Минеральное питание растений. Необходимые растению элементы минерального питания

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Минеральное питание растений. Минеральное питание растений


Минеральное питание растений — Науколандия

Минеральное питание растений — это поглощение ими воды и растворенных в ней неорганических (минеральных) веществ. Минеральные вещества, необходимые растениям, содержат атомы таких химических элементов как азот, фосфор, калий, кальций, сера, бор, марганец, хлор и другие. В относительно больших количествах растение нуждается в азоте, фосфоре и калии, остальные элементы нужны в очень маленьких количествах. Однако, несмотря на это, отсутствие или недостаток любого элемента вызывает то или иное заболевание растения.

Высшие растения осуществляют минеральное питание с помощью корней. Корни находятся в почве и поглощают из нее воду и растворенные ней неорганические вещества. Исключением являются мхи. У них нет настоящих корней, хотя у многих видов есть ризоиды (примитивные корнеподобные образования). Мхи поглощают водный раствор не только ризоидами, но и надземными частями растения. Низшие растения в лице водорослей поглощают водный раствор всем своим телом.

Поскольку высшие растения поглощают минеральные вещества из почвы, важно, чтобы почва содержала эти вещества. Этим определяется плодородие почвы. В плодородных почвах все необходимые растениям минеральные вещества присутствуют в достаточных количествах.

Когда растения корнями поглощают водные растворы, то в почве минеральные вещества убывают. Почва обедняется. В природе, когда растения или их части отмирают, то в почве происходит их разложение. В результате минеральные вещества рано или поздно возвращаются в почву. Даже если растение было съедено животным, то когда оно погибнет, минеральные вещества все-равно вернуться.

Однако на сельскохозяйственных полях и в садах большая часть урожая забирается человеком. Минеральные вещества не возвращаются в почву. Поэтому требуется подкормка растений с помощью различных удобрений. Существуют специальные правила внесения тех или иных удобрений. Каждое удобрение вносится в определенном количестве и в определенное время, на определенном этапе развития растения. При этом следует помнить, что избыток удобрений так же вреден для растений как и недостаток. Кроме того, растения, выращенные с внесением большого количества удобрений, опасны для человека, так как содержат вредные для него вещества.

Растения поглощают воду и растворенные в ней минеральные вещества не всем корнем, а определенной зоной корня, которая находится ближе к кончику корня (но не на самом кончике). Эта зона называется зоной всасывания. Здесь покровные клетки имеют выросты — корневые волоски. Они очень мелкие и проникают между частичками почвы. Через мембраны корневых волосков проникает вода и растворенные в ней соли, содержащие необходимые для растений атомы химических элементов.

От покровных клеток с корневыми волосками водный раствор далее передвигается по паренхимной ткани к центру корня. Здесь находятся сосуды. По ним водный раствор поднимается вверх к стеблю и листьям за счет так называемого корневого давления и испарения воды листьями. Причиной корневого давления является различная концентрация растворенных минеральных веществ в различных частях растения.

Минеральные вещества, а точнее входящие в них атомы химических элементов, используются растениями в различных процессах жизнедеятельности. Так азот входит в состав белков. Белки — это главный строительный материал живых клеток. Поэтому азот способствует росту растений. Также для деления и роста клеток необходим калий. Фосфор входит в состав клеточных мембран и нуклеиновых кислот. Железо необходимо для синтеза хлорофилла, а магний входит в состав хлорофилла.

scienceland.info

Минеральное питание растений

МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей. При исследовании золы растений в ней было обнаружено множество химических элементов, в т. ч. редких, содержание которых в различных частях растений было не одинаковым. Это свидетельствует о том, что данные элементы необходимы растениям и накапливаются в них. Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор.

Для разных растений они необходимы в различных количествах. Полностью заменить одни элементы какими-либо другими невозможно. От степени их присутствия в почве зависит урожайность сельско-хозяйственных растений. В почвах средней полосы России обычно не хватает азота и фосфорной кислоты, реже калия, поэтому их вносят в качестве азотных и фосфорно-калийных удобрений.

Каждый химический элемент играет в жизни растения особую роль. Минеральные соединения азота и зольных элементов поглощаются наземными высшими растениями почти исключительно корнями. Соли, как и вода, поглощаются живыми клетками первичной коры корня и корневыми волосками, затем корневым давлением выталкиваются с водой в сосуды, разносятся транспирационным током по другим частям растения и снова принимаются живыми клетками стебля и листа. В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливают избирательную способность растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем теснее соприкосновение корня с частицами почвы, тем сильнее развита корневая система и тем полнее идёт поглощение солей.

Минеральное питание, потребляемое растением из почвы, условно делится на микроэлементы и макроэлементы.

Макроэлементы – такие элементы питания, которых необходимо для растений в большом количестве (N азот, P фосфор, K калий, S сера, Ca кальций, Mg магний, Fe железо и др.). Микроэлементы – такие элементы питания, которых необходимо очень малое количество, но не менее важные для нормального роста и развития растений (Cu медь, Zn цинк, Mo молибден, B бор, Co кобальт и др.).

Положительные результаты в деле выращивания посадочного материала в лесном питомнике во многом зависят от обеспеченности их элементами минерального питания. Эффективным приемом агротехнического ухода является применение удобрений при основной обработке почвы, перед посевом (посадкой) посадочного материала (семян) или совместно с посадкой и посевом, а также в ходе всего периода выращивания культур.

Минеральное удобрение оказывает разностороннее действие на почвенные условия: - первостепенное действие – пополнение питательных веществ в почве; - изменяют в положительную сторону реакцию почвенной среды; - улучшают физические свойства почвы; - повышают и улучшают жизнедеятельность почвенных микроорганизмов; - улучшают водный режим почв.

Важность и необходимость применения минеральных удобрений объясняется недостаточными плодородными свойствами почвы, а еще и тем, что во время выкопки посадочного материала с корневой системой и комом земли с участка вывозится плодородный слой почвы, который необходимо восполнять для возможности дальнейшего выращивания качественного и жизнеспособного посадочного материала.

Описание некоторых элементов

АЗОТ

Этот элемент входит в состав аминокислот, аминов, белков и многих других органических соединений и является самым дефицитным элементом питания. Процессы распада азотистых соединений в клетках растений заканчиваются образованием аммиака, который и является основным элементом азотного питания. Кроме этого растения способны поглощать анионы NO3. При недостатке азота замедляется рост растений, ослабляется образование боковых побегов, наблюдается мелколистность. Одно из ранних проявлений дефицита азота — бледно-зеленая окраска листьев, связанная с ослаблением синтеза хлорофилла. Длительное азотное голодание приводит к гидролизу белков и разрушению хлорофилла в старых листьях и его оттоку в молодые. При этом окраска старых листьев становится желтой, коричневой, красной и листья опадают.

ФОСФОР

Этот элемент входит в состав нуклеиновых кислот, белков, фосфолипидов, нуклеотидов и т. д. В растительных тканях фосфор присутствует в виде органических соединений и в виде ортофосфорной кислоты и ее солей. Фосфор поглощается в окисленной форме в виде анионов ортофосфатов Н2РО4. В таком виде он включается в состав органических молекул и переходит из одного соединения в другое не претерпевая изменений. Растения наиболее чувствительны к недостатку фосфора на ранних этапах развития. Внешним симптомом недостатка фосфора является сине-зеленый цвет листьев, нередко с пурпурным или бронзовым оттенком. При этом листья становятся мелкими и более узкими, задерживается переход к репродуктивной фазе развития растения. Симптомы при недостатке фосфора похожи на симптомы при дефиците азота, но имеются и отличия. Погибающие листья становятся темными, почти черными, а при недостатке азота — светлыми. При избытке фосфора нарушается усвоение цинка и железа и появляется межжилковый хлороз.

КАЛИЙ

Концентрация калия в клетках растений в 100—1000 раз превышает его содержание в воде. Наибольшее количество калия поглощается растениями в период наращивания вегетативной массы. При недостатке калия листья начинают желтеть с краев, затем их края и верхушки приобретают бурую окраску, на завершающем этапе эти участки отмирают. Дефицит калия тормозит процессы деления и размножения клеток, что приводит к появлению розеточных форм. В растении калий концентрируется в молодых растущих листьях и побегах, в старых листьях происходит его замещение на натрий. Содержится калий в клетках в виде катионов калия. Переизбыток его в аквариумной воде в 3-4 раза выше нормы по моим наблюдениям не приносит вреда растениям.

КАЛЬЦИЙ

По отношению к кальцию растения делятся на три вида: кальциефобы, кальциефилы и нейтральные виды. В клетках однодольных растений кальция меньше, чем в клетках двудольных. В растениях калий накапливается в старых листьях в виде нерастворимых солей органических кислот. При недостатке кальция листовые пластинки искривляются и скручиваются, кончики и края листьев сначала белеют, затем чернеют. Корни, листья и отдельные участки стебля сначала загнивают, потом отмирают.

СЕРА

Этот элемент поглощается клетками только в окисленной форме — в виде сульфат ионов SO4. В растениях может содержаться в двух формах — окисленной в виде сульфат иона и восстановленной. Как и кальций сера накапливается в старых листьях растений. Внешними симптомами дефицита серы является бледный цвет и желтизна молодых листьев.

МАГНИЙ

Особенно много находится в молодых клетках, генеративных органах и запасающих тканях. Около 10-15 % магния входит в состав хлорофилла. Эта его функция уникальна, и никакой другой элемент не может заменить магний в молекуле хлорофилла. Участие магния в обмене веществ растительной клетки связано с его способностью регулировать работу части ферментов. В частности он является кофактором, катализирующим цикл Кребса. Недостаток магния в первую очередь сказывается на способности растений усваивать фосфор, поэтому внешние признаки однотипны с фосфорным голоданием. Также внешним признаком является межжилковый хлороз, связанный с появлением пятен и полос светло-зеленого а потом желтого цвета между зелеными жилками листа. Края листовых пластинок приобретают при этом желтый, оранжевый или красный цвет (до темно-красного включительно). Признаки магниевого голодания вначале проявляются на старых листьях, а затем переходят на молодые. Дольше всех держатся участки листа, непосредственно примыкающие к жилкам.

КРЕМНИЙ

Накапливается в больших количествах в клеточных стенках в виде гидратированных аморфных силикатов. Больше его в растениях, имеющих жесткий стебель.

ЖЕЛЕЗО

Этот элемент играет важную роль в дыхании растений. В окислительно-восстановительных процессах он является акцептором кислорода, участвует в синтезе предшественников хлорофилла. Признаки дефицита железа прежде всего появляются на молодых листьях прямостоячих побегов. На верхушках листьев возникает хлороз. При более сильном дефиците железа листья приобретают желто-зеленую, а в дальнейшем интенсивную желтую окраску. Рост растений замедляется, урожай значительно уменьшается. Признаки дефицита железа проявляются в течение всего сезона вегетации и сохраняются в период покоя.

МАРГАНЕЦ

Этот элемент необходим для протекания процесса фотосинтеза, процессов синтеза белковых веществ, жиров и др. Признаки его дефицита, прежде всего, проявляются на молодых листьях растущих побегов. Сначала листья приобретают светло-зеленый цвет, а в дальнейшем желтый. При более сильном дефиците марганца верхушечные листья прямостоячих побегов становятся желтыми, со светло-бурой верхушкой и отмирают.



biofile.ru

МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ - это... Что такое МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ?

МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ

совокупность процессов поглощения, передвижения и усвоения химич. элементов, необходимых для жизни растит, организма, в форме ионов минеральных солей. Среди элементов М. п. р. различают макроэлементы (N. S. Р, К, Са, Mg) и микроэлементы. Азот поглощается растениями в форме аниона NO3 или катиона NH+ , фосфор и сера — в форме анионов h3PO4 и SO2- , металлы — в форме катионов К+ , Са2+ и Mg2+. Одноклеточные организмы и водные растения поглощают элементы М. п. р. всей поверхностью, высшие наземные растения — поверхностными клетками корня, гл. обр. корневыми волосками. Катионы проникают в клетку через окружающую её плазмалемму пассивно, анионы (а также К+ при наруж. концентрациях меньше 1 мМ) — активно, с затратой метаболич. энергии. Активное поглощение обеспечивается работой молекулярных ионных насосов плазмалеммы. Внутри клетки ионы перемешиваются с помощью кругового движения цитоплазмы (циклоза) и неравномерно перераспределяются между ней и органоидами (компартментация). От клетки к клетке ионы передвигаются либо по плазмодесмам, объединяющим все клетки ткани воедино — в симпласт, либо по клеточным оболочкам, также объединённым в апопласт. В теле растения ионы перемещаются с водным током по сосудам ксилемы, пронизывающим корень, стебель и лист. Восходящий транспорт элементов М. п. р. направлен гл. обр. к формирующимся плодам и молодым листьям. По мере старения ниж. листьев элементы М. п. р. оттекают из них в растущие органы, где могут использоваться повторно (реутилизация). Вовлечение поглощённых элементов М. п. р. в обший обмен веществ происходит во всех клетках растения. Азот входит в состав аминокислот и белков, а также аминов, амидов, алкалоидов, хлорофилла, нуклеиновых кислот, нуклеотидов, мн. гормонов и витаминов. Сера включается в аминокислоты цистеин, цистнн и метионин, фосфор — в аденозинтрифосфат (АТФ) и др. аденозинфосфаты, играющие ключевую роль в энергетич. обмене клетки, а также в фосфолипиды клеточных мембран и в нуклеиновые к-ты. Калий, кальций и магний остаются гл. обр. в ионной форме, обеспечивая стабильность субклеточных структур и активность ферментов (примерно 10% Mg листовых клеток входит в состав хлорофилла). Вместе с фотосинтезом М. п. р. составляет единый процесс питания растений. Регуляция М. п. р. с помощью удобрений — один из важнейших путей повышения продуктивности с.-х. культур.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

минера́льное пита́ние расте́ний

совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей. При исследовании золы растений в ней было обнаружено множество химических элементов, в т.ч. редких, содержание которых в различных частях растений было не одинаковым. Это свидетельствует о том, что данные элементы необходимы растениям и накапливаются в них. Элементы, присутствующие во всех растениях, были отнесены к жизненно важным – это калий, кальций, магний, железо, сера и фосфор. Для разных растений они необходимы в различных количествах. Полностью заменить одни элементы какими-либо другими невозможно. От степени их присутствия в почве зависит урожайность с.-х. растений. В почвах средней полосы России обычно не хватает азота и фосфорной кислоты, реже калия, поэтому их вносят в качестве азотных и фосфорно-калийных удобрений. Каждый химический элемент играет в жизни растения особую роль. Фосфор усваивается растением в виде солей фосфорной кислоты (фосфатов) и находится в нём в свободном состоянии или совместно с белками и другими органическими веществами, входящими в состав плазмы и ядра. В свободном состоянии, возможно, регулирует в клетке кислотную и щелочную среду. Сера поглощается растением в виде солей серной кислоты, входит в состав белков и эфирных масел. Калий сосредоточен в молодых органах, богатых плазмой, а также в органах накопления запасных веществ – семенах, клубнях, вероятно, играет роль нейтрализатора кислой реакции клеточного сока и участвует в тургоре. Магний содержится в растении там же, где и калий, и, кроме того, входит в состав хлорофилла. Кальций накапливается во взрослых органах, особенно в листьях, служит нейтрализатором вредной для растения щавелевой кислоты и защищает его от токсического действия различных солей, участвует в образовании механических оболочек. Железо находится в растении в малых количествах, но входит в состав протопластов, и при его недостатке развивающиеся листья не зеленеют, а остаются белыми (явление хлороза). Кроме указанных жизненно необходимых элементов, определённое значение имеют хлористый натрий (накапливаясь в клетках галофитов, позволяет увеличить осмотическое давление до 100 атмосфер, благодаря чему они могут противостоять физиологической сухости почвы), марганец, фтор, йод, бром, цинк, кобальт, стимулирующие рост растений, и др. Минеральные соединения азота и зольных элементов поглощаются наземными высшими растениями почти исключительно корнями. Соли, как и вода, поглощаются живыми клетками первичной коры корня и корневыми волосками, затем корневым давлением выталкиваются с водой в сосуды, разносятся транспирационным током по другим частям растения и снова принимаются живыми клетками стебля и листа. В живых клетках корня происходит первый отбор веществ, допускаемых внутрь растения. Участие живых клеток в принятии веществ обусловливают избирательную способность растения, благодаря которой различные вещества поглощаются в разных количествах. Так как поступление в сильной степени зависит от потребления, растение принимает на различных стадиях развития то одни соли, то другие. Чем теснее соприкосновение корня с частицами почвы, тем сильнее развита корневая система и тем полнее идёт поглощение солей. Кроме того, корни обладают растворяющей способностью. Несомненно, что мощная, сильно разветвлённая корневая система способствует лучшему питанию растения.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

dic.academic.ru

Минеральное питание растений и фотосинтез, корень и корневище как органы питания (6 класс)

Растения, в отличие от животных, сами производят органические вещества, то есть, являются автотрофами. Обеспечение себя питательными веществами происходит за счёт фотосинтеза и минерального питания растений. Фотосинтез осуществляется в зелёных частях растений, а органом минерального питания является корень.

Что такое минеральные вещества

В состав клеток растений входят все химические элементы, даже драгоценные и радиоактивные. Минеральными веществами называют элементы и их соединения, которые жизненно важны для организма, но содержание их в организме невелико.

Минеральные вещества не содержат энергии. Их ценность в том, что они входят в состав разных веществ:

  • ферментов;
  • витаминов;
  • гормонов.

Например, кобальт входит в состав витамина В12.

Железо в составе ферментов участвует в процессе дыхания.

Выделяют две группы элементов по концентрации в растениях:

  • макроэлементы;
  • микроэлементы.

Макроэлементы

К макроэлементам относят:

  • кремний;
  • калий;
  • азот;
  • фосфор;
  • кальций;
  • серу;
  • магний;
  • натрий;
  • алюминий.

Магний входит в состав хлорофилла, без него невозможен фотосинтез. Кремний придаёт прочность стеблям. Калий участвует в образовании углеводов.

Важнейшими в минеральном питании являются азот, фосфор и калий. Минеральные удобрения, как правило, содержат именно эти три макроэлемента.

Растениям одинаково вреден и недостаток, и избыток какого-либо элемента. Развитие растений нарушается в обоих случаях.

Признаки недостатка калия на листьях

Рис. 1. Признаки недостатка калия на листьях.

Микроэлементы

Содержатся эти элементы в растении в чрезвычайно малых количествах. Но при этом обладают высокой биологической активностью и без них нельзя получить высокие урожаи. К микроэлементам относят:

  • бор;
  • цинк;
  • медь;
  • марганец;
  • железо;
  • молибден;
  • кобальт.

Где находятся минеральные вещества

Минеральные вещества могут находиться:

  • в растворённом состоянии в почвенной воде;
  • в составе органических веществ почвы;
  • в составе горных пород почвы.

Чтобы полноценно использовать органические удобрения, их вносят в почву заблаговременно. Это нужно, чтобы микроорганизмы разложили крупные молекулы органических веществ до простых, которые могут поступить в корень.

Как осуществляется почвенное питание

Корневые волоски всасывают почвенную воду.

Корневые волоски

Рис. 2. Корневые волоски.

Затем вода перемещается в сосуды ксилемы, по которым поднимается в надземные органы.

Всасывание происходит за счёт осмоса. Это физическое явление обозначает движение воды в область более высокой концентрации растворённых веществ. Конечно, содержание минеральных веществ в корне выше, чем в почве, и поэтому вода всасывается корнем.

Схема передвижения воды в корне

Рис. 3. Схема передвижения воды в корне.

Корневище, клубень и старые корни не всасывают воду. Поглощение происходит только в растущих корнях, в области до 5 см от верхушек.

Что мы узнали?

Изучая в 6 классе данную тему, мы узнали, что минеральное питание растений осуществляется корневой системой и проводящими тканями. Минеральные вещества необходимы для жизни растений, но содержатся в очень малых количествах.

Тест по теме

obrazovaka.ru

Необходимые растению элементы минерального питания

    1. Содержание и необходимость элементов

95 % сухой массы растительных тканей составляют четыре элемента - С, О, Н, N, называемые органогенами.

5 % прихо­дится на зольные вещества - минеральные элементы, содержание которых обычно определяют в тканях после сжигания органического вещества растений.

Со­держание золы зависит от вида и органа растений, условий вы­ращивания. В семенах содержание золы составляет в среднем 3 %, в корнях и стеблях – 4…5, в листьях – 5…15 %. Меньше всего золы в мертвых клетках древесины (около 1 %). Как пра­вило, чем богаче почва и чем суше климат, тем больше в расте­ниях содержание зольных элементов.

Растения способны поглощать из окружающей среды практи­чески все элементы периодической системы Д. И. Менделеева. Причем многие элементы накаплива­ются в растениях в значительных количествах и включаются в природный круговорот веществ. Однако для нормальной жизнедеятельности самого растительного организма требуется лишь небольшая группа эле­ментов, называемых питательными.

Питательными веществами называются вещества, необходимые для жизни организма.

Элемент считается необходимым, если его отсутствие не позволяет растению завершить свой жиз­ненный цикл; недостаток элемента вызывает специфические на­рушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредствен­но участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.

Необходимость элементов можно установить только при вы­ращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллиро­ванную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготов­ления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам относятся 19 элементов: С (45 %), Н (6,5 %) и О2 (42 %) (усвояемых в процессе воздушного питания) + 7 (N, P, K, S, Ca, Mg, Fe) + Mn, Cu, Zn, Mo, B, Cl, Na, Si, Co.

Все элементы, в зависимости от их содержания в растениях делят на 3 группы: макроэлементы, микроэлементы и ультромикроэлементы.

Макроэлементы содержатся в количестве от целых до десятых и сотых долей процента: N, Р, S, К, Са, Mg; микроэлементы - от тысячных до 100-тысячных долей процента: Fe, Мn, Сu, Zn, В, Мо.

Со необходим бобо­вым для симбиотической фиксации N, Na по­глощается в относительно высоких количествах свеклой и необ­ходим растениям, приспособленным к засоленным почвам), Si в больших количествах встречается в соломе злаков и необходим для риса, Cl накапливают мхи, хвощи, папоротники.

    1. Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении

Значение элемента определяется ролью, которую он выполняет самостоятельно или в составе других органических соединений. Не всегда высокое содержание свидетельствует о необходимости того или иного элемента.

Азот (около 1,5 % СМ) вхо­дит в состав белков, нуклеиновых кислот, липоидных компонен­тов мембран, фотосинтетических пигментов, витаминов и других жизненно важных соединений.

Основными усвояемыми формами N являются ионы нитрата (NO3-)и аммония (Nh5+). Высшие растения способны также усваивать нитриты и водорастворимые N-содержащие органические со­единения (аминокислоты, амиды, полипептиды и др.). В ес­тественных условиях эти соединения редко бывают источником питания, поскольку их содержание в почве, как правило, очень мало.

Недостаток N тормозит рост растений. Одновременно снижается ветвле­ние корней, но соотношение массы корней и надземной системы может увеличиваться. Это приводит к уменьшению площади фотосинтетического аппарата и сокращению периода вегетатив­ного роста (раннее созревание), что снижает фотосинтетический потенциал и продук­тивность посева.

Недостаток N а вызывает также серьезные нарушения энер­гетического обмена (хуже используют световую энер­гию, так как снижается интенсивность фотосинтеза, раньше на­ступает световое насыщение, а компенсационная точка находит­ся при более высокой интенсивности света, интенсивность дыхания может возрастать, но уменьшаются сопряженность окисления с фосфорилированием), возрастают энергетические затраты на поддержание структуры цитоплазмы).

N-ое голодание влияет на водный режим (снижает водоудерживающую способ­ность растительных тканей, так как уменьшает количество кол­лоидносвязанной воды, снижается возможность вне­устьичного регулирования транспирации и возрастает водоотдача). Поэтому низкий уровень N-ого питания не только снижает урожай, но и уменьшает эффективность использования воды посевом.

Внешние признаки голодания: Бледно-зеленая, желтая окраска листьев, оранжевые, красные тона, высыхание, некрозы, низкорослость и слабое кущение, появляются признаки ксероморфизма (мелколистность).

Фосфор (0,2-1,2 % СМ). P поглощается и функциони­рует в растении только в окисленной форме - в виде остатков ортофосфорной кислоты (PO43- ).

P - обязательный компонент таких важней­ших соединений, как НК, фосфопротеидов, фосфолипидов, P-ных эфиров сахаров, нуклеотидов, прини­мающих участие в энергетическом обмене (АТФ, НАД, ФАД и др.), витаминов.

P-ный обмен сводится к фосфорилированию и трансфосфорилированию. Фосфорилирование - это присоединение остатка P-ной кислоты к какому-либо органическому соединению с образова­нием эфирной связи, например фосфорилирование глюкозы, фруктозо-6-фосфата в гликолизе. Трансфосфорилирование - это процесс, при котором остаток P-ной кислоты переносится от одного органического вещества на другое. Значение образующихся при этом P-органических соедине­ний огромно.

Недостаток P вызывает серьез­ные нарушения синтетических процессов, функционирования мембран, энергетического обмена.

Внешние признаки голодания: сине-зеленая окраска с пурпурным или бронзовым оттенком (задержка синтеза белков и накопление сахаров), мелкие узкие листья, корневая система буреет, слабо развивается, корневые волоски отмирают. Приостанавливается рост растений, задерживается со­зревание плодов.

Сера (0,2-1,0 % СМ). Поступает в растение в окислен­ной форме, в виде аниона SO42-. В органические соединения S входит только в восстанов­ленной форме - в составе сульфгидрильных групп (-SH) и ди­сульфидных связей (-S-S-). Восстановление сульфата происходит преимущественно в листьях. Восстановленная S может вновь переходить в окисленную функционально неактивную форму. В молодых листьях S в основном находится в составе органических соединений, а в старых накапливается в вакуолях в виде сульфата.

S является компонентом важнейших биологических соединений - коэнзима А и витаминов (тиамина, ли­поевой кислоты, биотина), играющих важную роль в дыхании и липидном обмене.

Кофермент А (S образует макроэргическую связь) поставляет ацетильный остаток (СН3СО-S-KoA) в цикл Кребса или для биосинтеза жирных кис­лот, сукцинильный остаток для биосинтеза порфиринов. Липоевая кислота и тиамин входят в состав липотиаминди­фосфата (ЛТДФ), участвующего в окислительном декарбоксили­ровании ПВК и -кетоглютаровой.

Многие виды растений в малых количествах содержат летучие соединения S (сульфоксиды входят в состав фи­тонцидов лука и чеснока). Представители семейства Крестоцвет­ные синтезируют серосодержащие горчичные масла.

S принимает активное участие в многочисленных реакциях обмена веществ. Почти все белки содержат серосодержащие аминокислоты - метионин, цистеин, цистин. Функции S в белках:

  • участие HS-групп и -S-S-связей в стаби­лизации трехмерной структуры белков и

  • образование связей с коферментами и простетическими группами.

  • Сочетание метиль­ной и HS-группы обусловливает широкое участие метионина в образовании АЦ ферментов.

  • С этой аминокислоты начинается синтез всех полипептидных цепей.

Другая важнейшая функция S в растительном организме, основанная на обратимом переходе 2(-SH) = -HS-SH- ­состоит в поддержании определенного уровня окислительно­восстановительного потенциала в клетке. К серосодержащим окислительно-восстановительным системам клетки относятся система цистеин = цистин и система глу­татиона (является трипептидом - состоит из глутаминовой, цистина или цистеина и глицина). Его окислительно-восстановительные превращения связаны с переходом -S-S-групп цистина в HS-группы цис­теина.

Недостаток S тормозит белковый синтез, снижает фотосинтез и скорость роста растений, особенно надземной части.

Внешние признаки голодания: побеление, пожелтение листьев (молодых).

Калий (около 1 % СМ). В растительных тканях его гораздо боль­ше, чем других катионов. Содержание K в растениях в 100­-1000 раз превосходит его уровень во внешней среде. K поступает и в растение в виде катиона К+.

K не входит ни в одно органическое соединение. В клетках он присутствует в основном в ионной форме и легко подвижен. В наибольшем количестве K сосредоточен в молодых растущих тканях, характеризую­щихся высоким уровнем обмена веществ.

Функции:

  1. участие в регуляции вязкости цитоплазмы, в повышении гидратации ее коллоидов и водоудерживающей спо­собности,

  2. служит основным противоионом для нейтрали­зации отрицательных зарядов неорганических и органических анионов,

  3. создает ионную асиммет­рию и разность электрических потенциалов на мембране, т. е. обеспечивает генерацию биотоков в растении

  4. является активатором многих ферментов, он необходим для включения фосфата в органические соединения, синтеза белков, полисахаридов и рибофлавина - компонента флавиновых дегидрогеназ. K особенно необходим для молодых, активно растущих органов и тканей.

  5. принимает активное участие в осморегуляции, (открывании и закрывании устьиц).

  6. активирует транспорт углеводов в растении. Установлено, что высокий уровень сахара в зре­лых ягодах винограда коррелирует с накоплением значительных количеств K и органических кислот в соке незрелых ягод и с последующим выходом K при созревании. Под влиянием K увеличивается накопление крахмала в клубнях картофеля, сахарозы в сахарной свекле, моносахаридов в плодах и овощах, целлюлозы, гемицеллюлоз и пектиновых веществ в клеточных стенках растений.

  7. В результате повышается устойчивость злаков к полеганию, к грибным и бактериальным заболеваниям.

При дефиците K снижается функционирование камбия, нарушаются процессы деления и растяжения клеток, развитие сосудистых тканей, уменьшается толщина клеточной стенки, эпидермиса. В результате укорачива­ния междоузлий могут образоваться розеточные формы расте­ний. Снижается продуктивность фотосинтеза (за счет уменьшения оттока ассимилятов из листьев).

Кальций (0,2 % СМ). Поступает в растение в виде иона Са2+ . На­капливается в старых органах и тканях. При снижении физиоло­гической активности клеток Ca из цитоплазмы перемеща­ется в вакуоль и откладывается в виде нерастворимых соедине­ний щавелевой, лимонной и др. кислот. Это значительно снижает подвижность Ca в растении.

Большое количество Ca связано с пектиновыми веществами клеточной стенки и срединной пластинки.

Роль ионов Са:

  1. стабилизация структуры мембран, регуляция ионных потоков и участие в биоэлектри­ческих явлениях. Са много содержится в митохондриях, хлоропластах и ядрах, а также в комплексах с био­полимерами пограничных мембран клетки.

  2. участие в катионообменных процессах в корне (наряду с протоном водорода принимает активное участие в пер­вичных механизмах поступления ионов в клетки корня).

  3. способст­вует устранению токсичности избыточных концентраций ионов Nh5+, Al, Mn, Fe, повышает устойчивость к засолению, (ограничивает поступление других ионов),

  4. снижает кислотность почвы.

  5. участие в процессах движения цитоплазмы (структур­ная перестройка актомиозиноподобных белков), обратимых изменениях ее вязкости,

  6. определяет пространственную организацию цитоплазматических ферментных систем (например, ферментов гликолиза),

  7. активировании ряда ферментов (дегидрогеназ, амилаз, фосфотаз, киназ, липаз) - определяет четвертичную структуру белка, участвует в создании мостиков в фермент-субстратных комплексах, влияет на состояние аллостерических центров).

  8. определяет структуру цитоскелета - регулируют процессы сборки-разборки микротрубочек, секреции компонентов клеточной стенки с участием везикул Гольджи.

  9. Комплекс белка с Ca активирует многие ферментные системы: протеинкиназы, транспортную Са-АТФ-азу, АТФ-азу актомиозина.

Регуляторное действие Са на многие стороны метаболизма связано с функционированием специфи­ческого белка - кальмодулина. Это кислый (ИЭТ 3,0-4,3) термостабильный низкомолекулярный белок. С участием кальмодулина регулирует­ся концентрация внутриклеточного Ca. Комплекс Са-каль­модулин контролирует сборку микротрубочек веретена, образова­ние цитоскелета клетки и формирование клеточной стенки.

При недостатке Ca (на кислых, засоленных почвах и торфяниках) в первую очередь страдают меристе­матические ткани и корневая система. У делящихся клеток не образуются клеточные стенки, в результате возникают много­ядерные клетки. Прекращается образование боковых корней и корневых волосков. Недостаток Ca вызывает также набуха­ние пектиновых веществ, что приводит к ослизнению клеточных стенок и загниванию растительных тканей.

Внешние признаки голодания: корни, листья, участки стебля загнивают и отмирают, кончики и края листьев вначале белеют, затем чернеют, искривляются и скручиваются.

Магний (около 0,2 % СМ). Особенно много Mg в молодых растущих частях растения, а также в генеративных органах и запасающих тканях.

Поступает в растение в виде иона Mg2+ и, в отличие от Ca, обладает сравнительно высокой подвижностью. Легкая подвижность Mg2+ объясняется тем, что почти 70 % этого катиона в растениях связано с анионами орга­нических и неорганических кислот.

Роль Mg:

  1. входит в состав хлорофилла (около 10-12 % Mg ),

  2. является активатором ряда ферментных систем (РДФ-карбоксилазы, фосфокиназ, АТФ-аз, енолаз, ферментов цикла Кребса, пентозофосфатного пути, спиртового и молочнокислого брожения), ДНК- и РНК-полимеразы.

  3. активирует процессы транспорта элек­тронов при фотофосфорилировании.

  4. необходим для фор­мирования рибосом и полисом, для активации аминокислот и синтеза белков.

  5. участ­вует в образовании определенной пространственной структуры НК.

  6. усиливает синтез эфирных масел, каучуков.

  7. предот­вращает окисление аскорбиновой кислотой (образуя комплексное соединение с ней).

Недостаток Mg приводит к наруше­нию P-ного, белкового и углеводного обменов. При магни­евом голодании нарушается формирование пластид: граны сли­паются, разрываются ламеллы стремы.

Внешние признаки голодания: листья по краям имеют желтый, оранжевый, красный цвет (мраморная окраска). Впоследствии развиваются хлороз и некроз лис­тьев. Характерным является полосатость листьев у злаков (хлороз между жилками, которые остаются зелеными).

Железо (0,08 %). Посту­пает в растение в виде Fe3+.

Железо входит в состав ЭТЦ фотосинтетического и окислительного фосфорилирования (цитохромов, ферредокси­на), является компонентом ряда оксидаз (цитохромоксидазы, ка­талазы, пероксидазы). Кроме того, железо является составной частью ферментов, катализирующих синтез предшественников хлорофилла (амино­левулиновой кислоты и протопорфиринов).

Растения могут включать Fe в запасные вещества. Например, в пластидах содержится ­белок ферритин, имеющий железо(до 23 % СМ) в негеминной форме.

Роль Fe связана с его способностью к обратимым окислительно-восста­новительным превращениям (Fe3+ - Fe2+) и участию в транспорте электронов.

Поэтому недостаток Fe вызывает глубокий хлороз в развивающихся листьях (могут быть совершенно белыми), и тормозит важней­шие процессы энергообмена - фотосинтез и дыхание.

Кремний ( ) содержится в основном в клеточных стенках.

Его недостаток может задержать рост злаков (кукуруза, овес, ячмень) и двудольных (огурцы, томаты, табак). Недостаток в репродуктивный период вызывает уменьшение количества семян. При недостатке Si нарушается ультраструктура клеточных органелл.

Алюминий ( ) особенно важен для гидрофитов, его накапливают папаратники и чай.

Недостаток вызывает хлороз.

Избыток токсичен (связывает P и приводит к P-ному голоданию).

studfiles.net

Минеральное питание растений

41

Вопросы:

1.История изучения корневого питания растений 2

2.Необходимые растению элементы минерального питания 2

2.1.Содержание и необходимость элементов 2

2.2.Макроэлементы, их усвояемые соединения, роль и функциональные нарушения при недостатке в растении 3

2.3.Микроэлементы, их усвояемые формы, роль и функциональные нарушения при недостатке в растении 8

2.4.Диагностика дефицита питательных элементов 11

3.Поглощение минеральных веществ 13

4.Транспорт ионов в растениях 15

4.1.Радиальное перемещение ионов в корне 15

4.2.Восходящий транспорт ионов в растении 16

4.3.Поглощение ионов клетками листа 16

4.4.Перераспределение и реутилизация веществ в растении 16

5.Регулирование растением скорости поглощения ионов 19

5.1.Поглощение ионов из разбавленных и высококонцентрированных растворов 19

5.2.Взаимосвязь между потоками ионов и воды в корне 19

5.3.Поглощение ионов и потребности в них растения 20

5.4.Ритмичность в поглощении ионов корнями растений 21

6.Азотное питание растений 22

6.1.Особенности нитратного и аммонийного питания растений 23

6.2.Ассимиляция нитратного азота 24

6.3.Ассимиляция аммиака 25

6.4.Причины накопления избыточных количеств нитратов в растениях и пути их снижения в сельскохозяйственной продукции 26

7.Обеспечение растений питательными веществами в полевых условиях 28

7.1.Минеральные вещества в фитоценозах и их круговорот в экосистеме 29

7.2.Плотность и распределение корней в посеве 29

7.3.Почва как источник питательных элементов для сельскохозяйственных культур 31

7.4.Взаимодействия между растениями 33

7.5.Влияние ризосферной микрофлоры на поглощение веществ 33

8.Физиологические основы применения удобрений 34

9.Особенности питания растений в беспочвенной культуре 37

10.Неблагоприятное действие на растение избыточно высокого уровня минерального питания 40

  1. История изучения корневого питания растений

Уже в 6-5 тысячелетии до н.э. возделывались пшеница, рожь, ячмень, кукуруза, лен, огородные, плодовые культуры, а зола, навоз, ил использовались как средства повышения плодородия почвы.

В 17 веке (1629 г.) Я. Б. Ван Гельмонт (голанд) провел первый физиологический эксперимент: ивовая ветвь 2-25 кг, почва 75 кг, через 5 лет почва 77 кг, ветвь 56,6 (более чем в 33 раза). Сделал вывод, что растения создают массу за счет воды (водная теория питания).

В конце 18 начале 19 века нем. агроном А. Тэер разработал гумусовую теорию питания растений – растения питаются водой и гумусом (перегноем, то есть органическими остатками.

В 1970 г. А.Т. Болотов (рус. агр.) издал книгу «Об удобрении земель» (первая монография по агрохимии), в которой писал: «пища растений в почве состоит в воде и некоторых особлевых или паче минеральных частичек», перечислил 53 вида удобрений.

В 1804 г. Н.Т. Соссюр (швейц.) в книге «Химические исследования растений» показал, что различные соли поглощаются из водных растворов с неодинаковой скоростью.

В 1837 г. Ж.Б. Буссенго показал, что растения можно вырастить на чистом песке, если вносить в него минеральные соли (золу и селитру).

В 1840 г. Ю. Либих (нем. хим.), один из основоположников агрохимии, автор книги «Химия в приложении к земледелию и физиологии» обосновал теорию минерального питания:

  1. мин. вещества являются основой плодородия,

  2. перегной нужен для образования СО2 (ускоряет выветривание мат. породы и увеличивает культурный слой,

  3. сформулировал закон минимума,

  4. сформулировал закон возврата,

  5. считал, что N поглощается из воздуха в виде аммиака (1656 г. признал, что в виде нитратов из почвы).

В 1859 г. И. Кноп и Ю. Сакс доказали, что растения можно вырастить до полного созревания в водной среде, где содержится всего семь элементов: N, P, K, S, Ca, Mg, Fe. Создали основу для вегетационного метода, окончательно утвердили минеральную теорию питания.

П.А. Костычев, В.В. Докучаев разработали основы научного почвоведения. К.А. Гидройц обосновал учение о почвенном поглощающем комплексе.

Позже было установлено, что растениям в небольшом количестве нужны и другие элементы, выявлена их физиологическая роль. Были разработаны приемы и способы внесения минеральных удобрений, создана их новые формы.

Современные представления о питании растений основываются на работах многих ученых. Из русских исследователей наибольший вклад в изучение корневого питания внесли Д. А. Сабинин, который создал школу физиологов минерального пи­тания в нашей стране, внес большой вклад в изучение поглотительной деятельности корня и создание концепции круговорота веществ в растении. Д. Н. Прянишников - основоположник агрохимии в России, придавал большое значение минеральным удобрениям. Его научные труды о корневом питании растений и удобрениях положены в основу химизации сельского хозяйства.

studfiles.net

Минеральное питание растений

Минера́льное пита́ние растений

Усвоение ими из внешней среды ионов минеральных солей, необходимых для нормальной жизнедеятельности растительного организма. К элементам М. п. р. относятся N, Р, S, К, Ca, Mg, а также Микроэлементы (Fe, В, Cu, Zn, Mn и др.). М. п. р. складывается из поглощения минеральных веществ в виде ионов, их передвижения по растению и включения в Обмен веществ. Одноклеточные организмы и водные растения поглощают ионы всей поверхностью, высшие наземные растения — поверхностными клетками корня (См. Корень), в основном корневыми волосками (См. Корневые волоски). Ионы сначала адсорбируются на клеточных оболочках, затем проникают в цитоплазму через окружающую её липопротеидную мембрану — плазмалемму. Катионы (за исключением К+) проникают через мембрану пассивно, путём диффузии, анионы, а также К+ (при низких концентрациях) — активно, с помощью молекулярных «ионных насосов», транспортирующих ионы с затратой энергии. Скорость активного транспорта ионов (См. Активный транспорт ионов) зависит от обеспеченности клетки углеводами и интенсивности дыхания, скорость пассивного поглощения — от проницаемости биологических мембран (См. Биологические мембраны), разности концентраций и электрических потенциалов между средой и клеткой. Проницаемость мембраны для разных ионов неодинакова. Так, для катиона К+ она в 100 раз выше, чем для Na+, и в 500 раз выше, чем для анионов. Поглощённые ионы передвигаются от клетки к клетке через соединяющие их цитоплазматические перемычки — Плазмодесмы. У высших растений в корне и стебле имеется специальная сосудистая система для транспорта минеральных веществ и их органических соединений (синтез которых частично происходит и в корне) в листья. По мере старения нижних листьев некоторые минеральные вещества оттекают из них в растущие органы растения, где могут использоваться повторно.

Каждый элемент М. п. р. играет в обмене веществ определённую роль и не может быть полностью заменен др. элементом. Азот входит в состав белков — основных веществ цитоплазмы, а также в состав амидов, нуклеиновых кислот, гормонов, алкалоидов, витаминов (B1, B2, B6, PP) и хлорофилла. Азот поглощается в форме аниона NO-3 (нитрата) и катиона NH+4 (аммония), образующихся при разложении перегноя микроорганизмами почвы. Молекулярный азот (N2), который является основной составной частью воздуха (79 %), может усваиваться только некоторыми видами низших растений (см. Азотфиксирующие микроорганизмы). Нитраты с помощью фермента нитратредуктазы восстанавливаются до аммония. Аммоний соединяется с органическими кислотами, образуя аминокислоты, которые затем включаются в белки. Фосфор входит в состав нуклеопротеидов клеточного ядра, фосфолипидов клеточных мембран, фосфатидов и фосфорных эфиров сахаров. Особенно важно участие фосфора в фотофосфорилировании, в процессе которого солнечная энергия, аккумулируемая в форме богатых энергией связей аденозинтрифосфата (АТФ), используется на усвоение CO2 из воздуха и образование органических веществ. В форме макроэргических связей АТФ запасается также энергия, выделяемая при дыхании за счёт окисления органических веществ (см. Окислительное фосфорилирование), образуемых в процессе Фотосинтеза. Фосфор поглощается в форме аниона ортофосфорной кислоты (PO3-4, или фосфата) и включается за сотые доли секунды в органические соединения в неизменном виде. Вместе с тем в растениях всегда содержится много неорганического фосфата (его физиологическое значение не ясно). Сера, как и азот, входит в состав всех белков, а также пептидов (глутатион), некоторых аминокислот (цистин, цистеин, метионин) и эфирных масел. Сера поглощается растениями в форме аниона (SO2-4, или сульфата), который в клетках восстанавливается, образуя дисульфидные (—S—S—) и сульфгидрильные (—SH) группы (последние образуют связи, закрепляющие конфигурацию белковой макромолекулы). Калий поглощается в форме катиона К+ и в такой же форме остаётся в клетке, не образуя прочных органических соединений. Он вступает лишь в слабые адсорбционные взаимодействия с белками и в обменные реакции с органическими кислотами. В отличие от N, Р и S, непосредственно участвующих в создании органического материала растительной клетки, К не является в полном смысле питательным элементом. Он повышает водоудерживающую способность цитоплазмы, интенсивность фотосинтеза, отток ассимилятов, участвует в функционировании устьиц и др. Кальций и магний поглощаются в форме двухвалентных катионов: Ca2+ и Mg2+. Основная функция Ca состоит в стабилизации клеточных структур. Ионы Ca2+ («кальциевые мостики») связывают между собой молекулы липидов, обеспечивая их упорядоченное расположение в клеточных мембранах. Соединения Ca с пектиновыми веществами склеивают оболочки соседних клеток. В отличие от др. элементов М. п. р., Ca в растении малоподвижен. Он практически не реутилизируется и накапливается в стареющих органах. Ca необходим для поддержания структуры рибосом (См. Рибосомы), в которых происходит синтез белка. Mg входит в состав хлорофилла, активирует ферменты, переносящие фосфат с АТФ на молекулу сахара. Железо входит в состав ряда ферментов, в том числе дыхательных (цитохромов (См. Цитохромы)). Оно участвует в синтезе хлорофилла, хотя и не входит в его состав. Возможно также М. п. р. через листья (см. Внекорневое питание растений).

Вместе с воздушным питанием (Фотосинтезом) М. п. р. составляет единый процесс обмена веществ между растением и средой. Оно влияет на все физиологические процессы (дыхание, рост, развитие, фотосинтез, водный режим и т. д.) и, в свою очередь, зависит от них. Поэтому одно из наиболее успешных средств управления продуктивностью культурных растений — регулирование М. п. р. с помощью удобрений.

Лит.: Прянишников Д. Н., Агрохимия, Избр. соч., т. 3, М., 1952; Курсанов А. Л., Взаимосвязь физиологических процессов в растении, М., 1960; Колосов И. И., Поглотительная деятельность корневых систем растений, М., 1962; Сатклифф Дж. Ф., Поглощение минеральных солей растениями, пер. с англ., М., 1964; Сабинин Д. А., Избранные труды по минеральному питанию растений, М., 1971; Физиология корня, М., 1973.

Д. Б. Вахмистров.

Источник: Большая советская энциклопедия на Gufo.me

gufo.me


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта