Углекислый газ для питания и роста растений. Как углекислый газ проникает в растения
Углекислый газ для питания и роста растений
Растения не могут обходиться без углекислого газа точно так же, как и человек без кислорода. Без СО2 невозможен рост и развитие садовых культур. Если кислород уходит в атмосферу, то углекислый газ именно к растениям, которые нуждаются в нем. В данной статье пойдет речь о том, какую роль играет углекислый газ в жизни растений , почему так важен для них СО2.
Агрономия очень много говорит о минеральном питании. И создается иллюзия, будто бы оно – главное. Но если рассмотреть сухую массу растений, половина растительной ткани – углерод, еще 20 % – кислород, 15 % – азот, 8 % – водород. Итого – около 90 %, собственно, «воздуха». Ведь большая часть почвенного азота – тоже из воздуха. И только 6–7 % растения – зола, минералы: фосфор, калий, кальций и магний. Микроэлементов – сотые доли процента.
Растения поглощают из воздуха и почвы углекислый газ
Самая важная часть питания растений — углекислый газ, они воспроизводят органику из СО2 и воды, а человек окисляет ее обратно до СО2 и воды. Так происходи обмен: человек дает растениям углекислый газ, а они человеку – органику и кислород. Кислород, как и водород, растения получают в основном из воды. Миллионы лет на планете поддерживается разумный баланс упомянутых газов.
Итак, растения поглощают из воздуха углекислый газ, но СО 2 в воздухе катастрофически мало – всего 0,03 %, конечно, культурным растениям, с их явно завышенной продуктивностью, его всегда не хватает. Летом, в солнечный и безветренный день, вокруг листьев быстро создается «вакуум» углекислого газа, и чем выше от земли, тем больше его дефицит. В теплице, уже через 6 недель после внесения навоза уровень СО2 падает до 0,01 %. Установлено: при такой концентрации СО2 фотосинтез резко падает, а при еще меньшей почти замирает.
Но если растения дышат углекислым газом, а его катастрофически не хватает, как объяснить тогда буйное процветание растительного царства. Разве могли растения миллионы лет так рисковать своим выживанием? Например, высоко в горах, на Крайнем Севере? Не поспешил ли Климент Аркадьевич (Тимирязев.), приписав поглощение СО2 только листьям? Если не листьями – как добывают растения столько углерода? У Кузнецова нашелся логичный ответ и на эти вопросы.
Прежде всего: откуда берется углекислый газ воздуха? Энергия биомассы земных растений почти на два порядка больше, чем дают сейчас все виды топлива. Людей еще и не было, а 0,03 % СО2 в воздухе уже были. Получается, не костры, не машины и ТЭЦ поставляют углекислый газ в атмосферу. Огромный объем СО2 способны «выдохнуть» только те, кто съел, окислил всю растительную биомассу – обитатели почв и океанов.
Очевидно: вернуть углекислый газ для растений может только постоянный распад, окисление дерна или подстилки. Итак, источник СО2 – почва. Главный резервуар, хранитель СО2 – почвенная мульча.
Как растения дышат углекислым газом в почве
Азот – химический сосед, почти родич углерода. В воздухе его – не доли процента, а целых ¾. Но поглощается он только в виде растворов – аммония, нитратов и простой азотистой органики. Можно предположить: углерод также усваивается в виде растворов. И действительно, почва просто пропитана его растворами. Это сам растворенный углекислый газ, которым питаются растения, угольная кислота, карбонаты, простые сахара и всевозможные кислоты. И корни, поглощают СО и угольную кислоту – этот факт отражен еще в энциклопедии 60-х. Основной ли это способ добычи углерода?
По Тимирязеву, огромная площадь листьев нужна только и именно для поглощения углекислого газа из воздуха. Но ведь листовое испарение выкачивает почвенный раствор, добывая, таким образом, минералы. Значит, площадь листьев добывает из почвы и углекислые растворы. Чем больше он испарил и прокачал, тем большим будет поглощение углекислого газа этими растениями. Охлаждение листьев, добыча минералов, воды и углерода одновременно, сразу, одним усилием, с минимальными затратами – вот рациональность, свойственная природе. Именно так растения и должны жить.
Но сколько в почвенной воде СО2? Хватит ли его для фотосинтеза? А гидропоника – откуда там углекислый газ в растворе? Там же нет органики. А ведь растения растут.
Растут, и будут расти, потому что не существует прохладной воды, не насыщенной газами. Дождевые капли, еще не долетев до земли, превращаются в слабые растворы. Выпаренная дистиллированная вода (дистиллированная вода – химически чистая вода. Получается в дистилляторах путем простой конденсации пара на холодную поверхность.), оставленная открыто, уже через пару часов – раствор. А растворимость СО2 в 70 раз больше азотной, и в 150 – кислородной.
Поглощение углекислого газа растениями в почве
Известно, что добавка углекислого газа в воздух теплиц помогает в развитии растений, а значит, увеличивает урожаи. Об этом защищена масса диссертаций. И вот что они сообщают. Рост содержания СО2 вчетверо, до 0,12 %, усиливает фотосинтез вдвое и прибавляет четверть урожая. Подъем до 0,3 % – в десять раз – позволяет собрать полтора урожая. Дальнейшее насыщение воздуха СО до 1 % урожай не увеличивает. А выше 1,5–2 % урожай начинает резко падать: фотосинтез прекращается. Потому что после критического уровня (1,5 %) доля СО2 в воздухе уже такова, что вообще не дает ему выходить из цитоплазмы клеток. Корни качают углекислоту, а излишки девать некуда. Идет угроза отравления. И растение блокирует всасывание и прокачку растворов – замирает, пережидая стресс.
Ответ на вопрос «поглощают ли растения углекислый газ» из почвенного раствора» будет скорее положительным, при избытке почвенного СО2 в богатых и живых почвах. И только на «культурных» почвах, когда почвенный раствор вместо углерода перенасыщен солями, они включают запасной, «пожарный» механизм – поглощение СО2 из воздуха. Видимо, это и наблюдал Тимирязев. Но как же мало углекислого газа должно быть в этих листьях, чтобы начать всасывать его воздушный мизер. Отсюда главное правило природного земледелия: органика распадается все лето, и именно под растениями, а не в компостной куче.
Как растения питаются углекислым газом в почве
Доказано, что диффузия, то есть взаимопроникновение у газов в 10 000 раз быстрее, чем у жидкостей. Так что устьица это очень эффективные отверстия.
Классик физиологии растений А. Л. Курсанов с помощью меченых атомов доказал: поглощенный корнями углерод очень скоро оказывается в сахарах листьев. Но его количество – в среднем 5 % от всего поглощенного.
Корни совсем не просто передают углерод листьям. Прямо в корнях идет синтез сахаров и аминокислот. Корни – самодостаточный синтезирующий орган. В питательном растворе они прекрасно могут расти и множиться сами, вообще без вершков.
Корни сами выделяют огромное количество и сахаров, и СО2. Сахарами они кормят своих ризосферных бактерий. А углекислого газа выдыхают до 40 % от всего почвенного.
Наконец, при содержании СО2 в почве более 1,5 % корни начинают задыхаться. Как оказалось, им намного важнее избыток кислорода. И это – своя тема, выросшая в целое направление: аэропонику.
Как бы там ни было, но принцип распада органической мульчи под растениями – верен, и именно его показывает нам природа.
Таким образом, влияние углекислого газа на развитие и продуктивность растений полностью подтверждено и доказано научно.
kvetok.ru
растения не домашние. Ответ покороче пожалуйста дайте!
Из воздуха растения поглощают углекислый газ и кислород в процессах ассимиляции и дыхания, интенсивность которых зависит от освещенности, влажности, температуры и снабжения растений питательными веществами. Интенсивность дыхания растений, в разные периоды их развития неодинакова. Особенно энергично дышат прорастающие семена. С ускорением роста возрастает интенсивность дыхания, поэтому молодые растения дышат активнее, чем взрослые. Зимой у растений этот процесс снижается до минимального уровня. во всех органах растений часть глюкозы, полученной при фотосинтезе, окисляется кислородом. При этом образуется энергия, необходимая для жизни, а так же углекислый газ. У растений газообмен происходит через устьица на листьях и стеблях, а также через чечевички и трещины в коре. Внутри тканей кислород следует по межклетникам, потом растворяется в воде, пропитывающей клеточные стенки, и проникает в клетки. Дышат все органы растения — и корни, и стебли, и листья, и цветки. Дышат растения, как животные или человек, только кислородом, а выделяют углекислый газ. Дышать углекислым газом растения не могут, так как углекислый газ не поддерживает дыхания. Поглощение растениями углекислого газа происходит только на свету, но углекислым газом растения не дышат, а используют его в процессе фотосинтеза. Вместе с углекислым газом на свету растения поглощают из воздуха кислород, необходимый для дыхания. Но кислород в процессе дыхания они поглощают в гораздо меньших количествах, чем выделяют его при образовании крахмала. А углекислый газ при образовании крахмала растения поглощают в значительно больших количествах, чем выдыхают в процессе дыхания. Зная это, можно не опасаться, что декоративные растения, поставленные в жилой комнате, ночью будут уменьшать количество кислорода в воздухе. При хорошем освещении днем они выделяют кислорода значительно больше, чем поглощают его в темноте ночью. на свету в растении протекают два противоположных процесса Один процесс — фотосинтез, другой — дыхание. Во время дыхания в растении происходит расходование органических веществ с выделением энергии, необходимой для жизнедеятельности растительного организма. Корни дышат, т. е. поглощают кислород из воздуха, находящегося в рыхлой почве, и выделяют углекислоту. Поэтому рыхление земли в цветочных горшках и кадках способствует лучшему проникновению воздуха в почву, а следовательно, и лучшему росту корней и всего растения.
Нужно вернуться к школьной ботанике. Растения не дышат, а поглощают углекислый газ через устьица на листьях и через них выделяют кислород. Это сложный биохимический процесс.
touch.otvet.mail.ru
в чем отличие процесса питания и дыхания растений?
– Без пищи человек может обходиться месяц, без воды – около недели, а без воздуха – всего несколько минут. – Чем дыхание отличается от питания и как эти процессы жизнедеятельности связаны в обмене веществ у растений? Дыхание – совокупность процессов, обеспечивающих поступление в организм кислорода, использование его в биологическом окислении органических веществ и удаление углекислого газа. Таким образом, дыхание можно разделить на два взаимосвязанных этапа: а) внешнее дыхание – газообмен: поступление кислорода и удаление углекислого газа; б) тканевое (клеточное) дыхание – использование кислорода в биологическом окислении у животных. Внешнее дыхание: У растений нет специальных органов дыхания. Как осуществляется газообмен у растений? Поступление в организм кислорода и выделение углекислого газа происходит через устьица листьев и зеленых побегов (кактус) и специальные отверстия среди клеток коры – чечевички (береста) . Перемещаясь по межклетникам или особой воздухоносной ткани, кислород проникает во все живые клетки растения, тем же способом в обратном направлении выводится углекислый газ. Газообмен между растением и внешней средой: Клетки поглощают кислород из воздуха, проникшего в воздушные ходы через устьичные щели. Кроме того, клетки используют тот кислород, который выделяется при фотосинтезе. Однако при благоприятных для фотосинтеза условиях кислорода выделяется гораздо больше, чем расходуется в процессе дыхания. Через устьичные щели избыток кислорода из межклетников выходит наружу. Отсюда становится ясно, что атмосферный воздух будет богаче кислородом там, где больше зеленых растений. Таким образом, лист, обладающий множеством устьиц, является органом, который