Каротиноиды в растениях. Каротиноиды - это растительные пигменты, придающие красный, оранжевый и желтый цвет овощам и фруктам. Источники каротиноидов. Витамин каротин

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Что такое каротиноиды, зачем они нужны и где их можно найти? Каротиноиды в растениях


это растительные пигменты, придающие красный, оранжевый и желтый цвет овощам и фруктам. Источники каротиноидов. Витамин каротин

Практически с детства мы слышим, что на нашем столе должно быть больше овощей и фруктов. Именно они содержат витамины и минералы, которые так необходимы нашему организму для нормальной работы. Сюда же можно отнести каротиноиды. Что это такое? Какую роль эти вещества играют в организме? Рассмотрим далее.

Что представляют собой каротиноиды

Это именно те самые вещества, которые делают овощи и фрукты желтыми, оранжевыми. Растительному организму каротиноиды необходимы для поглощения солнечной энергии. Надо отметить, что цветовые пигменты присутствуют абсолютно в каждом представителе царства живых организмов.каротиноиды это

Среди всех известных пигментов они наиболее распространены и представлены в большом разнообразии.

Свойства каротиноидов

Разные группы этих соединений обладают различной способностью к поглощению солнечного света. Но есть некоторые свойства, которые их объединяют:

  • Каротиноиды не растворяются в воде.
  • Обладают хорошей растворимостью в органических растворителях: бензоле, гексане, хлороформе.
  • Способны избирательно абсорбироваться на минеральных абсорбентах, это свойство используется для их разделения методом хроматографии.
  • В чистом виде каротиноиды обладают высокой лабильностью: хорошо поддаются воздействию солнечных лучей, чувствительны к кислороду, не выдерживают сильного нагревания, воздействия кислот и щелочей. Под влиянием этих негативных факторов краситель каротин разрушается.
  • В составе протеиновых комплексов каротиноиды становятся более стабильными.

Разновидности каротиноидов

Несмотря на то что все вещества входят в одну группу и имеют близкую структуру, они классифицируются в зависимости от цветовой пигментации на 2 группы:

  1. Каротины. Это углеводороды оранжевого цвета. В структуре отсутствуют атомы кислорода.
  2. Ксантофиллы - окрашены в различные цвета, начиная от желтого и заканчивая красным.

Каротиноиды – это:

  • Альфа-каротин. В большом количестве обнаружен в овощах оранжевого цвета. Попадая в организм, способен превращаться в витамин А. Недостаток альфа-каротина приводит к развитию сердечно-сосудистых патологий.

каротин что это такое

  • Бета-каротин. Содержится в желтых фруктах и овощах. Защищает организм от пагубного воздействия свободных радикалов. Это мощный антиоксидант, который можно назвать защитником иммунной системы.
  • Лютеин. Стоит на страже здоровья сетчатки глаз, защищая ее от вредного воздействия ультрафиолета. При регулярном употреблении снижает риск развития катаракты на 25%. Много лютеина содержится в шпинате, капусте, кабачках и моркови.
  • Бета-криптоксантин. Снижает риск развития воспалительных патологий, особенно ревматоидного артрита и других заболеваний суставов. В большом количестве содержится в цитрусовых, тыкве, сладком перце.
  • Ликопин. Принимает непосредственное участие в нормализации холестеринового обмена. Предотвращает развитие атеросклероза, помогает бороться с лишним весом. Подавляет развитие патогенной микрофлоры кишечника. Источником ликопина являются томаты, паста томатная, арбузы.

желтый фрукт

Все виды каротиноидов играют важную роль в жизнедеятельности живых организмов.

Роль каротиноидов

Рассмотрим значение этих пигментов для человека:

  • Каротиноиды – это вещества, которые являются провитаминами витамина А. В организме он не вырабатывается, но нужен для нормальной жизнедеятельности.
  • Оказывают влияние на состояние кожных покровов и слизистых оболочек.
  • Каротиноиды выполняют антиоксидантную функцию.
  • Оказывают иммуностимулирующее воздействие.
  • Предотвращают хромосомные мутации.
  • Принимают участие в генетических программах уничтожения раковых клеток.
  • Оказывают тормозящее влияние на процесс деления клеток.
  • Подавляют онкогены.
  • Тормозят развитие воспалительных процессов, которые приводят к дегенеративным заболеваниям.
  • Поддерживают здоровье органов зрения.

каротин витамин

  • Активизируют ферменты, которые разрушают вредные вещества.
  • Оказывают влияние на регулярность менструального цикла у женщин.
  • Помогают поддерживать водный баланс.
  • Способствуют транспорту кальция через клеточную мембрану.
  • В организме человека каротиноиды – это вещества, которые используются еще и как запас кислорода в нейрональной дыхательной цепочке.

Из перечня видно, что каротиноиды играют важную роль в организме, а так как синтезироваться они не могут, то должны поступать извне.

Природные источники красящих пигментов

Все желтые фрукты и овощи в своем составе содержат каротиноиды. Обнаружены эти вещества и в зелени, просто из-за зеленого хлорофилла они незаметны, а в осенний период именно они придают листьям яркую окраску.

Среди основных источников каротиноидов можно назвать:

  • Пальмовое масло. Его считают лидером по содержанию кофермента Q10, витамина Е и каротиноидов.
  • Морковь.
  • Плоды рябины.
  • Перец оранжевого цвета.
  • Кукуруза.
  • Все цитрусовые.
  • Хурма.
  • Абрикосы.
  • Тыква.
  • Шиповник.
  • Персики.
  • Томаты.
  • Облепиха.

источники каротиноидов

Обнаружены пигменты и в цветах, например, лепестки календулы богаты каротиноидами, пыльце растений. Содержатся они и в яичном желтке, и в некоторых сортах рыбы.

Процесс усвоения пигментов в организме человека

После попадания данных веществ в организм процесс усвоения начинается в тонком кишечнике с участием определенной группы ферментов. Но в процессе исследований установлено, что усвоение каротиноидов происходит лучше, если употребляются мелко измельченные продукты и подвергшиеся термической обработке.

Важно для полного усвоения и наличие жира. Например, если из сырой моркови усвоится всего около 1% каротиноидов, то после добавления масла процент повысится до 25.

Витамин А в ампулах

Если в организм с пищей поступает недостаточное количество каротиноидов, то можно решить эту проблему, принимая синтетические поливитамины, содержащие эти вещества. Производители выпускают средства в виде:

  • таблеток;
  • капсул;
  • геля.витамин А в ампулах

В составе могут, кроме витамина А, содержаться и другие компоненты:

  • Витамины группы В.
  • Витамин С.
  • Фолиевая кислота.
  • Никотинамид.
  • Биотин.
  • Пантотеновая кислота.
  • Кальций.
  • Витамин К.
  • Фосфор.
  • Йод.
  • Магний и железо.
  • Кремний и ванадий.
  • Молибден и селен.

Витамин А в ампулах необходимо принимать только после консультации с доктором, чтобы не спровоцировать передозировки.

Дозировка каротиноидов

Если в продуктах питания содержится мало каротина (что это такое, мы уже рассмотрели), то необходимо принимать синтетические препараты.

Доза в сутки должна составлять не менее 25 000 МЕ витамина А. При наличии некоторых патологий придется осуществлять корректировку дозы, снижая или повышая ее.

Для лучшего усвоения необходимо суточную норму разделить на два приема. Дозировка также зависит от того, принимается ли комплекс витаминов или добавка, содержащая только одну разновидность каротина: альфа-каротин, бета-каротин, ликопин.

Надо иметь в виду, что в сутки в организм взрослого человека витамин каротин должен поступать в количестве 2-6 мг. Для примера, в одной моркови содержится 8 мг, но не стоит забывать, что не все количество будет усвоено организмом.

Кому показан прием каротиноидов

Особенно рекомендуется принимать синтетические каротиноиды в следующих случаях:

  • Для уменьшения риска развития онкологических патологий предстательной железы, легких.
  • Для защиты сердечной мышцы от заболеваний.
  • С целью снижения скорости развития возрастных изменений в сетчатке глаза.
  • Чтобы укрепить иммунную систему.

