукцинильный остаток для биосинтеза порфиринов. Липоевая кислота и тиамин входят в состав липотиаминдифосфата (ЛТДФ), участвующего в окислительном декарбоксилировании ПВК и -кетоглютаровой.
Многие виды растений в малых количествах содержат летучие соединения S (сульфоксиды входят в состав фитонцидов лука и чеснока). Представители семейства Крестоцветные синтезируют серосодержащие горчичные масла.
S принимает активное участие в многочисленных реакциях обмена веществ. Почти все белки содержат серосодержащие аминокислоты - метионин, цистеин, цистин. Функции S в белках:
участие HS-групп и -S-S-связей в стабилизации трехмерной структуры белков и
образование связей с коферментами и простетическими группами.
Сочетание метильной и HS-группы обусловливает широкое участие метионина в образовании АЦ ферментов.
С этой аминокислоты начинается синтез всех полипептидных цепей.
Другая важнейшая функция S в растительном организме, основанная на обратимом переходе 2(-SH) = -HS-SH- состоит в поддержании определенного уровня окислительновосстановительного потенциала в клетке. К серосодержащим окислительно-восстановительным системам клетки относятся система цистеин = цистин и система глутатиона (является трипептидом - состоит из глутаминовой, цистина или цистеина и глицина). Его окислительно-восстановительные превращения связаны с переходом -S-S-групп цистина в HS-группы цистеина.
Недостаток S тормозит белковый синтез, снижает фотосинтез и скорость роста растений, особенно надземной части.
Внешние признаки голодания: побеление, пожелтение листьев (молодых).
Калий (около 1 % СМ). В растительных тканях его гораздо больше, чем других катионов. Содержание K в растениях в 100-1000 раз превосходит его уровень во внешней среде. K поступает и в растение в виде катиона К+.
K не входит ни в одно органическое соединение. В клетках он присутствует в основном в ионной форме и легко подвижен. В наибольшем количестве K сосредоточен в молодых растущих тканях, характеризующихся высоким уровнем обмена веществ.
Функции:
участие в регуляции вязкости цитоплазмы, в повышении гидратации ее коллоидов и водоудерживающей способности,
служит основным противоионом для нейтрализации отрицательных зарядов неорганических и органических анионов,
создает ионную асимметрию и разность электрических потенциалов на мембране, т. е. обеспечивает генерацию биотоков в растении
является активатором многих ферментов, он необходим для включения фосфата в органические соединения, синтеза белков, полисахаридов и рибофлавина - компонента флавиновых дегидрогеназ. K особенно необходим для молодых, активно растущих органов и тканей.
принимает активное участие в осморегуляции, (открывании и закрывании устьиц).
активирует транспорт углеводов в растении. Установлено, что высокий уровень сахара в зрелых ягодах винограда коррелирует с накоплением значительных количеств K и органических кислот в соке незрелых ягод и с последующим выходом K при созревании. Под влиянием K увеличивается накопление крахмала в клубнях картофеля, сахарозы в сахарной свекле, моносахаридов в плодах и овощах, целлюлозы, гемицеллюлоз и пектиновых веществ в клеточных стенках растений.
В результате повышается устойчивость злаков к полеганию, к грибным и бактериальным заболеваниям.
При дефиците K снижается функционирование камбия, нарушаются процессы деления и растяжения клеток, развитие сосудистых тканей, уменьшается толщина клеточной стенки, эпидермиса. В результате укорачивания междоузлий могут образоваться розеточные формы растений. Снижается продуктивность фотосинтеза (за счет уменьшения оттока ассимилятов из листьев).
Кальций (0,2 % СМ). Поступает в растение в виде иона Са2+ . Накапливается в старых органах и тканях. При снижении физиологической активности клеток Ca из цитоплазмы перемещается в вакуоль и откладывается в виде нерастворимых соединений щавелевой, лимонной и др. кислот. Это значительно снижает подвижность Ca в растении.
Большое количество Ca связано с пектиновыми веществами клеточной стенки и срединной пластинки.
Роль ионов Са:
стабилизация структуры мембран, регуляция ионных потоков и участие в биоэлектрических явлениях. Са много содержится в митохондриях, хлоропластах и ядрах, а также в комплексах с биополимерами пограничных мембран клетки.
участие в катионообменных процессах в корне (наряду с протоном водорода принимает активное участие в первичных механизмах поступления ионов в клетки корня).
способствует устранению токсичности избыточных концентраций ионов Nh5+, Al, Mn, Fe, повышает устойчивость к засолению, (ограничивает поступление других ионов),
снижает кислотность почвы.
участие в процессах движения цитоплазмы (структурная перестройка актомиозиноподобных белков), обратимых изменениях ее вязкости,
определяет пространственную организацию цитоплазматических ферментных систем (например, ферментов гликолиза),
активировании ряда ферментов (дегидрогеназ, амилаз, фосфотаз, киназ, липаз) - определяет четвертичную структуру белка, участвует в создании мостиков в фермент-субстратных комплексах, влияет на состояние аллостерических центров).
определяет структуру цитоскелета - регулируют процессы сборки-разборки микротрубочек, секреции компонентов клеточной стенки с участием везикул Гольджи.
Комплекс белка с Ca активирует многие ферментные системы: протеинкиназы, транспортную Са-АТФ-азу, АТФ-азу актомиозина.
Регуляторное действие Са на многие стороны метаболизма связано с функционированием специфического белка - кальмодулина. Это кислый (ИЭТ 3,0-4,3) термостабильный низкомолекулярный белок. С участием кальмодулина регулируется концентрация внутриклеточного Ca. Комплекс Са-кальмодулин контролирует сборку микротрубочек веретена, образование цитоскелета клетки и формирование клеточной стенки.
При недостатке Ca (на кислых, засоленных почвах и торфяниках) в первую очередь страдают меристематические ткани и корневая система. У делящихся клеток не образуются клеточные стенки, в результате возникают многоядерные клетки. Прекращается образование боковых корней и корневых волосков. Недостаток Ca вызывает также набухание пектиновых веществ, что приводит к ослизнению клеточных стенок и загниванию растительных тканей.
Внешние признаки голодания: корни, листья, участки стебля загнивают и отмирают, кончики и края листьев вначале белеют, затем чернеют, искривляются и скручиваются.
Магний (около 0,2 % СМ). Особенно много Mg в молодых растущих частях растения, а также в генеративных органах и запасающих тканях.
Поступает в растение в виде иона Mg2+ и, в отличие от Ca, обладает сравнительно высокой подвижностью. Легкая подвижность Mg2+ объясняется тем, что почти 70 % этого катиона в растениях связано с анионами органических и неорганических кислот.
Роль Mg:
входит в состав хлорофилла (около 10-12 % Mg ),
является активатором ряда ферментных систем (РДФ-карбоксилазы, фосфокиназ, АТФ-аз, енолаз, ферментов цикла Кребса, пентозофосфатного пути, спиртового и молочнокислого брожения), ДНК- и РНК-полимеразы.
активирует процессы транспорта электронов при фотофосфорилировании.
необходим для формирования рибосом и полисом, для активации аминокислот и синтеза белков.
участвует в образовании определенной пространственной структуры НК.
усиливает синтез эфирных масел, каучуков.
предотвращает окисление аскорбиновой кислотой (образуя комплексное соединение с ней).
Недостаток Mg приводит к нарушению P-ного, белкового и углеводного обменов. При магниевом голодании нарушается формирование пластид: граны слипаются, разрываются ламеллы стремы.
Внешние признаки голодания: листья по краям имеют желтый, оранжевый, красный цвет (мраморная окраска). Впоследствии развиваются хлороз и некроз листьев. Характерным является полосатость листьев у злаков (хлороз между жилками, которые остаются зелеными).
Железо (0,08 %). Поступает в растение в виде Fe3+.
Железо входит в состав ЭТЦ фотосинтетического и окислительного фосфорилирования (цитохромов, ферредоксина), является компонентом ряда оксидаз (цитохромоксидазы, каталазы, пероксидазы). Кроме того, железо является составной частью ферментов, катализирующих синтез предшественников хлорофилла (аминолевулиновой кислоты и протопорфиринов).
Растения могут включать Fe в запасные вещества. Например, в пластидах содержится белок ферритин, имеющий железо(до 23 % СМ) в негеминной форме.
Роль Fe связана с его способностью к обратимым окислительно-восстановительным превращениям (Fe3+ - Fe2+) и участию в транспорте электронов.
Поэтому недостаток Fe вызывает глубокий хлороз в развивающихся листьях (могут быть совершенно белыми), и тормозит важнейшие процессы энергообмена - фотосинтез и дыхание.
Кремний ( ) содержится в основном в клеточных стенках.
Его недостаток может задержать рост злаков (кукуруза, овес, ячмень) и двудольных (огурцы, томаты, табак). Недостаток в репродуктивный период вызывает уменьшение количества семян. При недостатке Si нарушается ультраструктура клеточных органелл.
Алюминий ( ) особенно важен для гидрофитов, его накапливают папаратники и чай.
Недостаток вызывает хлороз.
Избыток токсичен (связывает P и приводит к P-ному голоданию).
studfiles.net
Минеральное питание растений
41
Вопросы:
1.История изучения корневого питания растений 2
2.Необходимые растению элементы минерального питания 2
2.1.Содержание и необходимость элементов 2
2.2.Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении 3
2.3.Микроэлементы, их усвояемые формы, роль и функциональные нарушения при недостатке в растении 8
2.4.Диагностика дефицита питательных элементов 11
3.Поглощение минеральных веществ 13
4.Транспорт ионов в растениях 15
4.1.Радиальное перемещение ионов в корне 15
4.2.Восходящий транспорт ионов в растении 16
4.3.Поглощение ионов клетками листа 16
4.4.Перераспределение и реутилизация веществ в растении 16
5.Регулирование растением скорости поглощения ионов 19
5.1.Поглощение ионов из разбавленных и высококонцентрированных растворов 19
5.2.Взаимосвязь между потоками ионов и воды в корне 19
5.3.Поглощение ионов и потребности в них растения 20
5.4.Ритмичность в поглощении ионов корнями растений 21
6.Азотное питание растений 22
6.1.Особенности нитратного и аммонийного питания растений 23
6.2.Ассимиляция нитратного азота 24
6.3.Ассимиляция аммиака 25
6.4.Причины накопления избыточных количеств нитратов в растениях и пути их снижения в сельскохозяйственной продукции 26
7.Обеспечение растений питательными веществами в полевых условиях 28
7.1.Минеральные вещества в фитоценозах и их круговорот в экосистеме 29
7.2.Плотность и распределение корней в посеве 29
7.3.Почва как источник питательных элементов для сельскохозяйственных культур 31
7.4.Взаимодействия между растениями 33
7.5.Влияние ризосферной микрофлоры на поглощение веществ 33
8.Физиологические основы применения удобрений 34
9.Особенности питания растений в беспочвенной культуре 37
10.Неблагоприятное действие на растение избыточно высокого уровня минерального питания 40
История изучения корневого питания растений
Уже в 6-5 тысячелетии до н.э. возделывались пшеница, рожь, ячмень, кукуруза, лен, огородные, плодовые культуры, а зола, навоз, ил использовались как средства повышения плодородия почвы.
В 17 веке (1629 г.) Я. Б. Ван Гельмонт (голанд) провел первый физиологический эксперимент: ивовая ветвь 2-25 кг, почва 75 кг, через 5 лет почва 77 кг, ветвь 56,6 (более чем в 33 раза). Сделал вывод, что растения создают массу за счет воды (водная теория питания).
В конце 18 начале 19 века нем. агроном А. Тэер разработал гумусовую теорию питания растений – растения питаются водой и гумусом (перегноем, то есть органическими остатками.
В 1970 г. А.Т. Болотов (рус. агр.) издал книгу «Об удобрении земель» (первая монография по агрохимии), в которой писал: «пища растений в почве состоит в воде и некоторых особлевых или паче минеральных частичек», перечислил 53 вида удобрений.
В 1804 г. Н.Т. Соссюр (швейц.) в книге «Химические исследования растений» показал, что различные соли поглощаются из водных растворов с неодинаковой скоростью.
В 1837 г. Ж.Б. Буссенго показал, что растения можно вырастить на чистом песке, если вносить в него минеральные соли (золу и селитру).
В 1840 г. Ю. Либих (нем. хим.), один из основоположников агрохимии, автор книги «Химия в приложении к земледелию и физиологии» обосновал теорию минерального питания:
мин. вещества являются основой плодородия,
перегной нужен для образования СО2 (ускоряет выветривание мат. породы и увеличивает культурный слой,
сформулировал закон минимума,
сформулировал закон возврата,
считал, что N поглощается из воздуха в виде аммиака (1656 г. признал, что в виде нитратов из почвы).
В 1859 г. И. Кноп и Ю. Сакс доказали, что растения можно вырастить до полного созревания в водной среде, где содержится всего семь элементов: N, P, K, S, Ca, Mg, Fe. Создали основу для вегетационного метода, окончательно утвердили минеральную теорию питания.
П.А. Костычев, В.В. Докучаев разработали основы научного почвоведения. К.А. Гидройц обосновал учение о почвенном поглощающем комплексе.
Позже было установлено, что растениям в небольшом количестве нужны и другие элементы, выявлена их физиологическая роль. Были разработаны приемы и способы внесения минеральных удобрений, создана их новые формы.
Современные представления о питании растений основываются на работах многих ученых. Из русских исследователей наибольший вклад в изучение корневого питания внесли Д. А. Сабинин, который создал школу физиологов минерального питания в нашей стране, внес большой вклад в изучение поглотительной деятельности корня и создание концепции круговорота веществ в растении. Д. Н. Прянишников - основоположник агрохимии в России, придавал большое значение минеральным удобрениям. Его научные труды о корневом питании растений и удобрениях положены в основу химизации сельского хозяйства.
studfiles.net
Минеральное питание растений
Минера́льное пита́ние растений
Усвоение ими из внешней среды ионов минеральных солей, необходимых для нормальной жизнедеятельности растительного организма. К элементам М. п. р. относятся N, Р, S, К, Ca, Mg, а также Микроэлементы (Fe, В, Cu, Zn, Mn и др.). М. п. р. складывается из поглощения минеральных веществ в виде ионов, их передвижения по растению и включения в Обмен веществ. Одноклеточные организмы и водные растения поглощают ионы всей поверхностью, высшие наземные растения — поверхностными клетками корня (См. Корень), в основном корневыми волосками (См. Корневые волоски). Ионы сначала адсорбируются на клеточных оболочках, затем проникают в цитоплазму через окружающую её липопротеидную мембрану — плазмалемму. Катионы (за исключением К+) проникают через мембрану пассивно, путём диффузии, анионы, а также К+ (при низких концентрациях) — активно, с помощью молекулярных «ионных насосов», транспортирующих ионы с затратой энергии. Скорость активного транспорта ионов (См. Активный транспорт ионов) зависит от обеспеченности клетки углеводами и интенсивности дыхания, скорость пассивного поглощения — от проницаемости биологических мембран (См. Биологические мембраны), разности концентраций и электрических потенциалов между средой и клеткой. Проницаемость мембраны для разных ионов неодинакова. Так, для катиона К+ она в 100 раз выше, чем для Na+, и в 500 раз выше, чем для анионов. Поглощённые ионы передвигаются от клетки к клетке через соединяющие их цитоплазматические перемычки — Плазмодесмы. У высших растений в корне и стебле имеется специальная сосудистая система для транспорта минеральных веществ и их органических соединений (синтез которых частично происходит и в корне) в листья. По мере старения нижних листьев некоторые минеральные вещества оттекают из них в растущие органы растения, где могут использоваться повторно.
Каждый элемент М. п. р. играет в обмене веществ определённую роль и не может быть полностью заменен др. элементом. Азот входит в состав белков — основных веществ цитоплазмы, а также в состав амидов, нуклеиновых кислот, гормонов, алкалоидов, витаминов (B1, B2, B6, PP) и хлорофилла. Азот поглощается в форме аниона NO-3 (нитрата) и катиона NH+4 (аммония), образующихся при разложении перегноя микроорганизмами почвы. Молекулярный азот (N2), который является основной составной частью воздуха (79 %), может усваиваться только некоторыми видами низших растений (см. Азотфиксирующие микроорганизмы). Нитраты с помощью фермента нитратредуктазы восстанавливаются до аммония. Аммоний соединяется с органическими кислотами, образуя аминокислоты, которые затем включаются в белки. Фосфор входит в состав нуклеопротеидов клеточного ядра, фосфолипидов клеточных мембран, фосфатидов и фосфорных эфиров сахаров. Особенно важно участие фосфора в фотофосфорилировании, в процессе которого солнечная энергия, аккумулируемая в форме богатых энергией связей аденозинтрифосфата (АТФ), используется на усвоение CO2 из воздуха и образование органических веществ. В форме макроэргических связей АТФ запасается также энергия, выделяемая при дыхании за счёт окисления органических веществ (см. Окислительное фосфорилирование), образуемых в процессе Фотосинтеза. Фосфор поглощается в форме аниона ортофосфорной кислоты (PO3-4, или фосфата) и включается за сотые доли секунды в органические соединения в неизменном виде. Вместе с тем в растениях всегда содержится много неорганического фосфата (его физиологическое значение не ясно). Сера, как и азот, входит в состав всех белков, а также пептидов (глутатион), некоторых аминокислот (цистин, цистеин, метионин) и эфирных масел. Сера поглощается растениями в форме аниона (SO2-4, или сульфата), который в клетках восстанавливается, образуя дисульфидные (—S—S—) и сульфгидрильные (—SH) группы (последние образуют связи, закрепляющие конфигурацию белковой макромолекулы). Калий поглощается в форме катиона К+ и в такой же форме остаётся в клетке, не образуя прочных органических соединений. Он вступает лишь в слабые адсорбционные взаимодействия с белками и в обменные реакции с органическими кислотами. В отличие от N, Р и S, непосредственно участвующих в создании органического материала растительной клетки, К не является в полном смысле питательным элементом. Он повышает водоудерживающую способность цитоплазмы, интенсивность фотосинтеза, отток ассимилятов, участвует в функционировании устьиц и др. Кальций и магний поглощаются в форме двухвалентных катионов: Ca2+ и Mg2+. Основная функция Ca состоит в стабилизации клеточных структур. Ионы Ca2+ («кальциевые мостики») связывают между собой молекулы липидов, обеспечивая их упорядоченное расположение в клеточных мембранах. Соединения Ca с пектиновыми веществами склеивают оболочки соседних клеток. В отличие от др. элементов М. п. р., Ca в растении малоподвижен. Он практически не реутилизируется и накапливается в стареющих органах. Ca необходим для поддержания структуры рибосом (См. Рибосомы), в которых происходит синтез белка. Mg входит в состав хлорофилла, активирует ферменты, переносящие фосфат с АТФ на молекулу сахара. Железо входит в состав ряда ферментов, в том числе дыхательных (цитохромов (См. Цитохромы)). Оно участвует в синтезе хлорофилла, хотя и не входит в его состав. Возможно также М. п. р. через листья (см. Внекорневое питание растений).
Вместе с воздушным питанием (Фотосинтезом) М. п. р. составляет единый процесс обмена веществ между растением и средой. Оно влияет на все физиологические процессы (дыхание, рост, развитие, фотосинтез, водный режим и т. д.) и, в свою очередь, зависит от них. Поэтому одно из наиболее успешных средств управления продуктивностью культурных растений — регулирование М. п. р. с помощью удобрений.
Лит.: Прянишников Д. Н., Агрохимия, Избр. соч., т. 3, М., 1952; Курсанов А. Л., Взаимосвязь физиологических процессов в растении, М., 1960; Колосов И. И., Поглотительная деятельность корневых систем растений, М., 1962; Сатклифф Дж. Ф., Поглощение минеральных солей растениями, пер. с англ., М., 1964; Сабинин Д. А., Избранные труды по минеральному питанию растений, М., 1971; Физиология корня, М., 1973.
Д. Б. Вахмистров.
Источник: Большая советская энциклопедия на Gufo.megufo.me