обеспечивает активный газообмен между организмом и внешней средой. Через устьичные щели в лист проникает атмосферный воздух. Из листа наружу выходит воздух, обогащенный кислородом. – А как обстоит дело с дыханием? Ночью растения дышат. Для этого клетки используют кислород, поступивший в межклетники через устьичные щели еще днем, а так же кислород, накопившийся при фотосинтезе. Днем при закрытых устьицах дыхание также не прекращается. Запас кислорода в межклетниках пополняется за счет фотосинтеза. Необходимый для фотосинтеза углекислый газ высвобождается в процессе дыхания. Возможно также проникновение в лист небольшого количества углекислого газа через кожицу. Отметим, однако, что интенсивность фотосинтеза в этих условиях гораздо ниже, чем при открытых устьицах. Тканевое дыхание – биологическое окисление органических веществ с участием кислорода – происходит в митохондриях. При этом высвобождается энергия, которую растения усвоили в результате фотосинтеза, и образуются те же вещества, которые растение использовало для питания: вода и углекислый газ. Задание: составьте схему биологического окисления. Кислород + Углеводы = Углекислый газ + Вода + Энергия Значение дыхания. Энергия, которая выделяется при биологическом окислении, частично рассеивается в виде тепла, а оставшаяся работает, обеспечивая деление клеток, рост, размножение, образование новых веществ. Дышат все органы растения: Опыт Возьмем веточку, можно взять несколько листьев герани или примулы, с длинными черешками. Веточку или листья поставим стакан с водой. Стакан установим на тарелке, рядом с которой поставим другой стакан с прозрачной известковой водой. Затем все это закроем стеклянным колпаком или большой стеклянной банкой и поместим в темный шкаф. В темноте растения, как вы уже знаете, не могут выделять кислород. В темном шкафу листья растения будут только дышать, а значит, поглощать кислород и выделять углекислый газ. От углекислого газа, выделяемого листьями, налитая в стакан известковая вода помутнеет.. .
touch.otvet.mail.ru
Растения потребляют кислород и выделяют углекислый газ в процессе ..
4) дыхания на свету и в темноте Растения в процессе "дыхания" потребляют кислород и днем и ночью. Днем на свету за счет фотосинтеза производство кислорода растениями превышает его потребление для дыхания, но потребление кислорода не прекращается.
дыхания на свету и в темноте т. к. дыхание это по определению процесс окисления углерода
То есть, ты сознательно ХОЧЕШЬ остаться дурочкой без мозгов, так? А чем по жизни займешься, интересно?
touch.otvet.mail.ru
Посогите, срочно. Биология 6 класс...
Одним из основных проявлений жизни является обмен веществ, или метаболизм (от греч. «метаболе» — изменение, превращение) . В растительных организмах происходит внешний обмен — поглощение и выделение веществ, и внутренний обмен — превращение веществ в клетке. Внешний обмен может происходить с расходованием энергии или без нее. Внутренний же обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции и диссимиляции. Ассимиляция (от лат. «ассимиляцио» — употребление) — процесс образования из простых веществ более сложных, из которых строится тело растения. Для этого необходима энергия. Диссимиляции — процесс распада сложных веществ, из которых построено тело, на более простые. При этом освобождается энергия. Способность к фотосинтезу — основной признак зеленых растений. Газообмен в листе происходит по закону диффузии (взаимного проникновения веществ) . Днем, когда происходит фотосинтез, внутри листа концентрация углекислого газа уменьшается сравнительно с внешним воздухом, поскольку он расходуется на образование углеводов. Поэтому углекислый газ и проникает через устьица к межклетникам губчатой ткани, а оттуда к клеткам. В это же время из листьев выделяется кислород, освобождающийся в процессе фотосинтеза. Ночью происходит обратный процесс, а именно: количество углекислого газа в листьях возрастает и он выделяется в воздух, происходит интенсивно процесс дыхания. Дыхание происходит во всех живых клетках днем и ночью. Растение, как и человек, дышит кислородом, а выдыхает углекислый газ. Однако на свету, когда происходит фотосинтез, растения поглощают углекислого газа больше, чем выделяют при дыхании. Испарение воды, или транспирация — это процесс испарения воды листьями, который имеет очень важное значение в жизни растений. Он осуществляется в основном через устьица. Благодаря испарению вокруг растения создается определенный микроклимат, необходимый для нормальной жизнедеятельности. Испарение в жаркую погоду способствует охлаждению листьев» передвижению воды и растворенных в ней веществ. Различают испарение воды через кутикулу (восковой налет на кожице) и через устьица. Скорость транспирации зависит от многих причин: биологических особенностей самих растений, экологических условий. Таким образом, ассимиляция и диссимиляция — взаимосвязанные процессы обмена веществ и энергии. Самым важным ассимиляционным процессом у растений является фотосинтез, а диссимиляционным — дыхание. Фотосинтез осуществляется в клетках ассимиляционной ткани, в которых содержатся зеленые пластиды — хлоропласты. Ассимиляционную ткань называют еще основной. Она состоит из клеток двух типов. Под верхней кожицей располагаются в два-три плотных слоя клетки столбчатой ткани, а под ними рыхло лежат клетки губчатой ткани, имеющей кмежклетники — пространства, заполненные воздухом. В кожице, преимущественно с нижней стороны листа, имеются многочисленные образования — устьица, обеспечивающие газообмен и испарение воды растением. Минеральное питание. Для нормальной жизнедеятельности растениям нужны не только углеводы, образующиеся в процессе фотосинтеза, но и белки, жиры и другие вещества. Для их образования растению, кроме кислорода, водорода (из которых состоят углеводы) , необходимы другие химические элементы. Их растение получает из почвы в виде минеральных веществ, следовательно, почва — не только среда обитания, но и источник минерального питания растений. Из почвы в растение поступают такие элементы, как калий, фосфор, азот и другие, а также микроэлементы: бор, кальций, магний, сера, кобальт, марганец, медь, цинк и др. При недостатке в почве минеральных солей их вносот в виде минеральных удобрений. Удобрения бывают минеральные: азотные (селитра, мочевина, сульфат аммония) , фосфорные (суперфосфат) и калийные (хлорид калия) . Золу также считают калийным удобрением. Вносят в почву и органические удобрения. Это вещества органического происхождения — навоз, птичий помет, перегной, торф. Есть еще и гранулированные удобрения.
Одним из основных проявлений жизни является обмен веществ, или метаболизм (от греч. «метаболе» — изменение, превращение) . В растительных организмах происходит внешний обмен — поглощение и выделение веществ, и внутренний обмен — превращение веществ в клетке. Внешний обмен может происходить с расходованием энергии или без нее. Внутренний же обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции и диссимиляции. Ассимиляция (от лат. «ассимиляцио» — употребление) — процесс образования из простых веществ более сложных, из которых строится тело растения. Для этого необходима энергия. Диссимиляции — процесс распада сложных веществ, из которых построено тело, на более простые. При этом освобождается энергия. Способность к фотосинтезу — основной признак зеленых растений. Газообмен в листе происходит по закону диффузии (взаимного проникновения веществ) . Днем, когда происходит фотосинтез, внутри листа концентрация углекислого газа уменьшается сравнительно с внешним воздухом, поскольку он расходуется на образование углеводов. Поэтому углекислый газ и проникает через устьица к межклетникам губчатой ткани, а оттуда к клеткам. В это же время из листьев выделяется кислород, освобождающийся в процессе фотосинтеза. Ночью происходит обратный процесс, а именно: количество углекислого газа в листьях возрастает и он выделяется в воздух, происходит интенсивно процесс дыхания. Дыхание происходит во всех живых клетках днем и ночью. Растение, как и человек, дышит кислородом, а выдыхает углекислый газ. Однако на свету, когда происходит фотосинтез, растения поглощают углекислого газа больше, чем выделяют при дыхании. Испарение воды, или транспирация — это процесс испарения воды листьями, который имеет очень важное значение в жизни растений. Он осуществляется в основном через устьица. Благодаря испарению вокруг растения создается определенный микроклимат, необходимый для нормальной жизнедеятельности. Испарение в жаркую погоду способствует охлаждению листьев» передвижению воды и растворенных в ней веществ. Различают испарение воды через кутикулу (восковой налет на кожице) и через устьица. Скорость транспирации зависит от многих причин: биологических особенностей самих растений, экологических условий. Таким образом, ассимиляция и диссимиляция — взаимосвязанные процессы обмена веществ и энергии. Самым важным ассимиляционным процессом у растений является фотосинтез, а диссимиляционным — дыхание. Фотосинтез осуществляется в клетках ассимиляционной ткани, в которых содержатся зеленые пластиды — хлоропласты. Ассимиляционную ткань называют еще основной. Она состоит из клеток двух типов. Под верхней кожицей располагаются в два-три плотных слоя клетки столбчатой ткани, а под ними рыхло лежат клетки губчатой ткани, имеющей кмежклетники — пространства, заполненные воздухом. В кожице, преимущественно с нижней стороны листа, имеются многочисленные образования — устьица, обеспечивающие газообмен и испарение воды растением. Минеральное питание. Для нормальной жизнедеятельности растениям нужны не только углеводы, образующиеся в процессе фотосинтеза, но и белки, жиры и другие вещества. Для их образования растению, кроме кислорода, водорода (из которых состоят углеводы) , необходимы другие химические элементы. Их растение получает из почвы в виде минеральных веществ, следовательно, почва — не только среда обитания, но и источник минерального питания растений. Из почвы в растение поступают такие элементы, как калий, фосфор, азот и другие, а также микроэлементы: бор, кальций, магний, сера, кобальт, марганец, медь, цинк и др. При недостатке в почве минеральных солей их вносот в виде минеральных удобрений. Удобрения бывают минеральные: азотные (селитра, мочевина, сульфат аммония) , фосфорные (суперфосфат) и калийные (хлорид калия) . Золу также счита
дним из основных проявлений жизни является обмен веществ, или метаболизм (от греч. «метаболе» — изменение, превращение) . В растительных организмах происходит внешний обмен — поглощение и выделение веществ, и внутренний обмен — превращение веществ в клетке. Внешний обмен может происходить с расходованием энергии или без нее. Внутренний же обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции и диссимиляции. Ассимиляция (от ла
touch.otvet.mail.ru
Фотосинтез может протекать в различных органах растений (стебли, плоды и др.), имеющих зеленую окраску, но основным органом фотосинтеза является лист. Анатомическое строение листа приспособлено к тому, чтобы обеспечить поступление С02 к клеткам, содержащим зеленые пластиды, и достигнуть максимального поглощения энергии света. Листья в большинстве случаев тонкие и обладают максимальной поверхностью на единицу массы. Наличие межклетников облегчает доступ С02 ко всем клеткам. К эпидермису, расположенному на верхней стороне листа, примыкает палисадная паренхима, клетки которой вытянуты перпендикулярно поверхности листа. Палисадная паренхима — это основная ассимиляционная ткань листа, особенно богатая хлоропластами. Густая сеть жилок в листе не только облегчает снабжение клеток паренхимы водой, но и способствует быстрому оттоку из листа углеводов, образующихся в процессе фотосинтеза. Для того чтобы процесс фотосинтеза протекал нормально, в клетки к зеленым пластидам должен непрерывно поступать С02. Основным поставщиком С02 служит атмосфера. Количество С02 в атмосфере составляет около 0,03%. В течение дня растения усваивают количество С02, содержащееся в 30—60-метровом слое воздуха. Для образования 1 г сахара необходимо 1,47 г С02, содержащегося в 2500 л воздуха. Это возможно благодаря непрерывному турбулентному движению воздушных масс вокруг листьев, вызываемому ветром и неравномерным нагреванием их солнечными лучами. Углекислый газ, потребляемый при фотосинтезе, возвращается в атмосферу за счет процессов дыхания и гниения. Особенное значение имеет при этом деятельность почвенных микроорганизмов. Определенное количество С02 выделяется при разложении карбонатов, растворенных в морской воде. В результате поглощения листом С02 возникает градиент концентрации этого газа, что и вызывает непрерывную диффузию С02 в направлении фотосинтезирующих органов растения. Диффузия возникает вследствие хаотического теплового движения молекул и представляет спонтанный процесс, приводящий к перемещению вещества от его большей концентрации к меньшей. Согласно закону Фика скорость диффузии прямо пропорциональна разности концентраций и обратно пропорциональна сопротивлению. С02 диффундирует из более дальних слоев атмосферы в близлежащие к листу и далее в межклетные пространства, из межклетников в клетки и далее к хлоропластам. Чем быстрее используется С02 в процессе фотосинтеза, тем больше падает ее парциальное давление в межклетниках и тем быстрее поступает в них С02. Всякое перемешивание среды (воздуха или воды) способствует более быстрой диффузии С02 к листу. В процессе диффузии ток С02 встречает сопротивление. Оно особенно велико при диффузии С02 к листьям водных растений. Исследования показали, что в воде сопротивление диффузионному току С02 примерно в 1000 раз больше, чем в воздухе. Кроме внешнего сопротивления, которое встречает С02 при диффузии до поверхности листа, существует еще внутреннее сопротивление (в самом листе). Углекислый газ поступает в лист растения через устьица. Некоторое количество С02 поступает непосредственно через кутикулу. В последнем случае диффузия C02 происходит через клетки эпидермиса к хлоропластам клеток паренхимы листа. При прохождении через устьичные щели С02 может диффундировать в виде газа к любой части листа по межклеточным пространствам. Расстояние, которое должны преодолеть молекулы С02 по системе межклетников до клетки, составляет около 1000 мкм. Время прохождения этого расстояния — 10—16 микросекунд. В этом случае водный диффузионный путь минимальный — лишь внутри клетки, а следовательно, сопротивление будет меньшим. Несмотря на то, что при полностью открытых устьицах площадь устьичных щелей составляет всего 1/100 поверхности листа, диффузия С02 внутрь листа идет через них сравнительно быстро. Опытным путем установлено, что свободная поверхность щелочи площадью 1 см2 поглощает за 1 ч 0,12—0,15 см3 С02. 1 см2 поверхности листа поглощает всего в два раза меньше — 0,07 см3 С02, в то же время его открытая площадь меньше в 100 раз. Такая высокая скорость связана с тем, что диффузия газов через мелкие отверстия идет пропорционально не их площади, а диаметру. Естественно, что это положение правильно лишь при условии, что устьица открыты. При закрытых устьицах диффузия С02 в лист резко сокращается. При ветре внешнее сопротивление падает. Основное значение приобретает сопротивление при диффузии через устьица, поэтому их закрытие оказывает еще большее относительное влияние и еще сильнее снижает диффузию С02. Закрытие устьиц сильнее уменьшает потерю паров воды из листа (транспирацию) по сравнению с диффузией С02 внутрь листа. Это связано с тем, что скорость диффузии паров воды в первую очередь зависит от размера устьичных щелей, тогда как для диффузии С02 большее значение имеет интенсивность его использования в процессе фотосинтеза. Это представляет значительное приспособление для выживания растений в неблагоприятных условиях существования, например при засухе. Так, уменьшение диаметра устьиц с 10 до 3 мкм уменьшает транспирацию на 38%, тогда как поглощение С02 — всего на 29%. |
fizrast.ru
"Растения поглощают углекислый газ и вырабатывают кислород", я правильно говорю?
Это при автотрофном питании (фотосинтез) , а ток-же любое растение проглатывает кислород и выделяет углекислый газ (дыхание) . Нам всем повезло в том, что выделение кислорода при фотолизе воды намного больше поглощения при дыхании.
Закончу мысль: поэтому их надо беречь. Я правильно говорю?
Днем пока светит солнце.
А люди поглощают кислород и вырабатывают Газ - Они в двое выгоднее растений! Газпром всегда в цене!
тюлени поглощают сусликов и вырабатывают троллий жир, я правильно говорю?
Правильно. Садись, пять. Для третьего класса - вполне. Класса для 5 надо упомянуть, что растения входят в единую трофическую цепь. Делятся на однодомных и двудомных. На цветковые, лиственные, хвойные. Бывают растения автохтоны. И бывают... все, не буду грузить. Дальше сама не помню :)))
Правильно, а ночью наоборот, поэтому нам не рекомендуют в спальне держать комнатные растения.
Только не вырабатывают, а выделяют. Но в принципе разницы никакой.
днём, а ночью наоборот..
Ну где-то как-то так . Если конечно они успевают перерабатывать всё , что назагрязняли :-)))
А вот люди поглащают кислород. а выдохнуть норовят всякую гадость!
"Самыми активными «производителями» кислорода являются бесчисленные мелкие водоросли, произрастающие в поверхностных теплых слоях морей и океанов. Подсчитано, что сухопутные растения вырабатывают ежегодно 53 млрд. тонн кислорода, а водоросли – почти в 10 раз больше. "/инет/ Вывод -жить надо на берегу моря)))))
Вы правы как всегда.
touch.otvet.mail.ru