Основной эффект от их применения связан с тем, что каротиноиды – это природные антиоксиданты. Молекулы способны нейтрализовать нестабильные свободные радикалы. Но надо отметить, что, несмотря на похожесть между собой, каждая группа каротиноидов оказывает свое воздействие на определенный тип тканей в организме человека.

Не все виды каротиноидов с одинаковой успешностью превращаются в витамин А, лучше всего это получается у бета-каротина, а вот альфа-каротин и криптоксантин способны к таким метаморфозам, но в меньшей степени.

Противопоказания к применению

Не рекомендуется принимать дополнительно синтетические каротиноиды в период вынашивания малыша. Высокие дозы этих веществ могут быть опасны для развивающегося плода.

Не стоит также сочетать прием витаминов с терапией другими лекарственными средствами. Перед использованием обязательно надо посоветоваться с врачом.

Побочные проявления

Если в пищу поступает достаточное количество продуктов, содержащих каротин (что это такое, вам уже известно), и вдобавок принимаются синтетические витамины, существует риск передозировки и развития побочных эффектов. Первым признаком будет окрашивание в оранжевый цвет кожи на руках и ступнях. Опасности это не представляет, при снижении дозировки все приходит в норму.

Если имеет место одновременный прием различных групп каротиноидов, то они мешают усвоению друг друга, а в некоторых случаях могут нанести вред организму.

Перед применением таких веществ, особенно при наличии хронических патологий, обязательно надо получить консультацию у врача.

Каротиноиды в профилактике болезней

Если эти вещества будут поступать в организм постоянно и в достаточном количестве, они могут сыграть профилактическую роль в предупреждении некоторых патологий:

  1. Предохраняют от многих видов раковых заболеваний. Например, ликопин подавляет развитие раковых клеток в предстательной железе. В ходе исследований было установлено, что регулярное употребление блюд с содержанием томатов, которые богаты ликопином, снижает риск развития рака простаты на 45%. Способен данный каротиноид защитить и от рака желудка и пищеварительного тракта.
  2. Альфа-каротин снижает риск заболевания раком шейки матки, а лютеин и зеаксантин уберегут от онкологии легких.
  3. Потребление каротиноидов снижает риск развития сердечных патологий. Постоянное присутствие этих веществ в пище снижает риск инфаркта на 75%.
  4. Все каротиноиды отлично справляются с плохим холестерином.
  5. Снижается риск дегенерации желтого пятна на сетчатке, что становится причиной слепоты в пожилом возрасте.
  6. Каротиноиды предупреждают поражение хрусталика.
  7. Снижается риск заболевания катарактой.

Советы по применению каротиноидов

Можно привести некоторые факты и дать полезные рекомендации по применению этой группы веществ.

  1. Необходимо учитывать, что у женщин, которые предохраняются от нежелательной беременности, принимая оральные контрацептивы, количество каротиноидов в организме снижается.
  2. Во время менопаузы наблюдается такая же тенденция, что говорит о необходимости приема синтетических препаратов.
  3. Подвергшиеся тепловой обработке томаты содержат гораздо больше ликопина, чем свежие плоды. А наличие масла в соусах улучшает его усвоение.дефицит каротиноидов
  4. Ликопин помогает предотвратить инфаркт миокарда, особенно ярко это выражено у некурящих мужчин. А вот большие дозы каротиноидов опасны для курильщиков, есть опасность развития рака легких.
  5. В зеленых овощах каротиноиды также содержатся.
  6. Необходимо помнить, что при длительном хранении каротиноиды распадаются, то же самое происходит и под воздействием света. Поэтому можно сказать, что морковь из супермаркета уже практически не содержит этих полезных веществ.

Казалось бы, при таком обилии продуктов современный человек не может испытывать дефицита каротиноидов, но, как отмечают специалисты, практически 40-60% взрослого населения недополучают этих веществ с пищей. Именно поэтому питание должно быть разнообразным и с большим содержанием овощей и фруктов.

Если этого нет, необходимо покупать синтетические витамины и биологически активные добавки, чтобы обеспечить полноценную работу организма.

fb.ru

Свойства каротиноидов, их роль в растении

Каротиноиды — жирорастворимые пигменты желтого, оранжевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, корнеплодов). В зеленых листьях их окраска маскируется хлорофиллом. С его более ранним разрушением осенью или при неблагоприятных условиях связано пожелтение листьев.

Свойства каротиноидов

Каротиноиды являются тетратерпеноидами (8 остатков изопрена, C5H8). Они могут быть ациклическими (алифатическими), моно- и бициклическими. Циклы на концах молекул каротиноидов — производные ионона. Каротины представляют собой углеводороды с формулой С40Н56. В хлоропластах высших растений содержатся α- и β-каротины. β-Каротин (рис.) имеет два β-иононовых кольца (двойная связь между С5 и С6). При гидролизе β-каротина по центральной двойной связи образуются две молекулы витамина А (ретинола), α-Каротин отличается от β-каротина тем, что у него одно кольцо β-иононовое, а второе ε-иононовое (двойная связь между С4 и С5).

Структурные формулы каротиноидов и
последовательность их превращенийРис.1. Структурные формулы каротиноидов и последовательность их превращений

Ксантофиллы являются кислородсодержащими производными каротина. Ксантофилл лютеин — производное α-каротина, а зеаксантин — β-каротина. В каждом иононовом кольце они имеют по одной гидроксильной группе (С40Н56O2). Дополнительное включение в молекулу зеаксантина двух атомов кислорода по двойным связям С5—С6 (эпоксидные группы) приводит к образованию виолаксантина (С40Н56О4), при включении эпоксидных групп в лютеин образуется неоксантин. Синтез каротиноидов начинается с ацетил ~SKoA через мевалоновую кислоту до ликопина — ациклического каротина, который является предшественником всех других каротиноидов. Синтез каротиноидов не требует света. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей частях спектра от 400 до 500 нм и определяются системой конъюгированных связей. При увеличении числа таких связей максимумы поглощения смещаются в длинноволновую область спектра.

Роль каротиноидов в процессе фотосинтеза

Каротиноиды — обязательные компоненты пигментных систем. Они выполняют роль дополнительных пигментов, которые передают энергию поглощенных квантов хлорофиллу а для совершения фотохимической работы. Особенно возрастает их значение как светоулавливающих систем в сине-фиолетовой и синей частях спектра в затененных местах, т. е. когда преобладает рассеянная радиация.

Доказано, что каротиноиды выполняют защитную функцию, предохраняя хлорофилл от фотоокисления. Д.И. Ивановский еще в 1913 г. установил, что в пробирках, выставленных на прямой солнечный свет, степень разрушения хлорофилла зависела от концентрации каротиноидов в растворе.

У дефектных по каротиноидам мутантов кукурузы и подсолнечника, а также при экспериментально нарушенном образовании каротиноидов происходит быстрое фотоокисление хлорофилла.

Высказывается также предположение о прямом участии каротиноидов в расщеплении воды и кислородном обмене при фотосинтезе. Особое значение придают виолаксантиновому циклу.

Виолаксантиновый циклРис.2. Виолаксантиновый цикл

При освещении в зеленых листьях происходит превращение диэпоксидксантофилла виолаксантина в безэпоксидный ксантофилл зеаксантин. В независимой от света реакции благодаря включению кислорода происходит обратное превращение зеаксантина в виолаксантин. Возможно, этот цикл служит для удаления излишков кислорода, образующихся при фотолизе воды.

В верхушках побегов растений каротиноиды обеспечивают определение направления света и их ориентацию к световому потоку за счет фототропизма.

Циклическое и нециклическое фотосинтетическое фосфорилирование

 Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями.

Циклическое фотофосфорилирование является более простым и эволюционно более древним. При циклическом фотофосфорилировании функционирует только ФСI и его единственным продуктом является АТФ.

Циклическое фотофосфорилирование было открыто в 1954 г. учеными Арноном, Алленом и Френкелем на изолированных хлоропластах шпината.

Сущность циклического фотофосфорилированияРис.3. Сущность циклического фотофосфорилирования

При поглощении кванта света один из электронов пигмента реакционного центра (Р700) переходит на более высокий энергетический уровень. В этом состоянии он захватывается белком, содержащим железо и серу (Fe—S-центр), а затем передается на железосодержащий белок ферридоксин. Дальнейший путь электрона — поэтапный его транспорт обратно к Р700 через ряд промежуточных переносчиков, среди которых имеются флавопротеиды и цитохромы. По мере транспорта электрона его энергия высвобождается и используется на присоединение Фн к АДФ с образованием АТФ. Число молекул АТФ, образующихся при переносе одного электрона, до сих пор не установлено. Причина в том, что из двух необходимых величин относительно легко измерить только количество АТФ, синтезированное за определенное время, тогда как оценить число электронов, перенесенных по циклической цепи за тот же промежуток времени, невозможно.

Схема нециклического транспорта электронов в фотосинтезеРис.4. Схема нециклического транспорта электронов в фотосинтезе

У высших растений в процессе эволюции появился более сложный путь, который осуществляется при участии двух фотосистем и обеспечивает восстановление НАДФ за счет фотоокисления воды. Причем восстановление НАДФ осуществляет ФСI, а фотоокисление воды — ФСII. Эти две системы функционируют одновременно и взаимосвязанно. Р. Хиллом и Ф. Бендаллом разработана схема последовательности реакций, которая получила название схемы нециклического транспорта электронов, или Z-схемы. Рассмотрим ее основные моменты (рис.).

При возбуждении Р700 в реакционном центре ФСI электрон захватывается мономерной формой хлорофилла а и затем последовательно передается через железосерные белки, ферридоксин, флавопротеиды на восстановление НАДФ. P700, не получив электрона обратно, как в случае циклического фосфорилирования, приобретает положительный заряд, который компенсируется электроном ФСII.

В ФСII P680, возбужденный квантом света, передает электрон феофитину. От феофитина электрон, теряя энергию, последовательно передается на пластохиноны, железосерный белок, цитохром f, пластоцианин и, наконец, Р700 ФСI. Энергия, освобождающаяся при транспорте электрона от возбужденной ФСII на ФСI, используется для синтеза АТФ из АДФ и Фн, т. е. здесь имеет место фотофосфорилирование.

Р680, оставшись без электрона, приобретает способность получать электрон от воды. Несмотря на активное исследование, детально механизм процесса фотоокисления воды не установлен. Установлено участие белкового комплекса и переносчика электронов Z, для функционирования которых необходимы Mn, Cl и Са.

Таким образом, при нециклическом пути происходит линейный или открытый, т. е. не замкнутый по циклу, транспорт электронов. Донором электронов является вода, конечным акцептором — НАДФ. Причем происходит одновременно двухэлектронный транспорт. Передача электронов осуществляется при участии двух фотосистем, поэтому для переноса каждого электрона расходуются два кванта света. На участке между ФСII и ФСI транспорт электрона идет по убывающему градиенту окислительно-восстановительного потенциала с высвобождением энергии и запасанием ее в АТФ.

Наряду с нециклическим в мембранах хлоропластов высших растений функционирует циклический транспорт электронов. Причем ферридоксин выполняет роль регулятора потока электронов. При возрастании потребности в АТФ часть электронов от ферридоксина через систему цитохромов возвращается к Р700 с образованием АТФ. Восстановление НАДФ в этом случае не происходит, и фотоокисления воды при участии ФСII не требуется.

Свойства фикобилинов, их роль в растении

К фикобилинам относятся фикоэритрин (C34h57N4O8) и фикоциан (C34h52N4O9) — пигменты красных и сине-зеленых водорослей. Фикоциан — это окисленная форма фикоэритрина. Оба эти пигмента сопутствуют хлорофиллу, они нерастворимы в органических растворителях, но после растирания листьев и автолиза их пигменты легко вымываются водой. Растворы фикобилинов флуоресцируют. Фикобилины — это сложные белки, основу небелковой части которых составляет цепочка из четырех пиррольных колец, соединенных метиленовыми и метиновыми мостиками:

Фикоцианин

В хлорофилле четыре пиррольных кольца соединены в порфириновое ядро, а у фикобилинов эти кольца находятся в состоянии открытой цепи без металла. Пигменты фикоэритрин и фикоциан прочно связаны с белком; связь эту можно нарушить кипячением с кислотами либо с помощью пепсина желудочного сока.

Спектры поглощения фикоциана и фикоэритрина близки, максимум адсорбции приходится на зеленую и желтую части спектров, т. е. они расположены между двумя полосами поглощения хлорофилла.

Значение красных пигментов фикобилинов в жизни водорослей заключается в следующем. Солнечный свет при прохождении через воду благодаря избирательному поглощению обедняется красными лучами, поэтому прибавление к хлорофиллу пигментов фикобилинов, поглощающих желтые, зеленые лучи, можно рассматривать как целесообразное приспособление. Очевидно, улавливаемая фикобилинами лучистая энергия передается хлорофиллу. Следует отметить, что у первичных морских водорослей состав пигментов наиболее разнообразен. Например, глубоководная водоросль филлофора содержит хлорофилл, красные пигменты — фикобилины, которые маскируют зеленую окраску, и желтые пигменты — каротиноиды. Флуоресценция фикоэритряна и фикоцианина свидетельствует о их высокой оптической чувствительности.

У филлофоры и других морских водорослей есть только хлорофилл а, а у всех наземных растений — хлорофилл а и в. Несмотря на такое разнообразие пигментов, хлорофилл в процессе эволюции занял первое место в борьбе за существование и завоевание суши. Таким образом, оптические свойства хлорофилла следует рассматривать как результат исторического процесса приспособления наземных растений к использованию солнечной радиации.



biofile.ru

натуральная медицина и здоровье человека

каротиноидыНа сегодняшний день ученые, исследующие фитонутриенты, выявили среди них более 600 разных каротиноидов, которые являются самыми распространёнными пигментами в природе. В окружающей нас природе за один год синтезируется более 100 миллионов тонн фитонутриентов (биологически активных веществ) — это более 3 тонн за одну секунду. Живые существа не синтезируют каротиноиды, а накапливают их вместе с потреблением пищи растительного происхождения.

Роль каротиноидов в растениях

Ключевая роль каротиноидов в растениях заключается в том, что они защищают органические молекулы от процессов разрушения при окислении кислородом, а также трансформируют световую энергию в реакционные центры пигментов, где эта энергия преобразуется в форму пригодную для синтеза различных соединений.

Роль каротиноидов в живых организмах

Ключевая роль каротиноидов в живых организмах заключается в том, что они защищают клетки организма от негативного действия свободных радикалов. Другим достоинством этих биологически активных веществ является тот факт, что они способны накапливаться в определенных тканях организма создавая, таким образом, защитный эффект. Например, такой каротиноид как лютеин, накапливается в глазной сетчатке человека – при этом  уменьшается риск развития дистрофии так называемого желтого пятна (подобное заболевание сетчатки наблюдается у пожилых людей). У людей преклонного возраста данная болезнь является причиной потери зрения. Также каротиноиды характеризуются тем, что они способны укреплять защиту организма от рака кожи, а ещё от них зависит уровень защищённости простаты от возникновения злокачественной опухоли. Большое значение каротиноидов заключается в их А-провитаминной активности. Известно, что организм человека не может самостоятельно синтезировать жизненно необходимый витамин А, а усваивает его вместе с пищей растительного происхождения. С другой стороны данный витамин не образуется и в растительных тканях. Витамин А синтезируется только путем преобразования провитамин-А активных каротиноидов.  Провитамин-А активные каротиноиды это —  b-каротин, a-каротин, 3,4-дигидро-b-каротин, криптоксантин, кантаксантин, астаксантин, и др.). В организме человека каротиноиды способствуют поддержанию водного баланса, транспорту кальция через мембраны, работу обонятельных рецепторов и хеморецепторов, образовывают комплексы с протеинами. Организм человека использует каротиноиды как запас кислорода в нейрональной дыхательной цепочке.

Разновидности каротиноидов

Каротиноиды представляют собой группу природных пигментов, все члены которой обладают очень близкой структурой. В зависимости от цветовой пигментации и строения каротиноиды разделяются на 2 группы. К первой группе относятся каротины, ко второй – ксантофиллы. Каротины характеризуются тем, что имеют оранжевый цвет и являются чистыми углеводородами (в их структуре нет атомов кислорода). Ксантофиллы в своем составе имеют кислородсодержащие функциональные группы и окрашены в цвета от желтого до красного.

К наиболее популярным каротиноидам можно отнести: Альфа-каротин, Бета-каротин, Бета-криптоксантин, Лютеин, Ликопин.

каротиноидыАльфа-каротин содержится в оранжевых овощах (морковь, тыква). В организме человека альфа-каротин, бета-каротин и бета-криптоксантин синтезируется в витамин А. Данные биологически активные вещества являются провитаминами. Рекомендованная норма потребления альфа-каротина в сутки составляет 518 мкг. Низкий уровень его в крови связан с развитием сердечно-сосудистых заболеваний.

каротиноидыБета-каротин защищает клетки нашего организма от негативного действия свободных радикалов. Поэтому он считается мощным антиоксидантом, повышает защитную функцию иммунной системы. Содержится бета-каротин в овощах и фруктах оранжевого и желтого цветов (картофель, дыня, морковь). Рекомендованная норма потребления бета-каротина в сутки составляет 3787 мкг.

каротиноидыБета-криптоксантин уменьшает риск развития воспалительных заболеваний. К числу таких заболеваний можно отнести ревматоидный артрит. Источником бета-криптоксантинов являются мандарины, апельсины, тыква, перец.

Лютеин защищает сетчатку глаза от вредного воздействия ультрафиолетовой части солнечного света.

каротиноидыРекомендованная норма потребления лютеина в сутки составляет от 6 до 15. Употребление рекомендованной суточной дозы лютеина снижает риск развития катаракты на 20-25% и приводит к уменьшению риска вырождения желтого пятна (небольшая область сетчатки глаза) на 43%. Источником лютеина являются темно-зеленые листовые овощи (шпинат, капуста, морковь, кабачки).

каротиноидыЛикопин нормализует холестериновый обмен, подавляет болезненную кишечную микрофлору, предотвращает развитие склероза, способствует снижению веса. Источник ликопина – помидоры, томатная паста, арбуз.

Где содержатся каротиноиды

Каротиноиды содержатся в темно-зеленых листьях растений, лепестках цветов, пыльце цветковых растений, плодах цитрусовых, моркови, тыкве, томатах, сладком перце. Источником каротиноидов также есть шиповник, рябина, красное пальмовое масло, клубни батата, водоросли, зерна и плоды растений.

Будьте здоровы и жизнерадостны!

Related posts:

muvrasil.ru

витамины из растений и их польза

Привет, друзья!

Я заметила такую интересную вещь.  

Иногда пишешь пост и понимаешь, что обычный человек, не вникающий глубоко в различные медицинские или биохимические термины, не совсем порой понимает, что это может обозначать☺

каротиноиды

Поэтому я решила написать небольшую серию постов и объяснить более  простым языком, некоторые понятия, которые я очень часто употребляю в своих статья.

Например, морковь содержит в своем составе  каротиноиды,  а  что это такое каротиноиды и чем они так полезны?

Сейчас я постараюсь вам об этом рассказать, так чтобы это было просто, понятно и не скучно☺

Из этой статьи вы узнаете:

Каротиноиды и их главная роль 

Что это такое?

Если говорить простыми словами, это те самые вещества (цветовые  пигменты), которые придают желтую или оранжевую окраску овощам и фруктам.

Это они делают морковь, тыкву, перец, кукурузу, апельсины такими яркими и красивыми, какими мы их привыкли видеть ☺

  каротиноиды

Зачем каротиноиды нужным растениям?

В природе, эти вещества необходимы растениям для поглощения избыточной энергии света, которая может быть для них очень опасна, особенно из высокоэнергетических лучей, называемых УФ лучи.

Каротиноиды  присутствуют в клетках и тканях у представителей всех 7 царств живой природы: от низших бактерий до позвоночных животных.

Они  являются самыми распространенными пигментами в природе и на сегодняшний день обнаружено более 600 различных каротиноидов!!!!

Роль картиноидов для человека

О, она огромна!!!

Самая главная функция

Они являются провитамином витамина А, который не синтезируется  в нашем теле, но очень необходим нам.

При его недостатке возникают проблемы с кожей (сухость, кератоз, пятна, прыщи), со слизистыми оболочками, запускаются воспалительные процессы в дыхательных и мочевыводящих путях, снижается устойчивость к различным простудным  заболеваниям и вирусам.

Каротиноиды  выполняют очень много важных функции  в нашем теле:

  •  антиоксидантную и иммуностимулирующую
  • предотвращают нестабильность хромосом
  • тормозят избыточное деление клеток и регулируют генетические программы уничтожения опухолевых клеток
  • подавляют работу онкогенов, которые запускают процесс ракового перерождения клеток.

 Научные исследования  позволяют сделать вывод, что у лиц с низким потреблением каротиноидов (менее 5 мг в день) риск заболеть раком повышается в 3 раза.

  • тормозят воспалительные реакции, приводящие к артрозам и другим дегенеративным заболеваниям
  • активируют ферменты, разрушающие вредные вещества
  • поддерживают и восстанавливают функцию зрения (почитайте  мою статью про лютеин и зеакстантин) 

Как вы уже поняли, человек  не может самостоятельно синтезировать каротиноиды в организме, но и не может без них  жить нормально.  

Поэтому природа  предусмотрела все, она нам дала их в виде различных  растений- овощей и фруктов☺. 

В чем содержатся каротиноиды?

каротиноиды

Как вы уже поняли, картиноидами богаты все овощи и фрукты оранжевого цвета, и не только они. Каратиноиды есть также в зелени.

Просто обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску.

Основные источники каратиноидов

Давайте, рассмотрим самые богатые источники каротиноидов. 

ЛИДЕР!!!!Красное пальмовое масло - самый богатый в мире источник каротиноидов, витамина Е (токоферолов и токотриенолов), кофермента Q10.  

Все они  являются мощнейшими антиоксидантами, защищающими наш организм от свободных радикалов. Красный цвет масла обусловлен присутствием в его составе большого количества каротиноидов, причём их содержание в масле в 15 раз больше, чем в моркови!!!  

И да, помните, речь идет не о том, суррогатном  пальмовом масле, которого всего боятся ☺ А о настоящем масле из красных пальм!!!

Я покупаю вот такое, добавляю его в пищу и просто наношу на кожу, как маску!!!

Screenshot at апр. 10 12-31-45

Также каротиноиды   присутствуют в лепестках цветов(особенно ноготки), водорослях, пыльце. Их много в яичном желтке и некоторых видах рыбы, а также еловой хвое.

Как усваиваются  каротиноиды в теле ?

шиповник

Усвоение каротиноидов и их превращение в витамин А происходит в нашем теле в тонком кишечнике под воздействием определенных ферментов. 

Но, иследованиями было установлено, что каротиноиды далеко не полностью усваиваются организмом.

Этот процесс идет лучше из мелко измельченных и предварительно обработанных продуктов, в которых клеточные мембраны разрушены.

Кроме того, важным фактором для усвоения каротиноидов организмом является наличие жировой среды. Еще в 1941 году было установлено, что количество каротина, усвояемого организмом из сырой моркови при диете, лишенной жиров, не превышает 1%. При тех же условиях из вареной моркови усваивается 19% каротина. После добавления масла усвоение каротина увеличивается до 25%.

Поэтому салат с вареной измельченной  морковью и маслом, будет полезнее, чем просто салат из сырой моркови. 

Суточная норма

 Рекомендуемая суточная норма потребления бета-каротина для взрослых составляет от 2 до 6 мг.   Для примера в 100,0 моркови содержится  около  8 мг. ( я думаю, вы не забыли, что далеко не все 8 мг усвоит наш организм)

ВАЖНО!!!

Большие дозировки картиноидов и витамина А опасны для курильщиков со стажем, так как могут вызывать рак легкого.  Также  избыток витамина А  опасен при беременности. 

Также стоит учитывать тот фактор,  что, к сожалению, количество каротиноидов постепенно уменьшается в продуктах при хранении.Они быстро разрушаются  на свету и при свободном доступе кислорода воздуха.

Поэтому морковь, которую продают в супермаркет, чистую и промытую в пакетах, практически  лишена этих важных компонентов. 

Чтобы морковь сохранилапо максимуму все свои полезны свойства, ее нужно хранить в темном прохладном месте и не очищенную от земли.

Возможен ли дефицит каротиноидов  у современного человека?

К сожалению, да.

По данным НИИ питания РАМН, в России хронический дефицит каротиноидов в питании отмечается у 40-60 % населения. Поэтому обязательно включайте продукты, богатые каротиноидами в свой рацион питания.

раздел 

 Если, чувствуете, что  ваше питание неполноценное,  покупайте витамины или  качественные биологически активные добавки, выделенные из натуральных органических овощей или фруктов.

Mega-821-RU

Я не стала описывать в этом посте  подробно все научные  детали, химический состав, биодоступность  каротиноидов.

Все таки у меня блог, а не Википедия ☺. Думаю,что общее понятие о каротиноидах и о том, зачем они нам нужны, я смогла передать. Надеюсь на это ☺

Буду очень рада, если эта информация вам пригодится и вы поделитесь ей со своими друзьями в социальных сетях.  Жду ваших отзывов и комментариев.  

Буду очень благодарна за полезные советы  ☺

С вами была Алена Яснева, всем пока!

ПРИСОЕДИНЯЙТЕСЬ К МОИМ ГРУППАМ В СОЦИАЛЬНЫХ СЕТЯХ

3

 

Нажимая кнопку «Отправить», вы соглашаетесь с нашей

zdorovyda.ru

Флавоноиды и каротиноиды

1. КАРОТИНОИДЫ

каротиноиды  

Поразительное разнообразие цвета живых организмов приносит не только эстетическое удовольствие, но и указывает на высокую биологическую значимость пигментов.

Одними из самых поразительных по красоте и биологической активности природных пигментов являются каротиноиды. Это жирорастворимые соединения, синтезируемые растениями, водорослями, бактериями и грибами (Sandmann, 2001). Их исследование началось еще в 1831 году, когда Вакенродером был выделен из моркови в кристаллическом виде желтый пигмент β-каротин, а в 1837 году Берцелиусом были выделены желтые пигменты из осенних листьев и названы ксантофиллами. Через 100 лет в 1933 году было известно уже 15 различных каротиноидов, около 80 – в 1947 году и за последующие двадцать лет эта величина превысила 300. В настоящее время в группу каротиноидов входит около 700 пигментов. В природе эти вещества определяют цвет опадающих листьев, окраску цветов (нарциссы, ноготки) и плодов (цитрусовые, перец, томаты, морковь, тыква), насекомых (божья коровка), перьев птиц (фламинго, ибис, канарейка) и морских организмов (креветки, лосось). Эти пигменты обеспечивают различные цвета: от желтого до темно-красного, а в комплексе с белками могут давать зеленое и голубое окрашивание.

В растениях они являются вторичными метаболитами и подразделяются на две группы: окисленных ксантофиллов, таких как лютеин, зеаксантин, виолаксантин и каротиноидов-углеводородов, таких как β- и α- каротины и ликопин.

Среди известных растительных пигментов каротиноиды наиболее распространены и отличаются структурным разнообразием и широким спектром биологического действия. В высших растениях каротиноиды синтезируются и локализуются в клеточных пластидах, где они связаны в светочувствительные комплексы, участвуя в процессе фотосинтеза и защищая растения от оксидантного стресса, вызванного избыточным освещением.

Из 700 известных каротиноидов 40 постоянно присутствуют в пище человека, провитаминной (А) активностью у млекопитающих обладают только β-каротин, альфа-каротин и криптоксантины.

Каротиноиды принято считать одними из наиболее мощных улавливателей синглетного кислорода. Именно антиоксидантные свойства этих соединений во многом определяют их биологическую активность. Хотя каротиноиды присутствуют во многих традиционных продуктах питания, наиболее богатыми источниками для человека служат ярко окрашенные овощи, фрукты и соки, причем желто-оранжевые овощи и фрукты обеспечивают основную часть поступления β- и α-каротина, оранжевые фрукты являются источниками α-криптоксантина, темно-зеленые овощи – лютеина, перец – капсантина и капсорубина, а  томат и продукты их переработки – ликопина Johnson, 2002.

По уровню накопления каротиноидов среди овощных культур лидируют шпинат, богатый лютеином и зеаксантином, а также представители рода Capsicum, содержащие в плодах капсантин и капсорубин.

Среди экзогенных факторов существенное влияние на накопление каротиноидов оказывает температура выращивания, интенсивность освещенности, длительность светового периода и использование удобрений. Так известно, что в тени содержание лютеина и β-каротина в растениях ниже, чем на свету, а летом выращенная листовая  капуста имеет более высокие концентрации этих каротиноидов, чем при выращивании в зимний период. По мере роста содержание каротиноидов в листьях возрастает и снижается на стадии старения, то есть количество каротиноидов в растении зависит и от времени сбора урожая. Экспериментальные исследования подтверждают, что органическое фермерство обеспечивает наибольшее аккумулирование плодами сладкого перца красных и желтых пигментов (табл.2).

Благодаря своим антиоксидантным свойствам каротиноиды привлекают особое внимание в борьбе за предотвращение таких хронических заболеваний, как рак, сердечнососудистые заболевания, диабет и остеопороз.

Таблица 2. Содержание каротиноидов в плодах сладкого перца сорта Almuden в условиях использования органических удобрений, традиционной и интегрированной технологии (мг/кг сырой массы) (Perez-Lopez et al, 1999)

Каротиноид

Органическое земледелие

Интегрированное земледелие

Традиционное земледелие

Общее содержание

3231

2493

1829

Красная фракция*

2038

1542

1088

Желтая фракция

1193

902

639

*красная фракция= капсорубин+капсантин и изомеры

Желтая фракция = β-каротин + β-криптоксантин + зеаксантин + виолаксантин

Важнейшей биологической функцией каротиноидов в организме человека является провитаминная (А) активность. Каротиноиды, обладающие такой активностью, 1) поддерживают дифференциацию здоровых эпителиальных клеток, 2) нормализуют репродуктивные функции и 3) зрение. Витамин А входит в состав зрительного пигмента родопсина, что объясняет важную роль в поддержании зрения β-каротина, α-каротина и криптоксантинов. В частности, недостаток витамина А в пище может приводить к развитию так называемой ≪куриной≫ слепоты, характеризующейся существенным снижением чувствительности сетчатки глаза в сумерках, а в тяжелых случаях к развитию так называемого ≪трубчатого≫ зрения≫, когда светочувствительные клетки периферической части сетчатки перестают работать. Лютеин и зеаксантин – два из 7 каротиноидов, обнаруженных в плазме крови, и это единственные каротиноиды сетчатки и хрусталика. В сетчатке лютеин и зеаксантин ответственны за желтую пигментацию и получили название пигменты желтого пятна. Этот участок занимает всего 2% от всей поверхности сетчатки и состоит исключительно из клеток колбочек, ответственных за цветное зрение. Предполагают, что пигменты желтого пятна участвуют в фотопротекции, и пониженное содержание лютеина и зеаксантина может быть связано с поражением сетчатки. Увеличение количества этих пигментов может быть осуществлено путем увеличения потребления антиоксидантов, овощей и фруктов, каротиноидов пищи, нормализации индекса массы тела и отказа от курения. Многие из этих факторов связаны также с пониженным риском развития старческой дегенерации желтого пятна, что предполагает существование причинно-следственной связи. Исследования показывают, что повышение доли лютеина и зеаксантина, а также ликопина снижает риск макулярной дегенерации. Следует особенно отметить, что высокие уровни потребления различных овощей, обеспечивающих поступление в организм разнообразных каротиноидов,снижают риск заболеваний глаз более мощно, чем потребление индивидуальных каротиноидов.

В целом данные эпидемиологических исследований предполагают положительную взаимосвязь между высоким уровнем потребления каротиноидов и низким риском хронических, сердечно-сосудистых заболеваний, некоторых форм рака, уровнем иммунитета.

Исследования антиканцерогенного действия каротиноидов выявили протекторный эффект β-каротина от рака легких у некурящих и особенно у мужчин. Потребление высоких доз каротиноидов снижает риск некоторых видов лимфомы, но не влияет на величину риска развития рака мочевого пузыря. Ликопин способен предотвращать рак предстательной железы.

Снижение риска сердечнососудистых заболеваний под действием каротиноидов обусловлено защитой липопротеинов низкой плотности от перекисного окисления и уменьшением интенсивности оксидантного стресса в местах локализации атеросклеротических бляшек. Когортные исследования позволили установить защитную роль каротиноидов пищи от сердечнососудистых заболеваний в Италии, Японии, Европе и Коста-Рике. Существует ряд работ, подтверждающих защитный эффект ликопина в отношении предотвращения сердечнососудистых заболеваний. Эпидемиологические исследования на 662 больных и 717 здоровых людях из 10 различных Европейских стран показали дозозависимую взаимосвязь между уровнем потребления ликопина и риском инфаркта миокарда. При сравнении уровней потреблении ликопина в Литве и Швеции было показано возрастание риска развития и смертности от коронарной болезни сердца в условиях недостатка потребления ликопина. Как оказалось, ликопин томата, соусов, кетчупов, томатного сока значительно снижает уровень окисленных форм липопротеинов низкой плотности и уменьшает уровень холестерина в крови, снижая тем самым риск сердечно-сосудистых заболеваний.

Предотвращение раковых заболеваний при потреблении высоких доз каротиноидов связано со способностью последних ингибировать пролиферацию клеток, их трансформацию и модулировать экспрессию детерминантных генов. Окисленные каротиноиды (такие как β-криптоксантин и лютеин), а также неокисленные формы (такие как β-каротин и ликопин) связаны со снижением риска заболевания раком. Исследования на культурах клеток показали, что, помимо β-каротина, антиканцерогенную активность могут проявлять некоторые другие каротиноиды, причем активность, в ряде случаев вышактивности β-каротина (например, капсантин, α-каротин, лютеин, зеаксантин и др.).

Около 90% всех каротиноидов в пище и человеческом теле представлено β- и α-каротином, ликопином, лютеином и криптоксантином. Ликопин является одним из основных каротиноидов Средиземноморской диеты и обеспечивает поступление в организм человека до 50% всех каротиноидов. Среди овощей томат представляют собой основной источник ликопина, а продукты на основе томата (кетчуп, томатная паста, соусы) обеспечивают человека 85 % всего ликопина, поступающего с пищей. Антиканцерогенные свойства ликопина подтверждены эпидемиологическими исследованиями, исследованиями in vitro и на лабораторных животных, а также на человеке.

Основными механизмами антиканцерогенного действия ликопина, как предполагают, являются участие в дезактивации активных форм кислорода, регулировании работы системы детоксикации, влияние на пролиферацию клеток, индукция клеточных взаимосвязей, ингибирование клеточного цикла и модулирование передачи сигналов.

В целом человеком абсорбируется около 10-30% ликопина. Положительное влияние на уровень абсорбции ликопина оказывает присутствие жирорастворимых соединений, включая другие каротиноиды. Удивительно, но пространственная конфигурация центральной двойной связи молекулы ликопина определяет интенсивность его абсорбции. Показано, что цисликопин, образующийся при термической обработке томата, абсорбируется эффективнее, чем трансизомер сырых плодов. Цис-изомеры образуются также и в самом организме человека и животных при потреблении транс-форм.

молекула транс ликопина

Помимо сыворотки крови ликопин накапливается в значительных количествах в яичках, надпочечника, предстательной и молочной железе, а также печени.

Антиканцерогенные свойства ликопина томата проявляются в отношении рака предстательной железы, молочной железы, шейки матки, яичника, печени, легких, желудочно-кишечного тракта, поджелудочной железы.

Благодаря антиоксидантным свойствам каротиноиды способны защищать организм от других патологических состояний, связанных с оксидантным стрессом. Эпидемиологические исследования показывают, что β-каротин и ликопин совместно с витаминами С и Е в значительной степени снижают риск развития остеопороза. Этот факт представляется особенно важным в профилактике остеопороза у женщин в период менопаузы, характеризующийся существенным снижением антиоксидантной защиты.

Установлено положительное действие ликопина в снижении систолического давления у гипертоников, для которых характерно развитие оксидантного стресса.

Мужское бесплодие связано, как известно, с образованием в сперме значительного количества активных форм кислорода, в то время как у здоровых мужчин активные формы кислорода в семени не обнаружены. Учитывая, что содержание ликопина в семени инфертильных мужчин ниже, чем у здоровых лиц была предпринята попытка коррекции обеспеченности ликопином. Потребление в течение года такими больными 8 мг ликопина в день значительно повысило подвижность сперматозоидов, улучшало их морфологию и обеспечило 5% случаев зачатия.

В настоящее время исследуется роль ликопина в развитии нейродегенеративных заболеваний, таких как болезнь Альцгеймера.  Благодаря высокому уровню усвоения кислорода, большим концентрациям липидов и низкой антиоксидантной способности человеческий мозг является весьма уязвимым для воздействия оксидантов. Показано, что ликопин присутствует в малых концентрациях в нервной ткани, причем, его концентрация снижена при болезни Паркинсона и сосудистой деменции. В Японии установлен защитный эффект ликопина томата от возникновения и развития эмфиземы. Ожидается, что защитный эффект ликопина может проявиться у больных диабетом, с заболеваниями кожи, ревматоидным артритом, периодонтальных заболеваниях и воспалительных процессах. Антиоксидантные свойства ликопина открывают также широкие возможности его применения в фармацевтической, пищевой и косметической промышленности.

Ликопин до сих пор не рассматривают как эссенциальный нутриент, и поэтому оптимальные уровни потребления не утверждены.  Однако, основываясь на данных исследований протекторного действия ликопина, можно констатировать, что суточное потребление для борьбы с оксидантным стрессом и предупреждения хронических заболеваний должно составлять 5-7 мг (Levin, 2008). При наличии заболеваний, таких как рак или сердечнососудистые заболевания, уровни потребления ликопина желательно увеличить до 35-75 мг. Реальные уровни потребления ликопина составляют 3-16,2 мг/сутки в США, 25,2 мг – в Канаде, 1,3 мг – в Германии, 1,1 мг – в Великобритании и 0,7 мг – в Финляндии.

Каротиноиды

Биологическое действие

Предотвращение заболеваний

Провитаминная активность

«Куриная» слепота

Дезактивация активных форм кислорода

Катаракта

Регулирование системы детоксикации

Остеопороз

Влияние на полиферацию клеток

Рак

Индукция клеточных взаимосвязей

ВИЧ

Ингибирование клеточного цикла заболевания

Сердечно-сосудистые заболевания

Модулирование передачи сигналов

Ревматоидный артрит

Поддержание иммунитета

Кожные заболевания

Участие в метаболизме лекарственных препратов

Защита от др. воспалительных заболеваний

2. ФЛАВОНОИДЫ

  продукты, содержащие флавоноиды

Биоразнообразие природы неисчерпаемо.

Другая группа антиоксидантов – полифенолы – составляет еще более многочисленную группу природных соединений (их известно более 8000) (Ross& Kasum, 2002).

Биофлавоноиды. Краткая справка

Биофлавоноды или витамин Р. Витамин Р (от латинского «paprika» – перец и «permeabilitus» – проницаемость) объединяет семейство биофлавоноидов. Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Источники: лимоны, гречиха, черноплодная рябина, чѐрная смородина, листья чая, плоды шиповника, лук, капуста, яблоки.

Суточная потребность для человека точно не установлена.

Биологическая роль заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров.

Пристальный интерес к биофлавоноидам возник в последнее время благодаря эпидемиологическим исследованиям, которые выявили защитный эффект овощей, фруктов, содержащих биофлавоноиды, при развитии социально значимых хронических неинфекционных заболеваний: сердечно-сосудистых и злокачественных. В многочисленных опытах показано, что флавоноиды:

  1. обладают антиоксидативными свойствами;
  2. препятствуют развитию атеросклеротических повреждений стенок артерий, подавляя процессы внутри клеточного перекисного окисления липидов;
  3. угнетают агрегацию тромбоцитов;
  4. предотвращают окислительное повреждение нуклеиновых кислот и препятствуют развитию процессов канцерогенеза. Предполагают, что флавоноиды обладают также противоаллергическим, противовоспалительным (ингибируют ЦОГ1 и ЦОГ2), противовирусным и антипролиферативным эффектами.

Клиническое проявление гиповитаминоза витамина Р характеризуется повышенной кровоточивостью дѐсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях.

Препараты растительного происхождения, содержащие флавоноиды, нашли широкое клиническое применение при лечении заболеваний печени: это могут быть простые настои лекарственных растений, таких как цветки бессмертника песчаного или концентрированные экстракты - фламин (сухой концентрат бессмертника песчаного), конвифлавин (из травы ландыша дальневосточного). Комплексный препарат силимарин (содержит смесь биофлавоноидов расторопши пятнистой) обладает гепатотропным и антитоксическим эффектом, применяется при токсических поражениях печени.

Итак, Флавоноиды — это крупнейший класс растительных полифенолов. Полифенолы — это класс химических соединений, характеризующихся присутствием более чем одной фенольной группы на молекулу. Фенолы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы OH− связаны с атомами углерода ароматического кольца.

Phenol_chemical_structure  Flavon.svg

Фенол — простейший представитель класса фенолов

Флавон

(хим. формула: C₁₅H₁₀O₂)

Это наиболее распространенные в растительном мире антиоксиданты. Одни только флавоноиды (гидроксипроизводные флавона) способны оказывать противовоспалительное, противовирусное, гормональное, антимутагенное действие, защищать от рака и проявлять еще огромное количество полезных для человека свойств. Установлено, что все природные полифенолы овощей обладают антиканцерогенным действием.

Действие флавоноидов:

  • Противовоспалительное
  • Антиканцерогенное (защита от рака легких и молочной железы)
  • Противовирусное
  • Антиоксидантное
  • Кардиопротекторное
  • Гормональное
  • Противоязвенное
  • Антидиарейное
  • Антиспазмолитическое
  • Улучшение памяти, обучения и способности к познанию
  • Нейропротекторное
  • Снижение риска остеопороза

Роль флавоноидов в поддержании здоровья человека огромна. Эпидемиологические исследования указывают, что потребление овощей и фруктов связано с пониженным риском развития хронических заболеваний, включая сердечнососудистые и рак. Предполагают, что именно флавоноиды и другие полифенолы являются важнейшими биологически активными соединениями, определяющими положительное воздействие овощей и фруктов на здоровье человека.

Эпидемиологические исследования подтверждают защитное действие флавоноидов в отношении онкологических и сердечнососудистых заболеваний (Ghosh&Scheepens, 2009). Обнаружено значительное различие в смертности населения с высоким (Китай) и низким(Северная Америка, Европа) потреблением флавоноидов. Только 2 из 7 крупномасштабных исследований не выявили достоверного защитного эффекта, причем оба исследования были проведены на европейцах с невысоким потреблением флавоноидов. В 14 из 19 исследований была показана обратная корреляция между случаями рака груди и уровнем флавоноидов в крови. Потребление пищи, богатой флавоноидами, связано с меньшей частотой заболеваний сердца, инфарктов, рака и других хронических заболеваний. Показано существование обратной корреляции между уровнем потребления флавоноидов и риском инсульта, а также раком легких и прямой кишки (Trichopoulos, 2003; Hirvonen et al, 2001). Поскольку эти хронические заболевания связаны с повышенным оксидантным стрессом, а флавоноиды являются сильными антиоксидантами in vitro, сделано предположение, что флавоноиды пищи оказывают положительное действие посредством усиления антиоксидантной защиты. Антиоксидантная активность флавоноидов проявляется в повышении антиоксидантного статуса плазмы, защитного действия в отношении витамина Е, эритроцитарных мембран и липопротеинов низкой плотности, а также защиты ПНЖК мембран эритроцитов от перекисного окисления.

Результаты многочисленных исследований предполагают, что у человека флавоноиды проявляют антиаллергенную, противовирусную, противовоспалительную и сосудорасширяющую активность. Флавоноиды, включая кверцитин и таксифолин, благотворно действуют на желудочно-кишечный тракт, проявляя противоязвенную, антиспазмолитическую и антидиарейную активность. Показано, что потребление овощей и фруктов с высоким содержанием полифенолов снижает риск возникновения и развития остеопороза.

Установлено, что кверцетин защищает от ВИЧ инфекции, препятствует окислению липопротеинов высокой плотности, снижая, таким образом, риск сердечно-сосудистых заболеваний. Потребление значительного количества продуктов, содержащих кверцитин (лук, грейпфрут, яблоки), снижает риск развития рака легких.

Широкий спектр биологического действия растений рода Allium (табл.1) связано не только с наличием серосодержащих соединения, но и с высокой концентрацией флавоноидов. Потребление лука ингибирует рост опухолей и микробных клеток, снижает риск рака, дезактивирует свободные радикалы и защищает от сердечно-сосудистых заболеваний. Установлена высокая антиоксидантная активность всех луковых культур (Kim&Kim, 2006; Corzo-Martinez et al, 2007).

Таблица 1. Биологическое действие растений рода Allium

Биологическое действие

Общее количество работ

Количество исследований на людях

Кардиопротекторное

344

104

Антимикробное

252

35

Антиканцерогенное

221

12

Антиоксидантное

60

4

Гипогликемическое

28

3

Противовоспалительное

11

1

Так девять эпидемиологических исследований в различных частях земного шара (Китай, Италия, Аргентина, США и др.) четко показали значительное снижение риска рака желудочно-кишечного тракта с увеличением потребления чеснока (You et al, 1989; Buiatti et al, 1989). Последнее наблюдение связано со способностью чеснока снижать уровень нитритов в желудочно-кишечном тракте (предшественников канцерогенных нитрозаминов) и бактериостатическим действием в отношении Helicobacter pylory, вызывающего развитие язвы и рака желудка (Lanzotti, 2006). Показано защитное действие аллил ди- и трисульфидов растений рода Allium от рака печени, вызываемого афлатоксином.

Потребление чеснока и лука снижает риск возникновения и развития саркомы и карциномы в различных тканях и органах, таких как желудок, прямая кишка, простата, мочевой пузырь, печень, легкие, молочная железа, кожа и мозг. Предполагают, что защитный эффект чеснока от раковых заболеваний во многом определяется его иммуномодулирующим действием. Принято считать, что чеснок является чрезвычайно перспективным иммуномодулятором, способным стимулировать необходимые функции и подавлять не желаемые. Чеснок может быть эффективным для предотвращения подавления иммунитета при химиотерапии, УФ-радиации, психологических и физических стрессах, раковых заболеваниях, СПИДе, в пожилом возрасте. По мнению американского национального института рака, чеснок в ближайшем будущем может стать наиболее важным компонентом пищи, предупреждающим рак. Из других биологических свойств тиосульфинатов обращает внимание мощная антимикробная, антибактериальная и противопаразитарная активность.

Биологическое действие растений рода Allium:

  • Антиоксидантное
  • Антиканцерогенное
  • Иммуномодулирующее
  • Антидиабетическое
  • Гиполипидемическое
  • Гипохолестеринемическое
  • Антисклеротическое
  • Противотромбическое
  • Снижение арт. давления
  • Антимикробное действие
  • Противопаразитарное
  • Противогрибковое
  • Противовирусное

К разделу об антиоксидантах

Будьте здоровы!

 

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

  1. ПРОБИОТИКИ
  2. ДОМАШНИЕ ЗАКВАСКИ
  3. БИФИКАРДИО
  4. КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
  5. ПРОПИОНИКС
  6. ЙОДПРОПИОНИКС
  7. СЕЛЕНПРОПИОНИКС
  8. БИФИДОБАКТЕРИИ
  9. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
  10. ПРОБИОТИКИ И ПРЕБИОТИКИ
  11. СИНБИОТИКИ
  12. АНТИОКСИДАНТНЫЕ СВОЙСТВА
  13. АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
  14. АНТИМУТАГЕННАЯ АКТИВНОСТЬ
  15. МИКРОФЛОРА КИШЕЧНОГО ТРАКТА
  16. МИКРОФЛОРА И ФУНКЦИИ МОЗГА
  17. ПРОБИОТИКИ И ХОЛЕСТЕРИН
  18. ПРОБИОТИКИ ПРОТИВ ОЖИРЕНИЯ
  19. МИКРОФЛОРА И САХАРНЫЙ ДИАБЕТ
  20. ПРОБИОТИКИ и ИММУНИТЕТ
  21. ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
  22. ДИСБАКТЕРИОЗ
  23. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
  24. ПРОБИОТИКИ С ПНЖК
  25. ВИТАМИННЫЙ СИНТЕЗ
  26. АМИНОКИСЛОТНЫЙ СИНТЕЗ
  27. АНТИМИКРОБНЫЕ СВОЙСТВА
  28. СИНТЕЗ ЛЕТУЧИХ ЖИРНЫХ КИСЛОТ
  29. СИНТЕЗ БАКТЕРИОЦИНОВ
  30. ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
  31. АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
  32. ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
  33. ПРОИЗВОДСТВО ПРОБИОТИКОВ
  34. ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
  35. НОВОСТИ

propionix.ru

Каротиноиды

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Каротиноиды — это желтые и оранжевые пигменты алифатического строе­ния, производные изопрена. Каротиноиды содержатся во всех выс­ших растениях и у многих микроорганизмов. Это самые распростра­ненные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллов. Основными представителями каротиноидов у высших растений являются два пиг­мента —β-каротин (оранжевый) С40Н56 и ксантофилл (желтый) С40Н56О2. Каротин состоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спирто­вой группы, каротин превращается в 2 молекулы витамина А. Обра­щает на себя внимание сходство в структуре фитола — спирта, входя­щего в состав хлорофилла, и углеродной цепочки, соединяющей циклогексениловые кольца каротина. Предполагается, что фитол возни­кает как продукт гидрирования этой части молекулы каротиноидов. Каротиноиды имеют большое количество конъюгированных двойных связей, поэтому они способны к окислительно-восстановительным реакциям. Поглощение света каротиноидами, а, следовательно, их окраска также обусловлены наличием конъюгированных двойных связей, β-каротин имеет два максимума поглощения, соответствую­щие длинам волн 482 и 452 нм. Красные лучи, поглощаемые хлорофиллами, каротиноиды не поглощают. Каротиноиды, в отличие от хлорофилла, не обладают способностью к флюоресценции. Подобно хлорофиллу каротиноиды в хлоропластах вступают во взаимодейст­вие с белками.

Физиологическая роль каротиноидов. Уже тот факт, что кароти­ноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмече­но ни одного случая, когда в отсутствии хлорофилла этот процесс осуществляется, поэтому считают, что роль каротиноидов вспомога­тельная.

В настоящее время предполагается, что каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют ис­пользованию лучей, которые хлорофиллом не поглощаются.

Физиологическая роль каротиноидов не ограничивается их уча­стием в передаче энергии на молекулы хлорофилла. На свету происходит вза­имопревращение ксантофиллов (виолоксантин превращается в зеаксантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе фото­синтеза.

Имеются данные, что каротиноиды выполняют защитную функ­цию, предохраняя различные органические вещества, в первую оче­редь молекулы хлорофилла, от разрушения на свету в процессе фото­окисления. Опыты, проведенные на мутантах кукурузы и подсолнеч­ника, показали, что они содержат протохлорофиллид (темновой пред­шественник хлорофилла), который на свету переходит в хлоро­филл а, но разрушается. Последнее связано с отсутствием способно­сти исследованных мутантов к образованию каротиноидов.

Ряд исследователей указывает, что каротиноиды играют опреде­ленную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а так­же в лепестках цветков. Микроспорогенез тесно связан с метаболизмом каротиноидов. Незрелые пыльце­вые зерна имеют белую окраску, а созревшая пыльца — желто-оран­жевую. В половых клетках водорослей наблюдается дифференциро­ванное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлоро­филл. Высказывается мнение, что именно каротин обусловливает под­вижность сперматозоидов. Материнские клет­ки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут пере­двигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротиноидом — кроцином.

Образование каротиноидов. Синтез каротиноидов не требует све­та. При формировании листьев каротиноиды образуются и накапли­ваются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. При начале освещения образование хлорофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каро­тиноидов восстанавливается и даже повышается с увеличением интен­сивности освещения. Показана тесная зависимость образования каро­тиноидов от азотного обмена. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Обра­зование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с амми­ачным. Недостаток серы резко уменьшает содержание каротиноидов. Большое значение имеет соотношение Са в питательной среде. Относительное увеличение содержания Са приводит к усиленному на­коплению каротиноидов по сравнению с хлорофиллом. Противопо­ложное влияние оказывает увеличение содержания магния.

studfiles.net

Каротиноиды - «Энциклопедия»

КАРОТИНОИДЫ, природные органические пигменты от жёлтого до красно-фиолетового цвета, продуцируемые бактериями, грибами, растениями. Широко распространены в природе: около 600 различных каротиноидов обнаружены в клетках и тканях всех представителей живой природы в свободном состоянии или в виде гликозидов, эфиров жирных кислот, каротин-протеиновых комплексов. Каротиноиды обусловливают окраску некоторых цветков, плодов, корней, а также осенней листвы растений; каротиноиды, получаемые животными с пищей, окрашивают покровы многих видов рыб, птиц, насекомых, ракообразных. Каротиноиды в наибольшем количестве содержатся в корнеплодах моркови, листьях петрушки, лука, шпината, плодах абрикосов, томатов, тыквы, облепихи.

Каротиноиды имеют структуру изопреноидов; в молекулах каротиноидов четыре изопреновых фрагмента связаны в полиеновую цепь - формула I (R и R’ - главным образом циклогексеновые или алифатические изопреновые фрагменты либо кислородсодержащие производные циклогексена).

Каротиноиды

Реклама

Каротиноиды подразделяют на тетратерпеновые углеводороды (каротины) общей формулы С40Н56, кислородсодержащие производные тетратерпеновых углеводородов (ксантофиллы) и каротиноиды, содержащие в молекулах больше или меньше 40 атомов углерода. В высших растениях наиболее широко представлены каротиноидные углеводороды, главным образом β-каротин (R = R’ = II; составляет 20-30% природных каротиноидов), ликопин (R = R’ = III), γ-каротин (R = II, R’ = III). Каротиноидные углеводороды растворимы в эфирах, хлороформе, бензоле, жирах и маслах, нерастворимы в воде. Легко окисляются О2 воздуха, неустойчивы на свету и при нагревании в присутствии кислот и щелочей. β-Каротин выделяют экстракцией из моркови, люцерны, гречихи, пальмового масла и другого растительного сырья; в промышленности получают путём микробиологического или химического синтеза (тёмно-рубиновые кристаллы, tпл 182-184°С). Ликопин выделяют из томатов или синтезируют (красно-фиолетовые кристаллы, tпл 174°С).

Каротиноиды

Среди кислородсодержащих каротиноидов наиболее распространены каротиноиды, в молекулах которых есть гидроксильные группы, например, лютеин (R = IV, R’ = V; жёлтые кристаллы, tпл 193°С), криптоксантин (R = IV, R’ = I; жёлтые кристаллы, tпл 174°С. Встречаются каротиноиды, содержащие карбонильные группы, например, кантаксантин (R = R’ = VI), эпоксидные группы, например, виолаксантин (R = R’ = VII), карбоксильные группы, например, биксин (R = СООН, R’ = СООСН3), и др.

Каротиноиды

Каротиноиды  участвуют в фотосинтезе (как вспомогательные светопоглощающие пигменты), транспорте кислорода через клеточные мембраны, защите хлорофилла от фотоокисления. Каротиноиды, содержащие в молекуле фрагмент R = II, являются предшественниками витамина А (в организме животных в результате ферментативного расщепления превращаются в витамин А). У животных каротиноиды стимулируют деятельность половых желёз, у человека повышают иммунный статус, предохраняют от фотодерматозов, играют важную роль в процессах восприятия света сетчаткой глаза; являются природными антиоксидантами. Каротиноиды  используют в качестве пищевых красителей, компонентов корма для животных, в медицинской практике - для лечения кожных покровов.

Каротиноиды

За исследования каротиноидов присуждены две Нобелевские премии: П. Карреру в 1937 и Р. Куну в 1938 годах.

Лит.: Бриттон Г. Биохимия природных пигментов. М., 1986; Карнаухов В. Н. Биологические функции каротиноидов. М., 1988; Кудрицкая С. Е. Каротиноиды плодов и ягод. К., 1990.

О. Б. Рудаков.

knowledge.su


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта