Клетки растений пластиды. Строение и функция лейкопластов в клетке

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Что такое пластид в биологии? Клетки растений пластиды


Что такое пластид в биологии?

Чем отличаются растительные клетки от животных? Ответ кроется в окрасе растений: их расцветка зависит от содержания пигмента в клетках. Эти пигменты накапливаются в специальных органеллах, которые называются пластидами.

Отличием растительных клеток от животных является наличие хлоропластов, лейкопластов и хромопластов. Эти органеллы отвечают за ряд функций, среди которых явно доминирует процесс фотосинтеза. Именно пигмент, содержащийся в пластидах растений, отвечает за их окрас.

В клетке любого эукариотического организма выделяют немембранные, одномембранные и двухмембранные органеллы. Пластиды и митохондрии относятся к последнему типу клеточных структур, т. к. они окружены двумя слоями ЦПМ.что такое пластид

Что такое пластиды клетки? Виды пластид

  1. Хлоропласты. Основные двухмембранные органеллы растительных клеток, отвечающие за процессы фотосинтеза. Они состоят из тилакоидов, на которых располагаются фотосинтезирующие комплексы. Функция тилакоидов – увеличение активной поверхности органеллы. Что такое зеленые пластиды? Это хлоропласты, которые содержат пигменты зеленого цвета – хлорофиллы. Выделяют несколько групп этих молекул, каждая из которых отвечает за свои специфические функции. У высших растений наиболее распространен хлорофилл а, который является главным акцептором солнечной энергии при фотосинтезе.
  2. Лейкопласты. Бесцветные пластиды, которые выполняют запасающую функцию в клетках растений. Они могут иметь неправильную форму, начиная от шаровидной и заканчивая веретеновидной. Лейкопласты часто скапливаются вокруг ядра клетки, а в микроскопе их можно обнаружить только в случае большого количества гранул. В зависимости от природы запасаемого вещества различают три типа лейкопластов. Амилопласты служат вместилищем для углеводов, которые растение хочет сохранить до определенного момента. Протеопласты запасают различные белки. Олеопласты скапливают масла и жиры, которые являются источником липидов. Вот что такое пластид, который выполняет функцию запасания.
  3. Хромопласты. Последний тип пластид, который имеет характерный желтый, оранжевый или даже красный цвет. Хромопласты – это конечная стадия развития хлоропластов, когда хлорофилл разрушается, и в пластидах остаются только жирорастворимые каротиноиды. Хромопласты содержатся в лепестках цветов, зрелых плодах и даже в стволах растений. Точное значение этих органелл точно неизвестно, однако предполагают, что они являются вместилищем для каротиноидов, а также придают растениям специфическую окраску. Эта окраска привлекает насекомых-опылителей, что способствует размножению растений.

что такое пластиды в биологии

Лейкопласты и хромопласты не способны к фотосинтезу. Хлорофилл в этих органеллах редуцировался или исчез, поэтому их функция координально поменялась.

что такое пластиды клетки

Роль хлоропластов в передаче генетической информации

Что такое пластид? Это не только энергетическая станция клетки, но и хранилище части наследственной информации клетки. Она представлена в виде кольцевой молекулы ДНК, что напоминает строение нуклеоида прокариот. Это обстоятельство дает возможность предполагать симбионтное происхождение пластид, когда бактериальные клетки поглощаются клетками растений, теряя свою автономию, однако оставляя некоторые гены.

ДНК хлоропластов относится к цитоплазматической наследственности клетки. Она передается только с помощью половых клеток, детерминирующих женский пол. Спермии не могут передать мужскую ДНК пластид.

Та как хлоропласты – это полуавтономные органеллы, многие белки синтезируются именно в них. Также при делении эти пластиды самостоятельно реплицируются. Однако большая часть белков хлоропластов синтезируются, используя информацию с ДНК ядра. Вот что такое пластид с точки зрения генетики и молекулярной биологии.что такое зеленые пластиды

Хлоропласт – энергетическая станция клетки

В процессе фотосинтеза на тилакоидах хлоропластов протекает множество биохимических реакций. Их основная задача – это синтез глюкозы, а также молекул АТФ. Последние несут в своих химических связях большое количество энергии, которая жизненно необходима клетке.

Что такое пластид? Это источник энергии наряду с митохондриями. Процесс фотосинтеза делится на световую и темновую стадии. В процессе световой стадии фотосинтеза происходит присоединение фосфорных остатков к молекулам АДФ, и на выходе клетка получает АТФ.

fb.ru

Строение и функция лейкопластов в клетке :: SYL.ru

Характеристика и функции лейкопластов в клетке, их роль среди хлоропластов и хромопластов, краткий обзор всех пластид - ключевые пункты, которые будут рассмотрены в данной статье.

Пластиды

Пластидами (греч. plastos - "вылепленный") называют органоиды мембран, присущие эукариотам-автотрофам, питающимся с помощью фотосинтеза - "зеленым" одноклеточным, низшим водорослям (у них пластиды именуются хроматрофами), высшим растениям. Они, как и митохондрии, окружены парой мембран, имеют свои ДНК и РНК. Их основное предназначение - жизнеобеспечение растительной клетки энергией путем синтеза органических веществ.Функция лейкопластов

Все разновидности пластидов, по сути, - это жизненный путь одного органоида. Полным их набором могут похвастаться высшие зеленые растения, однако в одной клетке не может быть больше одного вида этих органелл.

Типы пластид

Существует три типа пластид: лейкопласты, хлоропласты и хромопласты. Как уже говорилось, они "превращаются" одна в другую. Трансформация лейкопластов в хлоропласты знаменуется окраской организма в зеленый цвет, а хлоропластов в хромопласты - пожелтением. Далее мы подробно остановимся на описании лейкопластов, а здесь кратко охарактеризуем остальные пластиды:

  • Хлоропласты - пластиды, содержащие хлорофилл. Это пигмент зеленого цвета, поэтому растения, его содержащие, имеют такую же окраску. Хлоропласт - это округлая органелла размером 4-10 мкм. Она наполовину состоит из белка, на 35 % из жиров, на 7 % из пигмента, остальное приходится на РНК и ДНК.
  • Хромопласты. Эти органоиды могут быть и игольчатыми, и округлыми, и многоугольными. Тельца содержат желтые, красные, оранжевые пигменты - каротиноиды. Именно они - причина окраски осенних листьев, цветов, зрелых фруктов.Какую функцию выполняют лейкопласты?

Кроме этих основных единиц, также выделяют:

  • Пропластиды - предшественники пластид мельчайших размеров (0,2-1 мкм). Иногда содержат фитоферритин - белок, сохраняющий ионы железа.
  • Амилопласты - имеют некоторое сходство с пропластидами, однако отличаются от них содержанием частиц крахмала. Их функция - запас питательных веществ (например, в клубнях картофеля). Так же, как и лейкопласты, могут обращаться в хлоропласты и хромопласты.
  • Протеинопласты - их предназначением является хранение белков.
  • Этиопласты - образуются из пропластид в темновой фазе, при свете трансформируются в хлоропласты.
  • Элайопласты запасают в организме растения жиры.

Происхождение

Лейкопласты: строение и функцииИстория возникновения пластид, опять же, схожа с историей митохондрии. Считается, что они появились в результате "взятия в плен" предком клетки-эукариота цианобактерии. Внешняя мембрана лейкопластов и прочих пластид схожа с мембраной "захватчика", внутренняя мембрана и строма - с цитоплазмой и мембраной цианобактерии.

Размножение лейкопластов и прочих пластид

Пластиды "рождаются" путем деления. Чаще всего размножаются пропластиды, хлоропласты и этиопласты. Подобная функция лейкопластов развита слабо. Путь их размножения схож с делением прокариотов. Сначала они сжимаются в центре, потом проявляется перетяжка между дочерними пластидами, которая прогрессирует до полного разделения.

Интересно, что наследование пластид не у всех растений происходит одинаково:

  • по "отцовской" линии: некоторые голосемянные - саговники, гинкго;
  • по "материнской" линии: подавляющая часть цветковых;
  • наследование от обоих "родителей": ослинник, свинчатка, герань.

Строение лейкопластов

Перед тем как разобрать, какую функцию выполняют лейкопласты, подробно остановимся на их строении.

Эти органоиды - бесцветные пластиды относительно небольших размеров, не имеющие в своем составе пигментов. Присутствуют в живых клетках растений - в запасающих тканях. Форма их бывает самой разной: округлая, слегка продолговатая, амебоидная, эллипсоидная, шаровидная, гантелевидная. В процессе изготовления препаратов лейкопласты легко теряют свою форму при незначительном повреждении, расплываются. Их бывает трудно отличить от пропластид и от митохондрий, т. к. они не имеют ярко выраженных особенностей строения.функции лейкопластов в клетке

Если разглядывать лейкопласт под электронным микроскопом, нельзя не заметить, что он покрыт двумя слоями мембраны, а в строме заметно несколько выростов. Внешняя часть мембраны гладкая, а внутренняя покрыта незначительным количеством тилакоидов. Все остальное пространство органеллы заполнено органическими веществами. От веществ, которые "хранятся" в строме, зависит тип и функция лейкопластов: элеопласты, протеинопласты, амилопласты. Обычно строма содержит рибосомы типа 70-S, кольцевую ДНК, ферменты гидролиза и синтеза веществ.

Также лейкопласты, в отличие от хлоропластов, не имеют ламеллярной системы. Но при этом на свету способны образовывать нормальные тилакоидные структуры, тем самым обретая зеленый окрас и "обращаясь" в хлоропласты. В темноте же они накапливают различные питательные элементы в проламеллярных образованиях и гранулы крахмала в строме. В клубнях и корневищах, эндосперме злаковых лейкопласты выполняют функцию амилопластов, заполнив целиком строму "запасными" крахмальными зернами.

Какую функцию выполняют лейкопласты?

Лейкопласты (греч. "белый" + "вылепленный") имеют в своем составе ферменты, позволяющие из глюкозы, полученной в результате фотосинтеза, получить крахмал. Основная функция лейкопластов напрямую связана с этой их особенностью - они синтезируют и накапливают в себе питательные вещества. А чаще всего образуют крахмал из поступающей к ним глюкозы. Затем это вещество откладывается в их строме. Крахмал, содержащийся в лейкопластах, именуют вторичным. Первичный содержится в хлоропластах, образуясь в процессе фотосинтеза.Лейкопласты выполняют функцию

Кроме накопления крахмала, функция лейкопластов может состоять и в накоплении других веществ - белков, жиров, масел. Как уже говорилось, она влияет на то, как эти органеллы будут называться - амилопластами, протеинопластами или элайопластами. Важно отметить, что в клетке растения могут одновременно содержаться лейкопласты всех этих типов.

Вот и все, что мы хотели рассказать про лейкопласты, строение и функции этих органелл, а также про их общие с иными пластидами (хлоропластами, хромопластами, пропластидами и др.) качества.

www.syl.ru

Пластиды | Cell Biology.ru

Хлоропласт

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.У высших растений также встречается деление зрелых хлоропластов, но очень редко. Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид. Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:

Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид. Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней. Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Хлоропласты

Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров. структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую.

Функции хлоропластов

Геном пластид

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.Эти открытия вновь пробудили интерес к теории симбиотического происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.Как оказалось, хлоропласты могут быть введены в цитоплазму клеток культуры фибробластов мыши путем пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.Эти наблюдения и целый ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания их функций и тем более для их воспроизведения.В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох.Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов. Под контролем ядерных генов находится большая часть рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией.Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму. Из стромы импортируемые белки согласно дополнительным сигнальным последовательностям могут включаться в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя и внутренняя мембраны) или локализоваться в строме, входя в состав рибосом, ферментных комплексов цикла Кальвина и др.Удивительное сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов – с другой, служит веским аргументом в пользу теории симбиотического происхождения этих органелл. Согласно этой теории, возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотический генофор формируется в обособленное от цитоплазмы ядро. Так могли возникнуть гетеротрофные эукариотические клетки. Повторные эндосимбиотические взаимоотношения между первичными эукариотическими клетками и синезелеными водорослями привели к появлению в них структур типа хлоропластов, позволяющих клеткам осуществлять автосинтетические процессы и не зависеть от наличия органических субстратов (рис. 236). В процессе становления такой составной живой системы часть генетической информации митохондрий и пластид могла изменяться, перенестись в ядро. Так, например две трети из 60 рибосомных белков хлоропластов кодируется в ядре и синтезируются в цитоплазме, а потом встраивается в рибосомы хлоропластов, имеющие все свойства прокариотических рибосом. Такое перемещение большой части прокариотических генов в ядро привело к тому, что эти клеточные органеллы, сохранив часть былой автономии, попали под контроль клеточного ядра, определяющего в большей степени все главные клеточные функции.ПропластидыПри нормальном освещении пропластиды превращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов. Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид, этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.При освещении клеток мембранные пузырьки и трубочки быстро реорганизуются, из них развивается полная система ламелл и тилакоидов, характерная для нормального хлоропласта.Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы (рис. 226 б). Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах происходит отложение так называемого транзиторного крахмала, который присутствует здесь лишь во время ассимиляции СО2, то в лейкопластах может происходить истинное запасание крахмала. В некоторых тканях (эндосперм злаков, корневища и клубни) накопление крахмала в лейкопластах приводит к образованию амилопластов, сплошь заполненных гранулами запасного крахмала, расположенных в строме пластиды (рис. 226в).Другой формой пластид у высших растений является хромопласт, окрашивающийся обычно в желтый свет в результате накопления в нем каротиноидов (рис. 226г). Хромопласты образуются из хлоропластов и значительно реже их лейкопластов (например, в корне моркови). Процесс обесцвечивания и изменения хлоропластов легко наблюдать при развитии лепестков или при созревании плодов. При этом в пластидах могут накапливаться окрашенные в желтый цвет капельки (глобулы) или в них появляются тела в форме кристаллов. Эти процессы сопряжены с постепенным уменьшением числа мембран в пластиде, с исчезновением хлорофилла и крахмала. Процесс образования окрашенных глобул объясняется тем, что при разрушении ламелл хлоропластов выделяются липидные капли, в которых хорошо растворяются различные пигменты (например, каротиноиды). Таким образом, хромопласты представляют собой дегенерирующие формы пластид, подвернутые липофанерозу – распаду липопротедных комплексов.

www.cellbiol.ru

: Теория и практика :: Эукариотическая клетка :: Пластиды

Пластиды (греч.plastides – созидающие, образующие) – это мембранные органоиды фотосинтезирующих эукариотических органоидов – высших растений, низших водорослей, некоторых одноклеточных. Пластиды присутствуют во всех типах клеток растения, в каждом типе находится свой набор этих органоидов. Всем пластидам свойственен ряд общих черт. Они имеют свой генетический аппарат и окружены оболочкой, состоящей из двух концентрических мембран.

Все пластиды развиваются из пропластид. Они представляют собой мелкие органоиды, присутствующие в клетках меристемы, судьба которых определяется потребностями дифференцированных клеток. Все типы пластид представляют собой единый генетический ряд.

Лейкопласты (греч.leucos - белый) – бесцветные пластиды, которые содержатся в клетках растительных органов, лишенных окраски. Они представляют собой округлые образования, наибольший размер которых – 2-4 мкм. Они окружены оболочкой, состоящей из двух мембран, внутри которой находится белковая строма. Строма лейкопластов содержит небольшое число пузырьков и плоских цистерн – ламелл. Лейкопласты способны развиваться в хлоропласты, процесс их развития связан с увеличением размеров, усложнением внутренней структуры и образованием зеленого пигмента – хлорофилла. Такая перестройка пластид происходит, например, при позеленении клубней картофеля. Лейкопласты способны также переходить в хромопласты. В некоторых тканях, таких как эндосперм в зерновке злаков, в корневищах и клубнях лейкопласты превращаются в хранилище запасного крахмала – амилопласты. Онтогенетические переходы одной формы в другую необратимы, хромопласт не может сформировать ни хлоропласт, ни лейкопласт. Точно так же хлоропласт не может вернуться в состояние лейкопласта.

Хлоропласты (chloros-зеленый) – основная форма пластид, в которых протекает фотосинтез. Хлоропласты высших растений представляют собой линзовидные образования, ширина которых составляет по короткой оси 2-4 мкм, по длинной – 5 мкм и больше. Количество хлоропластов в клетках разных растений варьирует очень сильно, в клетках высших растений содержится от 10 до 30 хлоропластов. В гигантских клетках палисадной ткани махорки их обнаружено около тысячи. Хлропласты водорослей первоначально были названы хроматофорами. У зеленых водорослей может быть один хроматофор на клетку, у эвгленовых и динофлагеллят молодые клетки содержат от 50 до 80 хлоропластов, старые – 200-300. Хлоропласты водорослей могут быть чашевидными, лентовидными, спиралевидными, пластинчатыми, звездчатыми, в них обязательно присутствует плотное образование белковой природы – пиреноиды, вокруг которого концентрируется крахмал.

Ультраструктура хлоропластов обнаруживает большое сходство с митохондриями, прежде всего в строении оболочки хлоропласта – перистромия. Он окружен двумя мембранами, которые разделены узким межмембранным пространством шириной около 20-30 нм. Наружная мембрана обладает высокой проницаемостью, внутренняя – менее проницаема и несет специальные транспортные белки. Следует подчеркнуть, что наружная мембрана непроницаема для АТФ. Внутренняя мембрана окружает большую центральную область – строму, это аналог митохондриального матрикса. Строма хлоропласта содержит разнообразные ферменты, рибосомы, ДНК и РНК. Есть и существенные различия. Хлоропласты значительно крупнее митохондрий. Их внутренняя мембрана не образует крист и не содержит цепи переноса электронов. Все важнейшие функциональные элементы хлоропласта размещены в третьей мембране, которая образует группы уплощенных дисковидных мешочков – тилакоидов она называется тилакоидная мембрана. Эта мембрана включает в свой состав пигмент-белковые комплексы, прежде всего хлорофилл, пигменты из группы каротиноидов, из которых обычны каротин и ксантофилл. Кроме того, в тилакоидную мембрану включены компоненты электрон-транспортных цепей. Внутренние полости тилакоидов создают третий внутренний компартмент хлоропласта – тилакоидное пространство. Тилакоиды образуют стопки – граны, содержащие их от нескольких штук до 50 и более. Размер гран, в зависимости от числа тилакоидов в них, может достигать 0,5 мкм, в этом случае они доступны для наблюдений светового микроскопа. Тилакоиды в гранах плотно соединены, в месте контакта их мембран толщина слоя составляет около 2 нм. В состав гран, кроме тилакоидов, входят участки ламелл стромы. Это плоские, протяженные, перфорированные мешки, располагающиеся в параллельных плоскостях хлоропласта. Они не пересекаются и замкнуты. Ламеллы стромы связывают отдельные граны. При этом полости тилакоидов и полости ламелл не связаны.

Функция хлоропластов – фотосинтез, образование органических веществ из углекислого газа и воды за счет энергии солнечного света. Это один из важнейших биологических процессов, постоянно и в огромных масштабах, совершающихся на нашей планете. Ежегодно растительность земного шара образует более 100 млрд т. органического вещества, усваивая около 200 млрд тонн углекислого газа и выделяя во внешнюю среду около 145 млрд тонн свободного кислорода.

Хромопласты Это пластиды растительной клетки, имеющие окраску желто-оранжевой гаммы. Их можно определить как сенильные, деградирующие органоиды клетки, они образуются при разрушении хлоропластов. Об этом свидетельствует и химический состав пластид. Если в хлоропластах белки составляют около 50% их общей массы, а липиды 30%, то в хромопластах это соотношение меняется следующим образом: 22% белков, 58% липидов, ДНК уже не обнаруживается. Окраска хромопластов зависит от присутствия каротиноидов и разрушения хлорофилла. Азотсодержащие соединения (производные пиррола), возникающие при распаде хлорофилла, оттекают из листьев так же, как и белки, образующиеся при распаде белково-липидной системы мембран. Липиды остаются внутри перистромия. В них растворяются каротиноиды, окрашивая пластиды в желтые и оранжевые тона. Образование хромопластов из хлоропластов происходят двумя путями. Например, у лютика хромопласты образуются из бледно-зеленых хлоропластов, содержащих крахмал. Постепенно исчезают хлорофилл и крахмал, увеличивается содержание желтого пигмента, который растворяется в липидных каплях, образуя глобулы. Одновременно с образованием глобул происходит окончательное разрушение ламеллярной структуры хлоропласта. В сформировавшемся хромопласте сохраняется только перистромий, глобулы покрывают всю его внутреннюю поверхность, а центр пластиды выглядит оптически пустым. Роль хромопластов в клетке не ясна. Но для растительного организма в целом эти пластиды играют важную роль, так как органы растения, в которых прекращается фотосинтез, становятся привлекательными для насекомых, птиц, других животных, которые осуществляют опыление растений и распространение их плодов и семян. При осеннем пожелтении листьев разрушение хлоропластов и образование хромопластов приводит к утилизации белков и азотсодержащих соединений, которые перед листопадом оттекают в другие органы растения.

media.ls.urfu.ru

Пластиды - это... Что такое Пластиды?

Plastids types ru.svg

Пласти́ды (от др.-греч. πλαστός — вылепленный) — органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНК. По окраске и выполняемой функции выделяют три основных типа пластид:

  • Лейкопласты — неокрашенные пластиды, как правило выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.
  • Хромопласты — пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.
  • Хлоропласты — пластиды, несущие фотосинтезирующие пигменты — хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру.
Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 14 мая 2011.
Biological cell.svg

 

dik.academic.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта