Гетерозиготные растения. 19. Понятие о генах. Аллельные гены. Гомозиготы и гетерозиготы

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Аллельные гены, их свойства. Гомозиготы и гетерозиготы. Гетерозиготные растения


Свойства генов. Аллельные гены, гомозиготы и гетерозиготы

Генетика – наука, которая изучает гены, механизмы наследования признаков и изменчивость организмов. В процессе размножения ряд признаков передается потомству. Было замечено еще в девятнадцатом столетии, что живые организмы наследуют особенности своих родителей. Первым, кто описал эти закономерности, был Г.Мендель.

Наследственность – свойство отдельных особей передавать потомству свои признаки при помощи размножения (через половые и соматические клетки). Так сохраняются особенности организмов в ряде поколений. При передаче наследственной информации не происходит точное ее копирование, а всегда присутствует изменчивость.

Изменчивость – приобретение индивидуумами новых свойств или утрата старых. Это важное звено в процессе эволюции и адаптации живых существ. То, что в мире нет идентичных особей – это заслуга изменчивости.

Наследование признаков осуществляется с помощью элементарных единиц наследования – генов. Совокупность генов определяет генотип организма. Каждый ген несет в себе закодированную информацию и расположен в определенном месте ДНК.

Свойства генов

Свойства генов

Гены обладают рядом специфических свойств:

  1. Разные признаки кодируются разными генами;
  2. Постоянство – при отсутствии мутирующего действия, наследственный материал передается в неизменном виде;
  3. Лабильность – способность поддаваться мутациям;
  4. Специфичность – ген несет в себе особую информацию;
  5. Плейотропия – одним геном кодируется несколько признаков;

Под действием условий внешней среды генотип дает разные фенотипы. Фенотип определяет степень влияния на организм окружающих условий.

Клетки нашего организма имеют диплоидный набор хромосом, они в свою очередь состоят из пары хроматид, разбитых на участки (гены). Разные формы одинаковых генов (например карие/голубые глаза), расположены в одних и тех же локусах гомологичных хромосом, носят название аллельных генов. В диплоидных клетках гены представлены двумя аллелями, один от отца, другой от матери.

Аллели делятся на доминантные и рецессивные. Доминантная аллель определят, какой признак будет выражен в фенотипе, а рецессивная – передается по наследству, но в гетерозиготном организме не проявляется.

Существуют аллели с частичной доминантностью, такое состояние называется кодоминантностью, в таком случае оба признака будут проявляться в фенотипе. Например, скрещивали цветы с красными и белыми соцветиями, в результате в следующем поколении получили красные, розовые и белые цветы (розовые соцветия и есть проявлением кодоминантности). Все аллели обозначают буквами латинского алфавита: большими – доминантные (АА, ВВ), маленькими – рецессивные (аа,bb).

Гомозиготы и гетерозиготы

Гомозигота – это организм, в котором аллели представлены только доминантными или рецессивными генами.

Гомозиготность означает наличие одинаковых аллелей в обеих хромосомах (АА, bb). В гомозиготных организмах они кодируют одни и те же признаки (например, белый цвет лепестков роз), в таком случае все потомство получит такой же генотип и фенотипические проявления.

Гетерозигота – это организм, в котором аллели имеют и доминантный, и рецессивный гены.

Гетерозиготность — наличие разных аллельных генов в гомологичных участках хромосом (Аа, Вb). Фенотип у гетерозиготных организмов всегда будет одинаков и определяется доминантным геном.

Например, А – карие глаза, а – голубые глаза, у особи с генотипом Аа будут карие глаза.

Для гетерозиготных форм характерно расщепление, когда при скрещивании двух гетерозиготных организмов в первом поколении мы получаем следующий результат: по фенотипу 3:1, по генотипу 1:2:1.

Примером может послужить наследование темных и светлых волос, если у обоих родителей они темные. А – доминантная аллель по признаку темных волос, а – рецессивная (светлые волосы).

Р: Аа х Аа

Г: А, а, А, а

F: АА:2Аа:аа

*Где Р – родители, Г – гаметы, F – потомство.

По данной схеме можно увидеть, что вероятность унаследовать от родителей доминантный признак (темные волосы) в три раза выше, чем рецессивный.

Дигетерозигота – гетерозиготная особь, которая несет две пары альтернативных признаков. Например, исследование наследования признаков Менделем с помощью семян гороха. Доминантными характеристиками были желтый цвет и гладкая поверхность семян, а рецессивными — зеленый цвет и шероховатая поверхность. В результате скрещивания получилось девять различных генотипов и четыре фенотипа.

Гемизигота – это организм с одним аллельным геном, даже если он рецессивный, фенотипически всегда будет проявляться. В норме они присутствуют в половых хромосомах.

Отличие гомозиготы и гетерозиготы (таблица)

Отличия гомозиготных организмов от гетерозиготных
ХарактеристикаГомозиготаГетерозигота
Аллели гомологичных хромосомОдинаковыеРазные
ГенотипAA, aaAa
Фенотип определяется по признакуПо рецессивному или доминатномуПо доминатному
Однообразие первого поколения++
РасщеплениеНе происходитСо второго поколения
Проявление рецессивного генаХарактерноПодавляется

Размножение, скрещивание гомозигот и гетерозигот ведет к образованию новых признаков, которые необходимы живым организмам для адаптации к переменчивым условиям внешней среды. Их свойства необходимы при выведении культур, пород с высокими качественными показателями.

animals-world.ru

Гетерозиготные и гомозиготные организмы

Одним из наиболее значимых свойств любого живого организма является наследственность, лежащая в основе эволюционных процессов на планете, а также сохранения видового разнообразия на ней. Наименьшей единицей наследственности выступает ген – структурный элемент молекулы ДНК, отвечающий за передачу наследственной информации, связанной с тем или иным признаком организма. В зависимости от степени проявления выделяются доминантные и рецессивные гены. Характерной особенностью доминантных единиц является способность «подавлять» рецессивные, оказывая решающее воздействие на организм, не позволяя им проявляться в первом поколении. Однако стоит отметить, что наряду с полным доминированием наблюдается неполное, при котором доминантный ген не способен полностью подавить проявление рецессивное и сверхдоминирование, предусматривающее проявление соответствующих признаков в форме более сильной, чем у гомозиготных организмов. В зависимости от того, какие аллельные (то есть, отвечающие за развитие одного и того же признака) гены он получает от родительских особей, выделяются гетерозиготные и гомозиготные организмы.Гомозиготные организмы это

Определение гомозиготного организма

Гомозиготные организмы – это объекты живой природы, имеющие два одинаковых (доминантных либо рецессивных) гена по тому или иному признаку. Отличительной чертой последующих поколений гомозиготных особей является отсутствие у них расщепления признаков и их однообразие. Объясняется это, главным образом, тем, что генотип гомозиготного организма содержит всего один тип гамет, обозначаемых заглавной буквой в случае, если речь идет о доминантных признаках, и строчной при упоминании рецессивных. Гетерозиготные организмы отличаются тем, что они содержат разные аллельные гены, и, в соответствии с этим, образуют два разных типа гамет. Гомозиготные организмы, рецессивные по основным аллелям, можно обозначить как aa, bb, aabb и т.д. Соответственно, гомозиготные организмы, доминантные по аллелям, имеют код AA, BB, AABB.генотип гомозиготного организма

Закономерности наследования

Скрещивание двух гетерозиготных организмов, генотипы которых можно условно обозначить как Аа (где А – доминантный, а – рецессивный ген), предоставляет возможность получения с равной долей вероятности четырех различных комбинаций гамет (варианта генотипа) с расщеплением 3:1 по фенотипу. Под генотипом в данном случае понимается совокупность генов, которые содержит диплоидный набор той или иной клетки; под фенотипом – систему внешних, а также внутренних признаков рассматриваемого организма.

Дигибридное скрещивание и его особенности

Гомозиготные организмыРассмотрим закономерности, связанные с процессами скрещивания, в которых принимают участие гомозиготные организмы. В том же случае, если имеет место дигибридное или полигибридное скрещивание, вне зависимости от характера наследуемых признаков, расщепление происходит в соотношении 3:1, причем этот закон является справедливым для любого их количества. Скрещивание особей второго поколения в таком случае формирует четыре основных вида фенотипов при соотношении 9:3:3:1. Стоит отметить, что этот закон является справедливым для гомологичных пар хромосом, взаимодействие генов внутри которых не осуществляется.

fb.ru

Гетерозигота - это... Что такое Гетерозигота?

Ге́терозиго́тными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

У гетерозиготных индивидов на основе каждого из аллелей синтезируются несколько отличающиеся варианты белка (или транспортных или рибосомальных РНК), кодируемых данным геном.

В результате в организме появляется смесь этих вариантов. Если внешне проявляется эффект только одного из них, то такой аллель называют доминантным, а тот, эффект которого не получает внешнего выражения — рецессивным. По традиции при схематическом изображении скрещивания доминирующий аллель обозначают заглавной буквой, а рецессивный — строчной (например, A и a). Иногда применяются другие обозначения, например сокращенное название гена со знаками плюс и минус.

При полном доминировании (как в классических опытах Менделя при наследовании формы горошин) гетерозиготная особь выглядит как доминантная гомозигота. При скрещивании гомозиготных растений с гладкими горошинами (AA) с гомозиготными растениями с морщинистыми горошинами (aa), у гетерозиготного потомства (Aa) горошины гладкие.

При неполном доминировании наблюдается промежуточный вариант (как при наследовании цвета венчика цветков у многих растений). Например, при скрещивании гомозиготных красных гвоздик (RR) с гомозиготными белыми (rr) у гетерозиготного потомства (Rr) венчики цветков розовые.

Если внешние проявления представляют собой смесь действия обоих аллелей, как при наследовании групп крови у человека, то говорят о кодоминировании.

Следует отметить, что понятия доминантности и рецессивности были сформулированы в рамках классической генетики, и объяснение их с позиций молекулярной генетики наталкивается на определенные терминологические и концептуальные трудности.

См. также

dic.academic.ru

19. Понятие о генах. Аллельные гены. Гомозиготы и гетерозиготы

Одним из уровней организации живой материи является ген- фрагмент молекулы нуклеиновой кислоты, в котором определенной последовательностью нуклеотидов заложены качественные и количественные характеристики одного признака. Элементарным явлением, обеспечивающим вклад гена в сохранение нормального уровня жизнедеятельности организма, является самовоспроизведение ДНК и перенос заключенной в ней информации в строго определенную последовательность нуклеотидов транспортной РНК.

Аллельные гены- гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом. Итак, гетерозиготные особи имеют в каждой клетке два гена - А и а, отвечающих за развитие одного и того же признака. Такие парные гены называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза в каждой гамете остается один комплект гомологичных хромосом, поэтому любая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном и том же месте гомологичных хромосом. Схематически гетерозиготная особь обозначается так: А/а. Гомозиготные особи при подобном обозначении выглядят так: А/А или а/а, но их можно записать и как АА и аа.

Гомозигота— диплоидный организм или клетка, несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных.

Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

20. Понятие о гене. Свойства гена. Функции гена. Виды генов

Ген— структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения.

Свойства гена

  1. Аллельное существование – гены могут существовать как минимум в двух разных формах; соответственно парные гены называются аллельными.

Аллельные гены занимают одинаковые места в гомологичных хромосомах. Место гена в хромосоме называют локусом. Аллельные гены обозначают одинаковой буквой латинского алфавита.

  1. Специфичность действия – определенный ген обеспечивает развитие не любого признака, а строго определенного.

  2. Дозированность действия – ген обеспечивает развитие признака не до бесконечности, а в определенных пределах.

  3. Дискретность – поскольку гены в хромосоме не перекрываются, то в принципе ген развивает признак независимо от других генов.

  4. Стабильность – гены могут передаваться без каких-либо изменений в ряду поколений, т.е. ген не меняет свою структуру при передаче последующим поколениям.

  5. Мобильность – при мутациях ген может менять свою структуру.

Функция гена, его проявление, заключается в образовании специфического признака организма. Удаление гена или его качественное изменение приводят соответственно к потере или изменению признака, контролируемого этим геном. В то же время любой признак организма является результатом взаимодействия гена с окружающей и внутренней, генотипической, средой. Один и тот же ген может принимать участие в формировании нескольких признаков организма (явление так наз. плейотропии). Основная масса признаков формируется как результат взаимодействия многих генов (явление полигении). В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности (экспрессивности, или экспрессии). Это указывает на то, что при формировании признаков гены выступают как целостная система, строго функционирующая в определенной генотипической и окружающей среде.

Виды генов.

  1. Структурные гены – несут информацию о 1-ой структуре белка

  2. Регуляторные гены – не несут информацию о 1-ой структуре белка, но регулируют процесс биосинтеза белка

  3. Модификаторы – способны изменить направление синтеза белка

studfiles.net

ЧТО ТАКОЕ ГЕТЕРОЗИГОТА — 86 Язык генетики генотип, фен, аллель, рецессивность и доминантность, гетерозигота и гомозигота

ГЕТЕРОЗИГОТА — (от гетеро… ГЕТЕРОЗИГОТА — ГЕТЕРОЗИГОТА, организм, обладающий двумя контрастирующими формами (АЛЛЕЛИ) ГЕНА в паре ХРОМОСОМ. Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным. Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Гетерозиготность, как правило, обусловливает высокую жизнеспособность организмов, хорошую приспособляемость их к изменяющимся условиям среды и поэтому широко распространена в природных популяциях.

У человека в среднем ок. 20% генов находятся в гетерозиготном состоянии. То есть аллельные гены (аллели) – отцовский и материнский – не одинаковы. Если обозначить этот ген буквой А, то формула организма будет АА. Если же ген получен только от одного родителя, то особь гетерозиготна. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей.

Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении. В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

ГЕТЕРОЗИГОТА это:

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1). Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Как правило, является следствием полового процесса (один из аллелей привносится яйцеклеткой, а другой — сперматозоидом). Гетерозиготность поддерживает в популяции определенный уровень генотипичной изменчивости. Ср. Гомозигота. В экспериментах Г. получают скрещиванием между собой гомозигот по разл. аллелям.

Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. Напр. у обоих родителей могут быть голубые глаза, но у одного из них курчавые волосы, а у другого гладкие. Лит.: Bateson W., Mendel’s principles of heredity, Cambridge, 1913; см. также литературу к ст. Генетика.А.

Генетика — наука о закономерностях наследственности и изменчивости. Наследственность — свойство организмов передавать свои признаки от одного поколения к другому. Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки.

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу. Результаты опытов приведены в таблице. Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением.

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Нек-рые аллели определ. Определение гетерози-готности по рецессивным аллелям, вызывающим наследственные заболевания (т. е. выявление носителей данного заболевания),— важная проблема мед. генетики.

ГОМОЛОГИЧЕСКИЕ РЯДЫ, группы органических соединений с одинаковой хим. функцией, но отличающихся друг от друга одной или несколькими метиленовыми (СН2) группировками. ГОМОЛОГИЧНЫЕ ОРГАНЫ (от греч. ho-mologos—согласный, соответственный), название морфологически сходных органов,т.е. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Напр., при наличии «нормального» аллеля А и мутантных а1 и а2 гетерозиготу а1/а2 наз. компаундом в отличие от гетерозигот А/а1 или А/а2. (см. ГОМОЗИГОТА). Однако при разведении гетерозигот в потомстве теряются ценные свойства сортов и пород именно потому, что половые клетки их разнородны. Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

mariantas.ru

Гетерозигота : Г - Словарь : Все про гены!

     Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных  хромосомах представлены разными аллелями.

       Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

У гетерозиготных индивидов на основе каждого из аллелей синтезируются несколько отличающиеся варианты белка (или транспортных или рибосомальных РНК), кодируемых данным геном.

 

     В результате в организме появляется смесь этих вариантов. Если внешне проявляется эффект толькогомозигота, гетерозигота, генетика, аллели, ген, хромосома одного из них, то такую аллель называют доминантной, а тот, эффект которого не получает внешнего выражения — рецессивным. По традиции при схематическом изображении скрещивания доминирующую аллель обозначают заглавной буквой, а рецессивную — строчной (например, A и a). Иногда применяются другие обозначения, например сокращенное название гена со знаками плюс и минус.           При полном доминировании (как в классических опытах Менделя при наследовании формы горошин) гетерозиготная особь выглядит как доминантная гомозигота. При скрещивании гомозиготных растений с гладкими горошинами (AA) с гомозиготными растениями с морщинистыми горошинами (aa), у гетерозиготного потомства (Aa) горошины гладкие.      При неполном доминировании наблюдается промежуточный вариант (как при наследовании цвета венчика цветков у многих растений). Например, при скрещивании гомозиготных красных гвоздик (RR) с гомозиготными белыми (rr) у гетерозиготного потомства (Rr) венчики цветков розовые.

    Если внешние проявления представляют собой смесь действия обоих аллелей, как при наследовании групп крови у человека, то говорят о кодоминировании.Следует отметить, что понятия доминантности и рецессивности были сформулированы в рамках классической генетики, и объяснение их с позиций молекулярной генетики наталкивается на определенные терминологические и концептуальные трудности.

vse-pro-geny.ru

Организм гетерозиготные

Все организмы, возникающие в результате перекрестного оплодотворения гамет, представляют собой полигибридные гетерозиготные виды по многим парам генов. Человек не является исключением из этого правила и также имеет полигибридную гетерозиготную природу, что с учетом влияния среды находит отражение в его фенотипических свойствах.[ ...]

Считают, что человек является самым гетерозиготным видом. В соответствии с законами расщепления и независимого перераспределения генов, открытыми Г. Менделем, одиночная половая клетка человека содержит лишь половину (гаплоидное число) хромосом и генов, представленных в соматических клетках организма в диплоидном наборе. Если, например, какой-либо индивидуум является гетерозиготным организмом по трем парам генов Аа, Вв и Сс, то его половые клетки несут лишь половину таких генов (А, В, С или а, в, с). Следовательно, потомству такого индивида будет передана также половина генов родительского организма, например, генов А, В и С. Между тем разные половые клетки одного и того же родителя несут разные наборы хромосом, а оплодотворение той или иной клетки является делом случая. Поэтому от одних и тех же родителей дети наследуют разные наборы генов как от одного, так и от другого родителя, вследствие чего братья и сестры всегда имеют разные генотипы, а следовательно и разные фенотипы. Одинаковые генотипы и фенотипы, как уже отмечено выше, присущи лишь монозиготным близнецам.[ ...]

Термин гибрид применяется свободно; любой организм, возникший из генетически различных гамет, фактически является гибридом. Так, растение, гетерозиготное по одной паре признаков, является генетическим гибридом. В садоводстве и ботанике слово гибрид часто неправильно применяется для обозначения специфического результата скрещивания, проведенного между видами. Слово гибридная кукуруза означает определенную комбинацию инбредных линий.[ ...]

Генетическое разнообразие. Поддержание генотипических гетерозиготности, полиморфизма и другой генотипической изменчивости, которая вызвана адаптационной необходимостью в природных популяциях, представлено наследуемым разнообразием внутри и между популяциями организмов.[ ...]

Одногенные отношения в диплоидных организмах основываются на существовании двух аллелей на один ген. Однако у тетраплоидов в каждом локусе располагаются по четыре аллеля. Генетические отношения, возникающие при скрещиваниях данных типов, отличаются от диплоидов. Если А полностью доминантный и даже при трех а (Аааа) образует фенотип А , в потомстве от самоопыления ААаа отношение по фенотипу будет 35А : 1 аа. Но такое соотношение зависит от местоположения гена в хромосоме. Так, тетраплои-дия склонна к запутыванию генетической картины. По-видимому, рецессивные гены скрываются и поэтому встречаются менее часто. В результате этого генетический анализ полиплоидных видов очень сложный.[ ...]

Допустим полное доминирование гена А с рецессивным аллелем а. Гетерозиготное растение А а образует два типа гамет (А и а) в равном соотношении. При скрещивании А а X А а образуется три типа потомства, сочетание признаков в которых можно предсказать заранее, если га-метный и зиготный типы одинаково жизнеспособны. Если мы допустим доминирование, то растения АА не отличаются от растений Аа. Следовательно, фенотипическое отношение становится 3Л— к 1 аа.[ ...]

Примером полудоминантной мутации может служить мутационное образование гетерозиготной формы Аа, промежуточной по фенотипу между организмами АА и аа. Это имеет место в случае биохимических признаков, когда вклад в признак обоих аллелей одинаков.[ ...]

В. А. Альтшулер, Е, Я. Борисенко и А. И. Поляков, дополняя гипотезу облигатной гетерозиготности, дали ей эволюционное толкование. Каждый новый ген возникает в гетерозиготном состоянии и подвергается действию естественного отбора. Многие из вновь возникших изменений генов обладают плейотроп-ным (множественным) действием. В одном направлении это действие полезно, в другом нейтрально или даже вредно для организма. В процессе эволюции выживают те организмы, у которых положительное действие генов выявилось в гетерозиготном состоянии, а вредное оказалось в рецессивном. Возникновение генов с двойным действием, то есть с облигатно-гетеро-зиготным, является следствием эволюционного процесса. Гетерозис прежде всего полезен самому организму животного, происходящему от скрещивания. Отсюда следует, что высокая степень гетерозиготности — причина гетерозиса.[ ...]

Для человека характерно исключительное генетическое разнообразие, ибо он является самым гетерозиготным организмом. Простое менделев-ское наследование у человека определяется тем, что тот или иной признак контролируется лишь парой аллельных генов, причем известны все типы наследования (табл. 22).[ ...]

Доминантные мутации характеризуются непосредственным эффектом на организм, полудоминантные мутации заключаются в том, что гетерозиготная форма по фенотипу является промежуточной между формами АА и аа, а для кодоминантных мутаций характерно то, что у гетерозигот А!Аз проявляются признаки обоих аллелей. Рецессивные мутации не проявляются у гетерозигот.[ ...]

Одна из важнейших особенностей полигибридных скрещиваний заключается в том, что увеличение количества генов, вовлекаемых в скрещивания, сопровождается снижением частоты появления среди гибридов Р2 организмов исходных родительских типов и увеличением количества организмов, несущих рекомбинантные сочетания генов. Например, с вовлечением в скрещивание одного гена (одной пары аллелей) встречается по одному организму, похожему на организмы каждого исходного родительского типа среди 4 гибридов Р2, с вовлечением в скрещивание двух генов (двух пар аллелей) — среди 16 гибридов, с вовлечением в скрещивание трех генов (трех пар аллелей) — среди 64 гибридов и т. д. В тех случаях, когда количество генов (п), вовлекаемых в скрещивания, составляет десятки и даже сотни, общее количество генотипов (3“), в том числе гомозиготных (2П), которое может возникать в потомстве одного гетерозиготного организма, достигает огромных размеров. Благодаря независимому перераспределению генов (свободной рекомбинации генов) половой процесс создает огромное генетическое разнообразие организмов.[ ...]

После 1909 г. менделевские факторы наследственности по предложению В. Бэтсона (1861-1926) стали называть генами, членов генной пары — аллельными генами, или просто аллелями. Когда оба аллеля одинаковы (доминантны или рецессивны), то организм, несущий эти аллели, называют гомозиготным или гомозиготой по данному аллелю. Организм, несущий разные аллели (доминантный и рецессивный), называют гетерозиготным, или гетерозиготой.[ ...]

Изменчивость прокариотов и эукариотов должна рассматриваться раздельно, так как прокариотам не свойствен тот характер изменчивости, который сопряжен с половым процессом. В то же время для грибов и водорослей (кроме синезеленых) как эукариотических организмов характерно множество возможностей, вытекающих из комбинации признаков родительских организмов при образовании диплоидных клеток в результате слияния гомозиготных и гетерозиготных гамет.[ ...]

Помимо скрещиваний, результаты которых приведены выше, для доказательства генной гипотезы Г. Мендель обратился также к обратным скрещиваниям, получившим позднее в литературе название анализирующих (тест-скрещиваний). Смысл этих скрещиваний заключается в том, что гетерозиготные гибриды Е которые давали, например, круглые семена и происходили из скрещиваний между исходными растениями, дающими круглые (1Ш) и шероховатые (гг) семена, вновь скрещивали с исходными (родительскими) гомозиготными рецессивными растениями, продуцирующими шероховатые семена. Поскольку гаметы, проецируемые гетерозиготным (Иг) гибридом Е1, всегда являются чистыми и могут нести только или аллель И, или аллель г, причем половина гамет должна быть гаметами К, половина — гаметами г, а все гаметы, продуцируемые исходным гомозиготным рецессивным (гг) растением, должны быть только гаметами г, в случае справедливости генной гипотезы следовало ожидать, что обратное скрещивание таких растений должно привести к образованию зигот наполовину Иг и наполовину гг. Другими словами, образующееся в результате таких обратных скрещиваний потомство должно состоять наполовину из гетерозиготных организмов, проецирующих круглые семена (Иг), и наполовину из гомозиготных рецессивных организмов, продуцирующих семена шероховатой формы (гг). Осуществив обратные скрещивания и проанализировав свойства появлявшихся в этих скрещиваниях растений, Г. Мендель обнаружил, что они действительно являются наполовину гетерозиготными организмами и наполовину гомозиготными, т. е. отношение между ними составляло 1:1.[ ...]

У обследованных детей выявлены повышенные уровни радиационно-индуцированных аберраций хромосом в лимфоцитах, сестринских хроматидных обменов (в лимфоцитах 3-г о митоза), особенности в индивидуальной гетерозиготности генов, кодирующих структурные и ферментные белки крови. В результате проведенного генетического мониторинга полученные данные и их статистический анализ свидетельствуют о системном характере дисгеномных эффектов в соматических клетках детского растущего организма, подвергающегося низкоинтенсивному воздействию радиации в малых дозах.[ ...]

Один из известных примеров движущего отбора, описанного еще Ч. Дарвином и действующего против рецессивных гомозигот, связан с индустриальным меланизмом бабочки — березовой пяденицы (Biston betularia). До середины прошлого века бабочки этого вида на Британских островах имели светло-серую окраску и были гомозиготными по рецессивному аллелю, контролирующему окраску тела. Однако после того, как в промышленных районах Англии стволы деревьев стали чернеть от копоти, выбрасываемой из заводских труб, начала появляться разновидность этих бабочек, окрашенных в темный цвет, т. е. гомозиготных доминантных и гетерозиготных. Бабочки темного цвета почти полностью вытеснили бабочек светлой разновидности, ибо последние оказались более доступными для питающихся ими птиц. Следовательно, отбор «подхватил» бабочек с темной окраской тела. Другим примером отбора против рецессивных гомозигот был отбор при фенилкетонурии человека в то время, когда патогенез этой болезни был неясен и когда еще не прибегали к диетотерапии. Рецессивные гомозиготные организмы (дети) без соответствующей диеты оказывались неприспособленными к существованию и погибали еще до достижения половой зрелости.[ ...]

ru-ecology.info


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта