Фотосинтез необходим растениям для. Фотосинтез в посевах и пути повышения его интенсивности

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Фотосинтез и необходимые для него условия. Фотосинтез необходим растениям для


Фотосинтез и необходимые для него условия. Фотосинтез и необходимые для него условия

Похожие главы из других работ:

Весенние растения Городищенского района

Глава 6. Природоохранное образование, просвещение, воспитание и пропаганда - необходимые компоненты стратегии охраны весенних растений

Проблема охраны растительного мира, как и всей окружающей среды в целом, никогда еще не имела столь жизненно важного значения для человечества как в наши дни. Тем не менее...

Використання генетичної інженерії для створення нових сортів с/г рослин

1.5 Фотосинтез і генетична інженерія рослин

Ефективність фотосинтезу рослин дуже невисока: використовується до три-чотири відсотки енергії падаючого світла. Теоретично резерв для покращення продуктивності рослин шляхом підсилення фотосинтезу достатньо великий...

Влияние нетеплового СВЧ излучения на фотосинтетическую активность

1.1 Что такое фотосинтез

Фотосинтез можно рассматривать как процесс преобразования лучистой энергии Солнца в химическую энергию растительных тканей. Фотосинтетический аппарат -- это та часть клетки листа или водоросли, которая содержит все компоненты...

Влияние нетеплового СВЧ излучения на фотосинтетическую активность

1.2 Фотосинтез и жизнь на Земле.

Содержание СО2 в атмосфере остается почти постоянным, несмотря на то, что углекислый газ расходуется в процессе фотосинтеза. Дело в том, что все растения и животные дышат. В процессе дыхания (в митохондриях) кислород...

Листок, будова листка, фотосинтез, листопад

С3 - фотосинтез, цикл Кальвіна

Цикл Кальвіна, або відновлювальний пентозо-фосфатний цикл, складається з трьох стадій: § Карбоксиляція § Відновлення § Регенерація акцептора CO2 На першій стадії до рибулозо-1...

Листок, будова листка, фотосинтез, листопад

С4 - фотосинтез, цикл Хетча-Слека-Карпілова

При низькій концентрації розчиненого в стромі CO2 Rubisco каталізує реакцію окислення рибулезо-1,5-біфосфату і його розпад на 3-фосфогліцеринову кислоту і фосфогліколеву кислоту, яка вимушено використовується в процесі фотодихання...

Листок, будова листка, фотосинтез, листопад

САМ фотосинтез

При CAM (Crassulaceae acid metabolism) фотосинтезі відбувається розділення асиміляції CO2 і циклу Кальвіна не в просторі, як у С4, а в часі. Вночі у вакуолях клітин по аналогічному описаному вище механізму при відкритих продихах накопичується малат...

Листок, будова листка, фотосинтез, листопад

Аноксигенний фотосинтез

Аноксигенний фотосинтез властивий деяким бактеріям та археям (наприклад, пурпурним, деяким зеленим бактеріям та геліобактеріям тощо). Ці організми не використовують води у якості відновника, тому кисень (O2) не є побічним продуктом синтезу...

Пластиды и их пигменты. Выделительные системы растений

I. ПЛАСТИДЫ И ИХ ПИГМЕНТЫ, ФОТОСИНТЕЗ, НЕОБХОДИМЫЕ ДЛЯ НЕГО УСЛОВИЯ, ДЕЛЕНИЕ КЛЕТКИ

...

Пластиды и их пигменты. Выделительные системы растений

I.2 Фотосинтез, необходимые для него условия

Фотосинтез у зеленых растений - это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций...

Учение В.И. Вернадского о ноосфере и его современное развитие в геофизиологии - науке о Земле как о живом организме

Условия, необходимые для становления и существования ноосферы

Рассмотренные предложения В.И. Вернадского позволяют более обоснованно ответить на вопрос, что такое ноосфера, поскольку в них указан ряд конкретных условий, необходимых для её становления и существования. Перечислим основные условия...

Физиология и биохимия компонентов растений

6. Фотосинтез по типу толстянковых (САМ-метаболизм)

Цикл Хетча и Слэка обнаружен также у растений-суккулентов. Но если у С4-растений кооперация достигнута за счет пространственного разделения двух циклов (включение СО2 в органические кислоты в мезофилле, восстановление в обкладке)...

Химические элементы в организме человека и животных

1. Жизненно необходимые элементы

Роль макроэлементов, входящих в состав неорганических веществ, очевидна. Например, основное количество кальция и фосфора входит в кости (гидроксофосфат кальция Са10(РО4)6(ОН)2), а хлор в виде соляной кислоты содержится в желудочном соке...

Химический состав микробов. Формы инфекции

Вопрос 2. Пути внедрения в организм, распространения в нем и выделения из него микробов. Формы инфекции

Возникновение инфекции и ее развитие во многом зависят от реактивности макроорганизма и условий внешней среды. Проникновение возбудителя в организм не всегда приводит к развитию инфекции. Микробы проникают в организм определенными путями...

Эволюция планеты Земля

2.Фотосинтез и хемосинтез

Хемосинтез (от хемо... и синтез), правильнее - хемолитоавтотрофия, тип питания, свойственный некоторым бактериям, способным усваивать CO2 как единственный источник углерода за счёт энергии окисления неорганических соединений...

bio.bobrodobro.ru

Урок 4. Фотосинтез (§ 26). Продукты фотосинтеза



Вопрос 1. Что такое фотосинтез? Назовите вещества, необходимые для его осуществления.

Фотосинтез – это процесс образования органических веществ и кислорода из углекислого газа и воды в листьях зеленых растений на солнечном свету.

Вопрос 2. Закончите предложения.

Фотосинтез происходит в растительных клетках, которые содержат органоиды хлоропласты. В них содержится зелёный пигмент хлорофилл, который придает растению окраску и обеспечивает фотосинтез.

У большинства растений основным органом, обеспечивающим осуществление фотосинтеза, является лист, еще фотосинтез может протекать в стеблях и зеленых плодах.

Вопрос 3. Известно, что наземные растения ежегодно образуют столько листьев, что ими можно было бы покрыть земной шар в несколько слоёв. Объясните, почему у растений образуется так много листьев.

Процесс образования органических веществ идет в листьях зеленых астений на солнечном свету. Поэтому, чтобы прокормить растение листьев должно быть очень много.

Вопрос 4. Рассмотрите рисунок «Образование органических веществ в процессе фотосинтеза». Подпишите на нем названия веществ, поступающих в лист и выводящихся из него.

Углекислый газ

Кислород

Ответьте на вопросы:

1) Каковы необходимые условия осуществления фотосинтеза?

Для фотосинтеза необходим солнечный свет, углекислый газ и хлоропласты.

2) Какие органические вещества образуются в процессе фотосинтеза и каково их значение для растения?

В хлоропластах под воздействием света в процессе фотосинтеза у растений образуется крахмал. Это вещество является углеводом и служит источником энергии для растений.

Вопрос 5*. Прочитайте в учебнике описание опыта по изучению влияния света на образование органических веществ в зеленых растениях и рассмотрите рисунок 61. Как вы думаете, почему в листьях зеленых растений нельзя обнаружить крахмал, после того как их выдерживают в темноте в течение 2-3 дней? Куда он исчезает?

Для преобразования крахмала в листьях необходим солнечный свет. Крахмал образуется в процессе фотосинтеза. Этот процесс произойдет с использованием энергии света. Без света нет процесса фотосинтеза, без процесса нет в листьях крахмала.

Работаем в лаборатории

Вопрос 6. Рассмотрите рисунок, на котором изображен опыт.

Ответьте на вопросы:

1) Почему свеча в первом и третьем случаях гаснет?

В первом и третьем сосудах семена и корнеплоды в процессе дыхания истратили весь кислород и выделили углекислый газ. Свеча погасла.

2) Почему свеча во втором случае горит?

Во втором сосуде растение не только дышит, но и при помощи фотосинтеза выделяет кислород, поэтому свеча горит.

resheba.com

Фотосинтез в посевах и пути повышения его интенсивности

Фотосинтез в посевах

Фотосинтез — это образование сложных органических веществ в зеленом листе из максимально окисленных соединений воды и углекислоты при помощи света и хлорофилла.

Фотосинтез — единственный источник свободного кислорода на Земле, трансформатор световой энергии Солнца. Необычайная сложность этого процесса обусловлена постепенным развитием и совершенствованием фотосинтеза в процессе эволюции организмов.

Зеленые растения относятся к автотрофным организмам, создающим в процессе фотосинтеза необходимые для жизни органические вещества из минеральных соединений углерода, азота, серы, фосфора и других элементов. В процессе фотосинтеза растения усваивают углерод из внешней среды для создания органических веществ, составляющих 95 % сухой массы урожая, и запасают в них энергию, которая в дальнейшем используется как движущая сила всех жизненных процессов не только у зеленых растений, но и у всех представителей живого мира.

Растение — целостный организм, в котором функции питания (листовое и корневое) ни в какой степени не заменяются и не исключаются. В большинстве случаев условия минерального питания и водоснабжения оказываются в минимуме; их изменение за счет обработки почвы, поливов, внесения удобрений является эффективным и доступным средством воздействия на формирование урожая через поддержание фотосинтеза.

Ведущее значение фотосинтеза может характеризоваться следующими данными. В период интенсивного роста суточные приросты сухой массы составляют в среднем 150 кг, а в лучших случаях — 500 кг на 1 га. При этом корни усваивают в виде ионов 2 кг азота, 0,5 кг фосфора, 4 кг калия и 4 кг других элементов. За это же время листья усваивают 1000 кг СО2. При средней урожайности корней сахарной свеклы 300 ц с 1 га растения за вегетационный период усваивают 150 кг азота, 30 кг фосфора, 160 кг калия и 4200 кг углерода, что соответствует поглощению 20 т СО2. В урожае аккумулируется 167,2 ГДж энергии. Это не обходимо иметь в виду при обосновании целей и задач земледелия, которое представляет собой систему использования основной функции зеленых растений — фотосинтеза.

Все мероприятия этой системы направлены на повышение продуктивности фотосинтетического аппарата растения — листа. Лучистая энергия, необходимая для растения, представляет собой энергию электромагнитных колебаний, возникающих в результате колебательных движении электронов, возбужденных атомов и молекул. Спектр солнечного света по отношению к физиологической характеристике ограничивается длинами волн от 300 нм и менее до 6000 нм и более. Фотосинтетический активная радиация (ФАР), поглощаемая пигментами листа и обеспечивающая нормальный рост и развитие растений, находится в пределах 300—750 нм.

В природных условиях фотосинтетическая деятельность растений совершается при меняющемся освещении. Растения открытых мест получают высокую напряженность света и называются световыносливыми. У них фотосинтез протекает при высокой температуре прямой солнечной радиации и усиленном водообмене. Растения загущенных насаждений, растущие под пологом леса, в ущельях и пещерах, в глубине вод, получают свет очень слабой интенсивности и называются теневыносливыми. У них фотосинтез протекает при пониженной температуре, рассеянном свете и ослабленном водообмене.

Приспособленность растений к высокой напряженности светового фактора достигается за счет значительного уменьшения относительного количества хлорофилла b и ксантофиллов. Световыносливость выражается значительным уменьшением содержания зеленых пигментов и соответствующим повышением количества каротиноидов. У световыносливых растений часто наблюдают усиленное развитие ассимилирующей ткани палисадной паренхимы, состоящей из нескольких слоев клеток меньшей величины, по сравнению с теневыносливыми растениями; число устьиц на единице поверхности значительно больше, поэтому СО2 здесь быстрее проникает внутрь листа. У теневыносливых растений эпидермис образует чечевицеобразные выросты, которые концентрируют свет. Эти растения содержат большое количество хлорофилла; их хлоропласты больших размеров. Теневыносливые растения на открытом месте угнетаются и лучше развиваются при уменьшении общего количества света, так как хлорофилл на рассеянном свету поглощает тем больше энергии, чем меньше его интенсивность.

Установлено, что на интенсивном свету у растений образуется больше углеводов, а при малой интенсивности света синтезируется больше азотистых соединений. В посевах растений из-за самозатенения интенсивность света незначительна, и это часто является причиной снижения урожая. Поэтому в зависимости от условий произрастания растения приспособились к различной интенсивности света, и нарушение светового режима отрицательно сказывается на жизни организма.

Зависимость скорости фотосинтеза от количества углекислого газа, температуры и воды, так же как и зависимость от действия света, выражается логарифмической кривой. Для углекислого газа кривая ограничена концентрациями 0,006—1,5 %, для температуры амплитуда более широкая — от минус 15°С до 85 °С (для термофиллов 90 °С) с оптимумом 25—30 °С. Водный дефицит колеблется в пределах 5—60 %.

Важнейшие элементы минерального питания — азот, фосфор, сера и магний — являются строительным материалом для фотосинтетического аппарата; другие элементы — железо, калий, хлор, медь, натрий и т. д., не входящие в состав хлоропластов, влияют на накопление хлорофилла, а, следовательно, и на фотосинтез. Азот, являясь составной частью белка и хлорофилла, усиливает их синтез, обеспечивает синтез органических кислот и аминокислот. Калий, рубидий и цезий, изменяя коллоидное состояние цитоплазмы, регулируют интенсивность фотосинтеза, накопление хлорофилла, углеводов и белков. Фосфор входит в состав фосфорилированных соединений, принимающих участие в ассимиляции углекислого газа, регенерации пентозофосфатов и аккумулировании химической энергии в фосфатных связях АТФ. При недостатке магния, железа, цинка и меди сильно снижается ассимиляция углекислого газа и проявляется болезнь растений — хлороз. Избыток натрия и хлора тормозит фотосинтез и снижает урожай.

Пути повышения интенсивности и продуктивности фотосинтеза

В нормальных условиях размеры хозяйственных урожаев находятся в тесной связи с биологическими урожаями, которые представляют собой сумму суточных приростов сухой общей биомассы на 1 га посева в течение вегетационного периода. Обычно размеры суточных приростов сухой массы урожая варьируют от нуля (в начале и конце вегетационного периода или при неблагоприятных условиях) до 150—300 и даже 500 кг на 1 га (при наибольшем развитии листьев и в благоприятные для фотосинтеза периоды вегетации). В посевах, находящихся в различных условиях, площадь листьев может нарастать с разной быстротой. Благодаря различной длине вегетационных периодов у разных растений период работы листьев тоже различный.

Приблизительно различия посевов в этом отношении можно условно характеризовать понятием фотосинтетический потенциал посева, выражающимся в суммировании площадей листьев (в м2) на 1 га за сутки в течение вегетационного периода. Этот показатель варьирует у растений умеренной зоны в пределах от 50 до 500 м2 на 1 м2. Важное значение в формировании урожая имеет продуктивность фотосинтетической работы 1 м2 площади листьев. Она может варьировать от 4 до 6 г углекислого газа в 1 ч при хороших условиях и снижаться до долей грамма при плохих. Обычно интенсивность фотосинтетической работы листьев характеризуется показателем чистой продуктивности фотосинтеза, слагающегося из количества общей сухой биомассы, образованной растением в течение суток в расчете на 1 м2 листовой поверхности. Этот показатель за вегетационный период варьирует от нуля и даже отрицательных значений до 15—18 г на 1 м2 в сутки.

Формирование урожая — процесс не только количественный, но и качественный. В нем все время изменяется питание, соотношение между различными его видами, использование веществ, образуемых в процессе питания. Сначала преобладает рост вегетативных органов, а затем запасающих и репродуктивных. При интенсивном общем росте и при большой массе биологического урожая можно получить и очень высокие, и низкие, и даже ничтожные хозяйственные урожаи. Поэтому важно, чтобы в соответствующие периоды роста распределение образуемых и накапливаемых питательных веществ и ассимилянтов было наиболее благоприятным для формирования не только общего биологического, но и хозяйственного урожая. Для этого необходимо все агротехнические мероприятия (внесение удобрений, полив, обработки) направить на поддержание оптимальных условий, обеспечивающих наилучший ход роста фотосинтетического аппарата — площади листьев; наибольшее время активной работы листьев в течение каждых суток вегетационного периода; наиболее высокую интенсивность фотосинтеза и сумм дневного усвоения углекислого газа; высокую чистую продуктивность фотосинтеза и высокие суточные приросты сухого вещества; наиболее высокий коэффициент хозяйственной эффективности фотосинтеза, выражающегося в отношении массы хозяйственной части урожая к массе биологического урожая.

Каковы же пути управления человеком фотосинтетической деятельностью растений? Часто сдерживающим фактором фотосинтеза является недостаток углекислого газа. Обычно в воздухе присутствует около 0,03 процента СО2. Однако над интенсивно фотосинтезирующим полем его содержание уменьшается иногда в три-четыре раза по сравнению с приведенной цифрой. Вполне естественно, что из-за этого фотосинтез тормозится. Между тем для получения среднего урожая сахарной свеклы один гектар ее посевов должен усваивать за сутки около 300-400 килограммов углекислого газа. Такое количество содержится в колоссальном объеме воздуха.

Опыты известного отечественного физиолога растений В. Н. Любименко показали, что увеличение количества углекислого газа в атмосфере до 1,5 процента приводит к прямо пропорциональному возрастанию интенсивности фотосинтеза. Таким образом, один из путей повышения продуктивности фотосинтеза - увеличение концентрации углекислого газа в воздухе. Современный уровень технологии в целом позволяет решить эту задачу в глобальных масштабах. Однако весьма сомнительно, чтобы человек решился на практике осуществить этот проект. Дело в том, что более высокий уровень содержания углекислого газа в воздухе приведет к изменению теплового баланса планеты, к ее перегреву вследствие так называемого "парникового эффекта".

"Парниковый эффект" обусловлен тем, что при наличии большого количества углекислого газа атмосфера начинает сильнее задерживать испускаемые поверхностью Земли тепловые лучи. Перегрев планеты может привести к таянию льдов в полярных областях и в высокогорьях, к поднятию уровня Мирового океана, к сокращению площади суши, в том числе занятой культурной растительностью. Человечество весьма обеспокоено естественным ростом концентрации углекислого газа в атмосфере, наблюдаемым в последние годы в результате интенсивного развития промышленности, автомобильного, железнодорожного и авиационного транспорта. Поэтому оно едва ли решится когда-либо сознательно стимулировать этот процесс в глобальных масштабах. В теплицах и на поле увеличение содержания углекислого газа имеет важное значение для повышения урожайности культурных растений. С этой целью в теплицах сжигают опилки, раскладывают сухой лед на стеллажах, выпускают углекислый газ из баллонов.

Основной способ повышения концентрации СО2 над полем - активизация жизнедеятельности почвенных микроорганизмов путем внесения в почву органических и минеральных удобрений. В процессе дыхания микробы выделяют большое количество углекислого газа. В последние годы для обогащения почвы и припочвенного воздуха СО2 поля стали поливать водой, насыщенной углекислым газом. Другой путь преодоления отрицательного влияния низкой концентрации углекислого газа в атмосфере на урожай - распространение таких форм растений, которые очень интенсивно фотосинтезируют даже при ничтожно малом его содержании. У них рекордные показатели интенсивности фотосинтеза. Распространение таких растений, дальнейшее изучение особенностей их фотосинтеза представляется весьма нужным и перспективным.

Растительность земного шара довольно неэффективно использует солнечную энергию. Коэффициент полезного действия у большинства дикорастущих растений составляет всего 0,2 процента, у культурных он равен в среднем одному проценту. При оптимальном снабжении культурных растений водой, минеральными солями коэффициент полезного использования света повышается до четырех - шести процентов. Теоретически же возможен КПД, равный восьми - десяти процентам. Сопоставление приведенных цифр говорит о больших возможностях в увеличении фотосинтетической продуктивности растений. Однако практическая их реализация встречает большие трудности.

Повысить эффективность использования солнечной энергии в ходе фотосинтеза можно, расположив растения на оптимальном расстоянии друг от друга. В изреженных посевах значительная часть света пропадет зря, а вот в загущенных растения затеняют друг друга, их стебли становятся длинными и ломкими, легко полегающими от дождя и ветра. В том и другом случае происходит снижение урожая. Вот почему очень важно выбрать для каждой культуры наиболее оптимальное расстояние. При этом следует учитывать, что оптимальная плотность посевов может быть различной в зависимости от обеспеченности растений водой, элементами минерального питания и от их особенностей. К сожалению, многие агрономы не принимают во внимание названные факторы, поэтому так медленно растет продуктивность наших полей. Наиболее часто растения неэффективно фотосинтезируют из-за недостатка воды и элементов минерального питания. Если улучшить условия водоснабжения и питания, то размеры листовой поверхности увеличатся, а между ними и величиной урожая обычно существует прямая зависимость. Однако существует некоторый предел роста эффективности фотосинтеза, когда дальнейшее улучшение водоснабжения и минерального питания не дает результатов.

Дело в том, что при определенном размере листовой поверхности (обычно когда на 1 квадратный метр посевов приходится четыре-пять квадратных метров листьев) растения поглощают практически всю энергию света. Если же на единицу площади поля приходится еще большая поверхность листьев, то в результате затенения их друг другом растения вытянутся, интенсивность фотосинтеза уменьшится. Вот почему дальнейшее улучшение снабжения растений водой и элементами минерального питания неэффективно.

В чем же выход из создавшегося положения? Ученые полагают, что в выведении новых сортов культурных растений, отличающихся выгодным строением тела. В частности, они должны иметь компактную низкорослую крону с вертикально ориентированными листьями, обладать крупными запасающими (луковицы, клубни, корни, корневища) и репродуктивными (семена, плоды) органами. На повышение плодородия почвы и улучшение водоснабжения эти сорта будут реагировать усилением интенсивности фотосинтеза, умеренным потреблением продуктов фотосинтеза (ассимилятов), на рост листьев и других вегетативных органов, а также активным использованием ассимилятов на формирование репродуктивных и запасающих органов. Вот какие жесткие требования предъявляются теперь к науке, занимающейся выведением новых сортов культурных растений, - селекции. Без тесного сотрудничества селекционеров с физиологами растений создание перспективных сортов становится практически невозможным. Селекционеры вывели сорта, отвечающие современным требованиям. Среди них - низкорослый рис, созданный в Международном институте риса в Маниле, хлопчатник Дуплекс с вертикально ориентированными листьями, не затеняющими друг друга, карликовая пшеница мексиканской селекции. Эти сорта на фонах высокого плодородия дают в полтора раза более высокие урожаи, чем их предшественники.

Однако это лишь один из путей увеличения фотосинтетической продуктивности растений. Дальнейшие усилия должны быть направлены на повышение активности самого фотосинтетического аппарата. Как известно, процесс фотосинтеза осуществляется в особых органоидах - хлоропластах. Здесь происходит множество реакций, прежде чем из углекислого газа и воды образуются молекулы органических веществ. Управлять этими процессами, безусловно, непросто, но возможно. Об этом свидетельствует тот факт, что интенсивность фотосинтеза у разных растений неодинакова. У одних листовая поверхность площадью в 1 квадратный дециметр усваивает за час от четырех до семи миллиграммов СО2, а у других - 60-80 и даже 100, то есть в 20 раз больше! Растения неодинаково реагируют на его низкую концентрацию в воздухе, интенсивность освещения и т. д. Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможностей человека в управлении их фотосинтетической деятельностью, продуктивностью и урожаем.

Аллелопатические взаимодействияРазвитие растенийБолезни, особенности смородины чернойВегетативные органы растенийРаспределение тяжелых металлов в высших растенияхХарактеристика растений семейства КрестоцветныеЦветок и плод, лист, корень и побег



biofile.ru

Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Фотосинтез. (Воздушное питание растений)

Виртуальные лабораторные работы и опыты по теме "Фотосинтез":

Опыт Джозефа Пристли

Образование крахмала в листьях растений

Образование органических веществ

 

Корневое питание дает растению только минеральные соли и воду. Органические вещества и заключенную в них энергию растение получает в процессе фотосинтеза (от греч. фотос – «свет» и синтезис – «соединение»).

Фотосинтез. (Анимация)

Фотосинтез протекает в хлоропластах. В ходе этого процесса за счет энергии солнечного света растение с помощью зеленого хлорофилла листьев образует необходимые ему органические вещества из неорганических – углекислого газа и воды. Так как основным поставщиком углекислого газа для фотосинтеза является воздух, то этот способ получения растением органических веществ называют воздушным питанием.

Схема процесса фотосинтеза. (Анимация)

Зеленый лист – специализированный орган воздушного питания.

Благодаря плоской форме листовой пластинки лист имеет большую поверхность соприкосновения с воздушной средой и солнечным светом. Присутствие же в мякоти листа мелких, но многочисленных хлоропластов с зеленым пигментом – хлорофиллом создает огромную фотосинтезирующую поверхность, превращая таким образом лист в могучую фабрику образования органических веществ.

Доказать, что зеленое растение только на свету образует органические вещества, можно простым опытом. Зеленое растение, например примулу или пеларгонию зональную, помещают в темный шкаф. Через 2-3 дня у этого растения черной бумагой или фольгой затемняют часть одного листа и ставят растение на свет. Через 8-10 часов срезают этот лист, снимают с него затемняющие пластинки бумаги. Оказывается, внешне лист никак не изменился. Но после его обесцвечивания (кипячением в спирте разрушается хлорофилл) и последующей обработки раствором йода можно увидеть, что незатемненная часть листа, содержавшая крахмал, посинела, а бывшая затемненной часть листа приобрела желтый цвет йода. Это свидетельствует о том, что здесь крахмал не образовался, так как клетки листа не получали световой энергии.

Фотосинтез – процесс, в котором зеленое растение из неорганических веществ (углекислого газа и воды) с использованием энергии солнечного света образует органические вещества – углеводы (преимущественно сахара), а также кислород.

Фотосинтез всегда поддерживается корневым питанием – поглощением из почвы воды и минеральных солей. Без воды фотосинтез не происходит.

В среднем растения поглощают около 55 % энергии солнечных лучей, а на фотосинтез расходуется только 1,5-2 % поглощенной энергии. Это очень мало, но и такое количество обеспечивает жизнь всем организмам на Земле.

Весь сложный поэтапный процесс фотосинтеза идет в хлоропластах бесперебойно, пока зеленые листья получают солнечную энергию. Образовавшиеся в хлоропластах продукты фотосинтеза поступают в цитоплазму, где с помощью ферментов превращаются в сахара. Полученные органические вещества (преимущественно сахара) по ситовидным трубкам луба оттекают из листьев ко всем частям растения: к почкам, генеративным органам. Но большая их часть передвигается по стеблю вниз к корням, где принимает участие вместе с минеральными солями в образовании белков и жиров, которые откладываются про запас.

Пути передвижения веществ в процессе питания. (Анимация)

Образующиеся в ходе фотосинтеза органические соединения используются клетками растения в качестве питательных веществ.

Для фотосинтеза обязательно нужен углекислый газ, поступающий в лист вместе с воздухом через устьица, и вода, приходящая по сосудам из корня.

Таким образом, в процессе воздушного питания растения поглощают неорганические вещества и с помощью энергии света и хлорофилла образуют органические вещества. Организмы, способные самостоятельно синтезировать органические вещества из неорганических, называют самопитающимися, или автотрофными (от греч. аутос – «сам», трофе – «питание»). Автотрофный тип питания – главная особенность растительного организма.

Не все организмы обладают такой способностью. Многие из них не способны синтезировать органические вещества из неорганических, а получают их с пищей в виде готовых органических соединений. Такие организмы называют гетеротрофными (от греч. гетерос – «другой», трофе – «питание»). Все животные, грибы, большинство бактерий и человек являются гетеротрофами. Они питаются готовыми органическими веществами, созданными автотрофами – зелеными растениями. Вот почему процесс фотосинтеза имеет огромное значение не только для растений, но для всей жизни на Земле.

Зеленые растения  – автотрофы: создавая органические вещества, запасают в них солнечную энергию и делают ее доступной для других организмов.

Интерактивный урок-тренажёр. (Пройдите все страницы и выполните все задания урока)

Воздушное питание за счет фотосинтеза поддерживается корневым питанием. Фотосинтез – процесс образования на свету с помощью хлорофилла органических веществ (сахаров) из воды и углекислого газа. В этом процессе зеленые растения улавливают энергию солнечного света и преобразуют ее в энергию химических связей, доступную для всех организмов. Выделенный в процессе фотосинтеза кислород используется всеми живыми существами для дыхания. Продуктивность фотосинтеза зависит от факторов внешней среды. Сохранение зеленых растений на планете, обеспечение нормальных условий для их воздушного питания – важная задача, стоящая сейчас перед людьми.

Видеофрагмент "Значение фотосинтеза"

 

 

biolicey2vrn.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта