Клетки растений размер. Средние размеры клеток животных и растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

От чего зависит форма клеток? Формы клеток. Клетки растений размер


От чего зависит форма клеток? Формы клеток

Сегодня мы разберем вопрос: "От чего зависит форма клеток?". Для начала заметим, что наше тело полностью состоит из отдельных клеточек. Все наши и внутренние, и внешние органы – это конструктор, составляющие части которого – маленькие клеточки, которые мы можем рассмотреть только под микроскопом.

От чего зависит форма клеток? Здесь можно выделить целый ряд факторов, которые мы перечислим немного позже. Для начала нам предстоит познакомиться со структурой (строением) клетки. Важно знать и то, что все их можно разделить на группы:

  • растительные;
  • животные;
  • клетки бактерий.

Мы рассмотрим каждый вид отдельно.

Клетка

Все живое вокруг нас состоит из клеток, которые представляют собой полость, окруженную мембраной. Это полое пространство заполнено водным и концентрированным раствором, основа которого – вода.

от чего зависит форма клеток

Так мы можем утверждать: клетка – это элементарная единица, они могут не только образовывать нечто большее, но и существовать самостоятельно. Они обладают рядом возможностей, таких как:

  • обмен веществ;
  • существование самостоятельно;
  • самовоспроизведение;
  • развитие.

Важно знать, что они могут иметь разную форму и размеры. От чего зависит форма клеток, мы обязательно разберем после ознакомления с их строением. Клетка, как и все живое на нашей планете, эволюционирует, мы не будем говорить о самом процессе преобразования, а рассмотрим уже современный результат.

Строение

Несмотря на то, что формы клеток, размеры и предназначения могут быть разнообразны, они имеют довольно схожее строение. Выделим общие структурные единицы:

  • клеточная мембрана;
  • цитоплазма;
  • ядро.

То есть можно выделить три структурные единицы, которые можно встретить в большинстве случаев. Однако есть и исключения. Возьмем мышцы, ее клетки состоят из мембраны, цитоплазмы и нескольких ядер. Сейчас мы рассмотрели пример, когда наблюдается в одной клетке множество ядер, но есть и полное их отсутствие. Примером второго варианта может быть эритроцит. Последние не обладают таким количеством функций и возможностей, так как нет возможности самообновляться и воспроизводиться (потому что наблюдается отсутствие ядра).

Важно знать и то, что такое протоплазма. Это общность ядра и цитоплазмы. Сейчас мы кратко рассмотрим, какие функции выполняет каждый компонент клетки. Мембрана выполняет в первую очередь барьерную функцию, отделяет протоплазму от проникновения ненужных веществ.

Цитоплазма напоминает желеобразную массу и состоит из трех компонентов:

  • гиалоплазмы;
  • органелл;
  • включений.

Именно цитоплазма отвечает за жизненно важные процессы клетки: обмен веществ, энергетический и информационный обмен.

Среди всех функций ядра можно выделить следующие: регуляция обмена веществ, синтез РНК, хранение и передача наследственной информации.

Формы

От чего зависит форма клеток? От их предназначения – это в первую очередь. В данном разделе мы выделим возможные варианты. Но перед тем важно отметить их размеры, которые также весьма различны. Например, некоторые бактерии имеют размер примерно 0,2 мкм. Если кто-то не знает, то 1 мкм равен одной тысячной 1 мм. Такую клеточку нельзя увидеть невооруженным глазом, но есть и более крупные примеры (яйцо курицы, перепела, страуса и так далее). По сути – это одна клетка, а ее размеры достигают 18 сантиметров в длину.

Выделим некоторые формы:

  • шар;
  • многогранник;
  • звезда;
  • цилиндр и так далее.

Вы видите, какое существует разнообразие форм и размеров клеток. Самую простую форму имеет лимфоцит – шар, в виде многогранника выступают гепатоциты (клетки печени), звезда – остеобласт (костная ткань) и так далее.

Растительные клетки

Формы клеток растительного происхождения постоянно одинаковы, а вот животные могут меняться. Растительные имеют прочную оболочку, что не дает им трансформироваться.

формы клеток

Размеры колеблются обычно между 10 и 100 мкм (размеры клеток высших растений). Но есть и более крупные клетки, они служат для запасов питательных веществ и воды. Такими являются клубни картофеля или сочных плодов. Мы можем невооруженным глазом увидеть клетки мякоти лимона, арбуза или апельсина, так как их размер - несколько миллиметров. Некоторые волокна (лен, крапива) достигают в длину до 80 миллиметров.

Животные клетки

формы и размеры клеток

Сейчас мы рассмотрим кратко формы и размеры клеток животного происхождения. Важно знать и то, что они имеют немного другое строение, нежели растительные. Сравните фотографии в прошлом и этом разделе. В большинстве случаев клетки животных очень мелкие (около 50 микрон). Поэтому их приходится изучать под микроскопом. Формы и размеры очень сильно отличаются. Для примера:

  • клетка мышцы – вытянутая форма;
  • клетка крови – овальная форма;
  • клетка кожи – плоская или бокаловидная форма.

Клетки бактерий

формы клеток животных

Мы уже рассмотрели формы клеток животных и растений, но как выглядят клетки бактерий? Все бактерии можно разделить на группы (по форме):

  • сферические;
  • палочковидные;
  • извитые.

Можете увидеть некоторые примеры на фотографии, представленной в разделе. Бактерии имеют очень малые размеры, эти клетки можно увидеть только под сильным увеличением микроскопа.

fb.ru

Средние размеры клеток животных и растений

 

Происхождение клетки Диаметр (в мкм) Объем (в мкм3)
Клетка печени человека
Малая клетка тимуса
Клетка меристемы (корешок лука)
Клетка паренхимы плода растения 1 х 108

 

1. Мембранная система.

2. Цитоплазматический мат-рикс (основное вещество клеток).

3. Клеточные органеллы (внутриклеточные компартменты).

4. Клеточные включения.

Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.

а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот.

На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — это своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана также содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.

Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Этот гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарной мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.

У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.

б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).

Открыта К. Портером в 1945 г. Толщина трубочек и других структур этой сети равна 5-6 нм.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярной массой 4 х 106, служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярной сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.

Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом.

Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов (см. ниже) представляют собой чрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Эти структуры получили название микросом и их широко используют в лабораторной работе для решения тех или иных вопросов молекулярной организации клеток.

в) Комплекс Гольджи. Этот комплекс, называемый еще пластинчатым, был открыт итальянцем Камилло Гольджи еще в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а также белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени этот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует также и в формировании лизосом.

Цитоплазматический матрикс. Этот структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом еще в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а также различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а также АТФ, АДФ, ионы ряда неорганических солей (K+, Mg2+, Са2+, C1-, НСО-2 3, НРО4-2), тРНК.

В цитоплазме содержатся микрофиламенты (нити) толщиной 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а также филаменты промежуточных размеров. Эти структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином.

Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов заключается в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а также g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые «окружают» центриоли, в результате чего предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Эти белки формируют структуру, которая образует микротрубочный «ансамбль». Их значение до конца не выяснено, но предположительно заключается в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.

В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.

Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембранной системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение также в делении клетки.

Клеточные органеллы. Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.

а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).

Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры его колеблются от 2 до 100 мкм, а объем составляет около 65 мкм3. Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объема ядра к объему цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.

Строение ядра характеризуется чрезвычайной сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться в зависимости от интенсивности метаболизма. В ядре содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядерной мембраной, построенной из двух слоев (наружного и внутреннего) толщиной по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).

Ядерная мембрана и ядерные поры объединены с мембранной системой клетки, в результате чего клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство шириной 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.

Таблица 4

Похожие статьи:

poznayka.org

Растительная клетка

Для консервирования используют различные виды овощей, фруктов и ягод.

Все они обладают рядом свойств, характерных для сырья растительного происхождения. Вместе с тем имеются и существенные различия, зависящие от вида и сорта сырья, условий его выращивания, степени зрелости.

Растительная ткань состоит из клеток: паренхимных и прозенхимных.

Паренхимные клетки имеют округлую или многогранную форму. Размер таких клеток в любом сечении примерно одинаковый и большей частью колеблется от 10 до 60 мкм. Однако в клубнях и сочных плодах паренхимные клетки могут достигать и больших размеров — до 1 мм в сечении.

Прозенхимные клетки имеют удлиненную форму. Размеры их в поперечном сечении примерно такие же, как и паренхимных клеток, но длина иногда измеряется десятками миллиметров.

Ткань плодов и овощей состоит в основном из паренхимных клеток.

Прозенхимные клетки образуют преимущественно механические и проводящие ткани, свойственные стеблям растения.

Развившаяся клетка зрелых плодов состоит из тонкой эластичной оболочки, протопласта и вакуолей. В состав протопласта входят протоплазма, ядро и включения, к которым относятся пластиды, крахмальные зерна, растительные масла, а также кристаллы некоторых солей.

Оболочка клетки состоит из кристаллических частичек — мицелл — и имеет вид стекловидной прозрачной перепонки. Оболочка молодой клетки очень тонкая и образована целлюлозой. При дальнейшем развитии клетки оболочка увеличивается в размерах, в ней накапливаются протопектин, гемицеллюлозы, а иногда также кутин, суберин или лигнин. Нерастворимые в воде вещества, образующие оболочку, придают ей, а, следовательно, и клетке механическую прочность.

Кутин представляет собой воскообразное вещество, состоящее из смеси сложных эфиров высокомолекулярных одноатомных спиртов (например, октадецилового спирта — C18h47OH) и жирных кислот, в частности каприновой — Ch4(Ch3)8COOH. Кутином покрыты внешние клетки кожицы некоторых плодов (яблоки, сливы) и клубней (картофель). Эти клетки образуют так называемую кутикулу, которая защищает сырье от действия микроорганизмов, а также от испарения влаги. Кутин менее эластичен, чем целлюлоза, и откладывается в виде неровных извилистых слоев, не имеющих прочной связи с остальными компонентами оболочки клетки.

Суберин — это жироподобное вещество, являющееся продуктом полимеризации насыщенных и ненасыщенных оксикислот жирного ряда. Суберин образует опробковевшую ткань, что наблюдается главным образом на корнях и стеблях. На плодах пропитанные суберином клетки появляются при заживлении механически поврежденной ткани. Суберин не пропускает ни воды, ни газов, и поэтому опробковевшие со всех сторон клетки отмирают.

Лигнин состоит из ароматических соединений, являющихся производными одно-, двух — и трехатомных фенолов. Он заполняет пустоты между мицеллами целлюлозы, образующими сетчатую структуру, вызывая одревеснение ткани. При этом жизненные функции клеток практически не нарушаются. Лигнин не увеличивает механической прочности клеток, но повышает их стойкость против микроорганизмов. Образование лигнина наблюдается преимущественно в проводящих и механических тканях растений.

Протоплазма представляет собой прозрачную студенистую массу, которая в молодой клетке заполняет все находящееся под оболочкой пространство. По мере созревания количество протоплазмы в клетке уменьшается. Вместо нее появляются и развиваются вакуоли с клеточным соком. В зрелой клетке протоплазма содержится в виде тонкого слоя, прилегающего непосредственно к оболочке, а также плазменных тяжей (нитей), пересекающих клетку в разных направлениях.

Химический состав протоплазмы непостоянный. В среднем она содержит 80% воды. Из остальных веществ большую часть (65%) составляют белки, которые, связывая часть воды, образуют структуру протоплазмы. Вода, связанная белками, называется гидратационной. Остальная вода находится в протоплазме в свободном состоянии.

Помимо белков, протоплазма содержит и другие азотистые вещества, в частности аминокислоты (1,5% к количеству сухих веществ), а также углеводы (до 12%), жиры и липоиды (до 12%). Кроме того, в протоплазме находятся: циклический ненасыщенный алкоголь холестерин — С27h55ОН; жироподобный фосфатид лецитин, содержащий остатки глицерина, жирных кислот, фосфорной кислоты и холина; соли органических кислот; фосфорная кислота. Большинство белков протоплазмы содержит фосфор.

По своей структуре протоплазма имеет зернистое строение и разделяется на три слоя: плазмолемму, мезоплазму и тонопласт. Плазмолеммой называется перепончатый наружный слой протоплазмы, примыкающий к оболочке клеток. Мезоплазма составляет основной центральный слой протоплазмы. Тонопласт — это внутренний слой протоплазмы, граничащий с вакуолями.

Протоплазма вместе с ядром и пластидами обеспечивает жизнедеятельность клетки и протекание таких процессов, как питание, рост и размножение клеток. В живой протоплазме непрерывно происходят процессы образования и разрушения химических веществ, в связи с чем живая ткань отличается изменчивостью.

Клеточное ядро располагается в протоплазме клеток и имеет важное значение для их размножения и развития. В частности, предполагают, что с ядром связано образование ферментов, играющих большую роль в жизнедеятельности тканей.

В паренхимных клетках ядро имеет шаровидную или эллипсовидную форму, а в прозенхимных — удлиненную. Иногда в клетке содержится несколько небольших ядер.

По химическому составу ядра сходны с протоплазмой, но отличаются большим содержанием нуклеопротеидов, а также органически связанного железа.

Пластиды представляют собой образования, находящиеся в протоплазме. Они имеют важное значение, так как богаты ферментами. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

В растительной клетке может содержаться от 20 до 50 хлоропластов размером 4—6 мкм каждый. Находящиеся в хлоропластах хлорофилловые зерна округлой или многогранной формы придают им зеленую окраску. Хлорофилловые зерна расположены в хлоропластах неравномерно.

Помимо хлорофилла, в состав хлоропластов входит 58—75% воды, 10—20% белков, 7—15% липоидов, а также углеводы, минеральные и другие вещества. Хлорофилл в хлоропластах связан с белком химической или адсорбционной связью.

Хлоропласты играют важную роль в процессах фотосинтеза, при которых происходит новообразование органических веществ в растениях. В центре хлоропласта находится вакуоль, являющаяся местом, где синтезируется крахмал.

Хромопласты расположены в протоплазме клеток равномерно. Они содержат каротин и поэтому окрашены в оранжевый цвет. Хромопласты представляют собой пластинки, иглы или зерна неправильной формы. Их форма может служить признаком видового и сортового различия сырья.

Лейкопласты — это очень мелкие бесцветные пластиды шаровидной или продолговатой формы. Они содержатся главным образом в клубнях, корнях или семенах растений, концентрируясь возле клеточных ядер. Из лейкопластов у некоторых видов сырья (картофель) образуется крахмал, который является запасным питательным веществом растений.

В процессе созревания возможен переход одних видов пластид в другие. В частности, лейкопласты незрелых плодов могут превращаться в хлоропласты. Хлоропласта в свою очередь переходят в хромопласты.

Крахмальные зерна отлагаются в пластидах и имеют кристаллическое строение. Форма крахмальных зерен зависит от вида растений и от строения пластид. У бобовых культур крахмальные зерна имеют овальную форму.

Алейроновые зерна представляют собой запасные белковые вещества. Они имеют круглую форму и малые размеры. Особенно много алейроновых зерен откладывается в семенах бобовых культур, где они располагаются между крахмальными зернами. Алейроновыми зернами богаты также злаки.

Растительные масла служат запасным энергетическим материалом и откладываются главным образом в семенах растений.

Щавелевокислый кальций может отлагаться в растительной ткани в виде кристаллов различной формы. Иногда образуются скопления сросшихся кристаллов — так называемые друзы.

Вакуоли представляют собой полости, пространство которых ограничено слоем протоплазмы. В неразвитой клетке вакуоли отсутствуют. По мере созревания в клетке появляется большое количество мелких вакуолей, которые затем сливаются.

Вакуоли заполнены клеточным соком, представляющим собой водный раствор различных органических веществ: сахаров, белков, кислот и их солей, дубильных веществ, глюкозидов, водорастворимых витаминов. Клеточный сок плодов и овощей обладает большой пищевой ценностью. В зрелом сырье с развитыми клетками клеточного сока содержится больше, чем в недозрелом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта