Дыхание растений и у животных. Процесс дыхания у растений и животных

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Дыхание и газообмен у животных. Дыхание растений и у животных


Чем отличается дыхание животных от дыхания растений?

Дыхание у растений Основная статья: Фотодыхание Большинство растений в светлое время суток вырабатывают кислород, но в их клетках идет и обратный процесс: кислород поглощается в процессе дыхания. Ночью в комнате, плотно уставленной растениями, можно наблюдать снижение концентрации кислорода и увеличение концентрации углекислого газа. На самом деле, в живых клетках растений процесс дыхания происходит круглосуточно. Просто на свету скорость образования кислорода в результате фотосинтеза обычно превышает скорость его поглощения. Так же как и у животных, клеточное дыхание растений протекает в специальных клеточных митохондриях. Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикрепленный образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности (дополнительные пути окисления, альтернативные ферменты) . Газообмен с внешней средой осуществляется через устьица чечевичек, трещины в коре (у деревьев) . [править] Дыхание у человека Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту [2]. Вместе с тем, частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту) [2]. У детей частота дыхания составляет 20-30 дыхательных движений в минуту; у грудных детей — 30-40; у новорождённых — 40-60[2]. В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400-500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО) . Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2000 мл воздуха. Максимальный выдох также составляет около 2000 мл. После максимального выдоха в лёгких остаётся воздух в количестве около 1500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких. Благодаря ФОЁ в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше ДО. Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции. Взрослый человек (при дыхательном объёме 0,5 литра и частоте 14 дыхательных движений в минуту) пропускает через лёгкие 7 литров воздуха в минуту [2]. В состоянии физической нагрузки минутный объём дыхания может достигать 120 литров в минуту [2]. Соотношение вдоха и выдоха по времени 1:2 — 1:3.[источник не указан 44 дня] Без дыхания человек обычно может прожить до 5-7 минут, после чего наступают необратимые изменения в мозге. Дыхание — одна из немногих способностей организма, которая может контролироваться сознательно и неосознанно. Это одна из причин [источник?] , почему при медитации очень важно следить за дыханием. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается. Люди с ослабленной нервной системой дышат на 12 % чаще, чем люди с сильной нервной системой [источник?] . Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное) . Особые виды дыхательных движений наблюдаются при икоте и смехе.

touch.otvet.mail.ru

Дыхание и газообмен у животных | Биология. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Раздел:

Процессы жизнедеятельности животных

У всех видов животных есть приспособления, с помощью которых организмы дышат, питаются, выделяют вредные вещества и т. д. У большинства многоклеточных животных - это органы, образующие системы. В царстве Животные более 1 млн видов многоклеточных, но такого разнообразия ор­ганов не существует. Есть лишь несколько общих планов, по которым «сконструированы» органы животных и их системы. Разнообразие этого царства определяют небольшие отличия этих планов и разные варианты их сочетания. Каковы эти общие планы строения органов и их систем у животных? Как с их помощью протекают процессы жизнедеятельности?

Как и у растений, у большинства животных кислород принимает участие в химических реакциях, обес­печивающих организм энергией. Этот процесс ученые и на­зывают дыханием. Дыхание невозможно без газообмена: кислород по­ступает в организм, а углекислый газ, образовавшийся при дыхании, удаляется из него. Газообмен основан на известном вам физическом яв­лении диффузии. Есть животные (актиния, дождевой червь), у которых поверхностью газообмена является вся поверхность тела: покровы их тел не препятствуют диффузии газов. Но у многих животных покровы не позволяют кислороду диффундировать в организм, а углекислому газу — из него. У таких животных существуют специальные органы га­зообмена.

У насекомых это трахеи (рис. 4.1 а) — тоненькие трубочки, развет­вляющиеся в организме и открывающиеся наружу маленькими отвер­стиями. Через их стенки и диффундируют газы. У раков и рыб органами дыхания (газообмена) являются жабры (рис. 4.1 б). Их поверхность газообмена состоит из множества тоненьких «лепестков», постоянно омываемых водой. Через них растворенный в воде кислород проникает в организм рыбы, а углекислый газ удаляется. Материал с сайта http://worldofschool.ru

Рис. 4.1. Дыхательные системы: насекомого (а), рыбы (б), млекопитающего (в): 1 — трахеи; 2 - жабры; 3 — дыхательные пути; 4 — легкие

У пауков, ящериц, птиц, китов, собак за газообмен отвечает дыха­тельная система, образованная легкими и дыхательными путями (рис. 4.1 в). По разветвленным дыхательным путям воздух поступает в альвеолы. Это маленькие пузырьки с тонкой поверхностью, образую­щие поверхность газообмена легких.

И хотя дыхательные системы насекомых, рыб, птиц, млекопитающих не похожи, в их строении вы заметите проявление одной и той же «хит­рости природы». Все эти системы устроены так, что площадь поверх­ности газообмена в них очень велика. Она значительно больше поверх­ности тел животных, которым эти дыхательные системы принадлежат.

На этой странице материал по темам:
  • Биология газообмен в тканях у животного

  • Газообмен у животных

  • Газообмен животных и растений схема

  • Органы газообмена у растений и животных

  • Поверхность газообмена легких животных

Вопросы по этому материалу:
  • Какие общие свойства есть у органов дыхания насекомого, карпа, кота?

  • Есть ли органы у одноклеточных животных?

worldofschool.ru

Процесс дыхания у растений и животных

  • Published on30-Jul-2015

  • View65

  • Download6

Transcript

1. Выполнила: Ученица 10 «А» класса Джаханова Адина Проверила: Субботина Л.П. 2. • Дыхание – основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. Это физиологический процесс, обеспечивающий нормальное течение метаболизма живых организмов и способствующий поддержания гомеостаза, получая из окружающей среды О2 и выделяя в газообразном состоянии некоторую часть продуктов метаболизма (СО2, Н2О и др.) 3. • Первые указания на то, что растения дышат, принадлежит шведскому ученому Шееле. В его опытах растения поглощали О2 и выделяли углекислоту. Позже, Ингенгуз и Сенебье в 1779 г. признали за растением обе функции газообмена. Луи Пастер в 1872 г. Теоретически обосновал то, что даже в бескислородной среде растения продолжают выделять углекислоту. 4. Опыты, доказывающие процесс дыхания у растений • 1) Дыхание корней • Возьмем два одинаковых сосуда с водой. В каждый сосуд поместим развивающиеся проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальем тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду. 5. • Через некоторое время растение во втором сосуде перестанет расти, зачахнет и, в конце концов, погибнет. Его гибель наступает из-за недостатка воздуха, необходимого для дыхания корня. 6. • 2) Дыхание листьев • Возьмите веточку какого-либо растения, на которой не меньше 10— 12 листьев. Взамен веточки можно взять несколько листьев герани или примулы с длинными черешками. Веточку или листья поставьте в стакан с водой. Стакан установите на маленькой тарелочке, рядом с которой поставьте маленький стаканчик с прозрачной известковой водой. Затем все это закройте стеклянным колпаком или большой стеклянной банкой и поместите в темный шкаф. 7. • В темноте растения не могут выделять кислород, так как органические вещества в них образуются только на свету. В темном шкафу листья растений будут только дышать, а значит, поглощать кислород и выделять углекислый газ. От углекислого газа, выделяемого листьями, налитая в стаканчик известковая вода помутнеет. Дыхание листьев не прекращается и на свету, так как растения, как и животные или человек, дышат круглые сутки. 8. • 3) Дыхание стеблей и семян • Необходимо взять три банки из бесцветного прозрачного стекла. В одну из них помещаются 30- 40 набухших, прорастающих семян фасоли. Во вторую кладут корнеплоды моркови, выдержанные перед этим 2-3 дня в воде. В третью банку помещаются свежесрезанные стебли растений с листьями. В каждую банку помещается также стакан с известковой водой. Плотно закрывают банки пробками и ставят в темное теплое место. 9. • На следующий день проверяют, изменился ли состав воздуха в банках. В каждую из банок опускают зажженную свечу, прикрепленную к проволоке. Свечи гаснут, так как в процессе дыхания органы растений поглотили кислород из воздуха, находящегося в банках, и выделили большое количество углекислого газа. (Известковая вода помутнела при взаимодействии с углекислым газом). 10. Подцарство одноклеточные. Тип простейшие. -жгутиковые -сардоковые -ресничные инфузории -сосущие инфузории -споровики -эвглена зеленая -амеба обыкновенная -инфузория туфелька -инфузория сосущая -малярийный плазодий Водная среда обитания. Дышат всей поверхностью тела, поглощая кислород из окружающей среды. 11. Тип губки. -известковые -обыкновенные -шестилучевые -Sycon, Leuconia -бадяга -гиалонема Водная среда обитания Нет специальных органов дыхания. Газообмен происходит путем диффузии кислорода и углекислого газа между снабжающими покровы кровеносными сосудами и внешней средой. 12. Тип кишечнополостные -гидроидные -сцифоидные -коралловые полипы -гидра -медуза -актинии Водная среда обитания Нет специальных органов дыхания. Газообмен происходит путем диффузии кислорода и углекислого газа между снабжающими покровы кровеносными сосудами и внешней средой. 13. Тип плоские черви -ресничные черви -сосальщики -ленточные черви -планария дугезия -печеночный сосальщик -бычий цепень, свиной цепень Водная, почвенная, паразитическая среда обитания. Газообмен происходит через поверхность тела, а у паразитов- анаэробное дыхание. 14. У круглых червей, как и у плоских, газообмен происходит через поверхность тела. 15. Тип кольчатые черви -многощетинковые -малощетинковые -пиявки -спиробрахус -дождевой червь -улитковая пиявка Среды обитания почвенная, водная. Дыхание осуществляется покровами тела 16. Тип членистоногие -двупарноногие -губоногие -насекомые -паукообразные -ракообразные -кивсяк -сколопендра -стрекоза -скорпион -речной рак Среда обитания водная, наземная. Впервые органы дыхания встречаются у водных членистоногих в виде пористых жабер, располагающихся по обеим сторонам тела и обильно снабжаемыми кровью. Уже у наземных членистоногих в углублениях тела имеются трахеи или листовидные легкие. 17. Тип моллюски -панцирные -двустворчатые -брюхоногие -головоногие -хитон -морской финик -морской ангел -глубоководный осьминог Среда обитания в основным водная. У моллюсков в мантийной полости развиваются пластинчатые жабры. 18. Тип иглокожие -морские лилии -морские звезды -офиуры -морские ежи -морские огурцы -перистая звезда -радужная морская звезда -голова Горгоны -красный морской еж -ананасовый морской огурец У морских ежей и морских звезд органами дыхания служат кожные жабры. У остальных- дыхание покровами тела. 19. Тип хордовые -личиночно-хордовые -головохордовые -круглоротые -хрящевые рыбы -костные рыбы -земноводные -рептилии -птицы -млекопитающие -асцидии -ланцетник -европейская миксина -акула -индийская гильза -лягушка -безногая ящерица -сокол-чеглок -человек Среда обитания- водная и наземная. У водных хордовых дыхательная система связана с кишечником (стенка глотки кишечника пронизана жаберными щелями). У рыб в дыхании участвуют жаберные мешки и воздушный пузырь. У земноводных появились легкие в виде полых мешков. У рептилий образуются ячеистые структуры. У птиц легкие - губчатые образования. У млекопитающих появляются бронхиолы, альвеолы, гортанные хрящи. 20. Значение процесса дыхания • Высокое содержание метана могло сохраняться до тех пор, пока в земной атмосфере было значительное количество водорода. Когда же запасы газообразного водорода истощились, метанообразующие бактерии уже не могли перерабатывать углекислый газ в метан и таким образом лишились источника энергии для синтеза собственных питательных веществ. • Для обеспечения условий существования живых организмов необходима была новая форма обмена веществ и получения энергии. Ею стал фотосинтез. У первых фотосинтезирующих микроорганизмов фотосинтез протекал без выделения кислорода На следующем этапе эволюции появились организмы с более совершенным механизмом фотосинтеза, в результате которого в атмосферу стал выделяться кислород. Это повлекло за собой постепенное изменение состава атмосферы Земли. В ней становилось все больше кислорода. Для живых организмов того времени кислород был сильнейшим ядом. Фактически наступил экологический кризис. Живые организмы должны были погибнуть или приспособиться к новым условиям среды. По мере накопления кислорода в атмосфере живым организмам приходилось вырабатывать все более совершенные механизмы его обезвреживания. В конечном итоге живая природа нашла наиболее рациональный путь решения этой проблемы. Появились живые организмы, которые стали использовать кислород для получения энергии. 21. • Это позволило живым организмам развиваться в верхних слоях водоемов, хорошо освещаемых и прогреваемых солнцем, а в дальнейшем завоевать сушу. Процесс дыхания обеспечил организмы энергией, что дало толчок к возникновению многоклеточных организмов, их дальнейшему развитию и усложнению. В процессе дыхания организмы потребляли кислород и выделяли соответствующее количество углекислого газа, который использовался для синтеза органических веществ в процессе фотосинтеза. Постепенно между ав тотрофными организмами и гетеротрофами установилось равновесие, которое привело к стабилизации нового состава атмосферы. Сформировались современные круговороты углерода и кислорода. Таким образом, благодаря жизнедеятельности организмов в биосфере непрерывно протекают процессы синтеза и распада органических веществ и происходят круговороты веществ, обеспечивающие стабильность функционирования биосферы. На разных этапах развития биосферы соотношение процессов синтеза и распада не было постоянным. В начальный период развития биосферы процессы синтеза преобладали над разрушением. Это привело к тому, что из первичной атмосферы в большом количестве были изъяты метан, сероводород, углекислый газ, а концентрация свободного кислорода, отсутствовавшего в ней прежде, достигла современных 21%. Примерно 80—90 млн лет назад неравенство этих процессов в биосфере перешло в относительное равновесие. 22. Вывод • Для жизнедеятельности организма необходима энергия. Универсальным источником энергии в клетках служит АТФ. Ее синтез происходит за счет окисления органических веществ. Необходимый для этого кислород поступает в организм в процессе дыхания. Кислород значительно увеличивает эффективность энергетического обмена (при распаде глюкозы почти в 20 раз). 23. Источники • http://chel-o-vek.ru/7/razlichnye-tipy-zhivykh- sushchestv/bespozvonochnye/tip-prosteishie • http://biouroki.ru/material/plants/koren.html • http://vsedz.ru/content/11-дыхание • http://bio.1september.ru/article.php?ID=2004 00405 • http://www.ebio.ru/

docslide.us

Дыхание — Медицинская википедия

Дыхание ( лат. respiratio) — основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. Дыхание — это физиологический процесс, обеспечивающий нормальное течение метаболизма (обмена веществ и энергии) живых организмов и способствующий поддержанию гомеостаза (постоянства внутренней среды), получая из окружающей среды кислород (О2) и отводя в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, h3O и другие). В зависимости от интенсивности обмена веществ человек выделяет через лёгкие в среднем около 5 — 18 литров углекислого газа (СО2), и 50 грамм воды в час. А с ними — около 400 других примесей летучих соединений, в том числе и ацетон). В процессе дыхания богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.

Под внешним дыханием понимают газообмен между организмом и окружающей средой, включающий поглощение кислорода и выделение углекислого газа, а также транспорт этих газов внутри организма по системе дыхательных трубочек (трахейнодышащие насекомые) или в системе кровообращения.

Клеточное дыхание включает биохимические процессы транспортировки белков через клеточные мембраны; а также собственно окисление в митохондриях, приводящее к преобразованию химической энергии пищи.

У организмов, имеющих большие площади поверхности, контактирующие с внешней средой, дыхание может происходить за счёт диффузии газов непосредственно к клеткам через поры (например, в листьях растений, у полостных животных). При небольшой относительной площади поверхности транспорт газов осуществляется за счёт циркуляции крови (у позвоночных и других) либо в трахеях (у насекомых).

Дыхание у растений

Основная статья: Фотодыхание

Большинство растений в светлое время суток вырабатывают кислород, но в их клетках идёт и обратный процесс: кислород поглощается в процессе дыхания. Ночью в комнате, плотно уставленной растениями, можно наблюдать снижение концентрации кислорода и увеличение концентрации углекислого газа.

На самом деле, в живых клетках растений процесс дыхания происходит круглосуточно. Просто на свету скорость образования кислорода в результате фотосинтеза обычно превышает скорость его поглощения. Так же как и у животных, клеточное дыхание растений протекает в специальных клеточных митохондриях.

Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикрепленный образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности (дополнительные пути окисления, альтернативные ферменты).

Газообмен с внешней средой осуществляется через устьица и чечевички, трещины в коре (у деревьев).

Дыхание у человека

Взрослый человек, находясь в состоянии покоя, совершает в среднем 14 дыхательных движений в минуту. Вместе с тем, частота дыхания может претерпевать значительные колебания (от 10 до 18 за минуту). У детей частота дыхания составляет 20-30 дыхательных движений в минуту; у грудных детей — 30-40; у новорождённых — 40-60.

В течение одного вдоха (в спокойном состоянии) в лёгкие поступает 400—500 мл воздуха. Этот объём воздуха называется дыхательным объёмом (ДО). Такое же количество воздуха поступает из лёгких в атмосферу в течение спокойного выдоха. Максимально глубокий вдох составляет около 2000 мл воздуха. Максимальный выдох также составляет около 2000 мл.

После максимального выдоха в лёгких остаётся воздух в количестве около 1500 мл, называемый остаточным объёмом лёгких. После спокойного выдоха в лёгких остаётся примерно 3000 мл. Этот объём воздуха называется функциональной остаточной ёмкостью (ФОЁ) лёгких.

Благодаря ФОЁ в альвеолярном воздухе поддерживается относительно постоянное соотношение содержания кислорода и углекислого газа, так как ФОЁ в несколько раз больше ДО. Только 2/3 ДО достигает альвеол, который называется объёмом альвеолярной вентиляции.

Взрослый человек (при дыхательном объёме 0,5 литра и частоте 14 дыхательных движений в минуту) пропускает через лёгкие 7 литров воздуха в минуту. В состоянии физической нагрузки минутный объём дыхания может достигать 120 литров в минуту.

Соотношение вдоха и выдоха по времени 1:2 — 1:3.

Без дыхания человек обычно может прожить до 5-7 минут, после чего наступают потеря сознания, необратимые изменения в мозге и смерть.

Дыхание — одна из немногих способностей организма, которая может контролироваться сознательно и неосознанно. При частом и поверхностном дыхании возбудимость нервных центров повышается, а при глубоком — наоборот, снижается. Люди с ослабленной нервной системой дышат на 12 % чаще, чем люди с сильной нервной системой.

Виды дыхания: глубокое и поверхностное, частое и редкое, верхнее, среднее (грудное) и нижнее (брюшное).

Особые виды дыхательных движений наблюдаются при икоте и смехе.

Внешнее дыхание

Дыхание у человека включает внешнее дыхание и тканевое дыхание.

Функция внешнего дыхания обеспечивается как дыхательной системой, так и системой кровообращения. Атмосферный воздух попадает в лёгкие из носоглотки (где предварительно очищается от механических примесей, увлажняется и согревается) через гортань и трахеобронхиальное дерево (трахею, главные бронхи, долевые бронхи, сегментарные бронхи, дольковые бронхи, бронхиолы и альвеолярные ходы) попадает в лёгочные альвеолы. Дыхательные бронхиолы, альвеолярные ходы и альвеолярные мешочки с альвеолами составляют единое альвеолярное дерево, а вышеуказанные структуры отходящие от одной конечной бронхиолы образуют функционально-анатомическую единицу дыхательной паренхимы лёгкого — а́цинус (лат. ácinus — гроздь). Смена воздуха обеспечивается дыхательной мускулатурой, осуществляющей вдох (набор воздуха в лёгкие) и выдох (удаление воздуха из лёгких). Через мембрану альвеол осуществляется газообмен между атмосферным воздухом и циркулирующей кровью. Далее кровь, обогащённая кислородом возвращается в сердце, откуда по артериям разносится ко всем органам и тканям организма. По мере удаления от сердца и деления, калибр артерий постепенно уменьшается до артериол и капилляров, через мембрану которых происходит газообмен с тканями и органами. Таким образом, граница между внешним и клеточным дыханием пролегает по клеточной мембране периферических клеток.

Внешнее дыхание человека включает две стадии:

  1. вентиляция альвеол,
  2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Выделяют два типа дыхания по способу расширения грудной клетки:

  1. грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер),
  2. брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы).

Тип дыхания зависит от двух факторов:

  1. возраст человека (подвижность грудной клетки уменьшается с возрастом),
  2. профессия человека (при физическом труде преобладает брюшной тип дыхания).
Патология внешнего дыхания

Основная форма патологии внешнего дыхания — дыхательная недостаточность. В зависимости от характера течения патологического процесса различают острую и хроническую дыхательную недостаточность. Кроме того, выделяют три типа дыхательной недостаточности:

  • обструктивый тип;
  • рестриктивный тип;
  • смешанный тип.

Тахипно́э или «дыхание загнанного зверя» — учащённое поверхностное дыхание (ЧД свыше 20 дыхательных движений в минуту). Учащённое дыхание возникает обычно при раздражении дыхательного центра продуктами жизнедеятельности организма (углекислый газ). Наблюдается при анемии, лихорадке, заболеваниях крови. При желании может вызываться усилием воли (гипервентиляция), например, перед предполагаемой задержкой дыхания. При истерии частота дыхательных движений может достигать 60—80 в минуту.

Брадипно́э — патологическое урежение дыхания — развивается при понижении возбудимости дыхательного центра, либо при угнетении его функции, которое может быть вызвано повышением внутричерепного давления (опухоль головного мозга, менингит, кровоизлияние в мозг, отёк мозга) или воздествием на дыхательный центр накопившихся в значительных количествах в крови токсических продуктов метаболизма (уремия, печёночная или диабетическая кома, некоторые острые инфекционные заболевания и отравления).

Апно́э (др.-греч. ἄπνοια, дословно «безветрие»; отсутствие дыхания) — отсутствие или остановка дыхательных движений. Патологический процесс, связанный с патологией дыхательной мускулатуры, например, отравление ядом, действующим подобно кураре либо параличом дыхательного центра, например, в результате отёка мозга или черепно-мозговой травмы. Отдельно выделяют синдром обструктивного апноэ сна, вызываемый провисанием верхних дыхательных путей. Этот вид апноэ обычно встречается у людей, которые храпят во сне и является плохим прогностическим признаком в плане риска развития острой сердечно-сосудистой недостаточности.

Так называемое рефлекторное или «ложное апноэ» иногда наступает при сильном раздражении кожи (например, при погружении тела в холодную воду). Апноэ (как патологическое состояние) также следует отличать от искусственно вызванной задержки дыхания (например при погружении в жидкость) — в результате развившегося кислородного голодания (на фоне прекращения поступления кислорода из атмосферного воздуха в альвеолы) происходит отключение коры головного мозга (потеря сознания или прекращение процессов высшей нервной деятельности) после чего подкорковые и стволовые структуры (дыхательный центр) дают команду на вдох. Если при этом атмосферный воздух проникает в лёгкие, то по мере достижения кислородом тканей и органов (в том числе и ЦНС) происходит спонтанное восстановление сознания. Если тело находится в жидкой среде, то происходит проникновение жидкости в дыхательные пути и развивается утопление (обычное или «сухое», связанное с ларингоспазмом).

Одышка или диспно́э — нарушение частоты и глубины дыхания, сопровождающееся ощущением нехватки воздуха. В случае патологических изменений сердечной мышцы одышка поначалу появляется при физической нагрузке, а затем возникает и в покое, особенно в горизонтальном положении (в связи с увеличением венозного возврата крови к сердцу), заставляя пациента принимать вынужденное положение сидя, способствующее депонированию венозной крови системы нижней полой вены в ногах (ортопное). Приступы резкой одышки (чаще ночные) при заболеваниях сердца — проявление сердечной астмы: одышка в этих случаях инспираторная (затруднён вдох). Экспираторная одышка (затруднён выдох) возникает при сужении просвета мелких бронхов и бронхиол (например, при бронхиальной астме) или при потере эластичности лёгочной ткани (например, при развитии хронической эмфиземе лёгких). «Мозговая» одышка возникает при непосредственном раздражении дыхательного центра (опухоли, кровоизлияния и другие этиологические факторы).

Патологические типы внешнего дыхания:

  • периодическое дыхание по типу Чейна — Стокса — дыхание, при котором поверхностные и редкие дыхательные движения постепенно учащаются и углубляются и, достигнув максимума на пятый — седьмой вдох, вновь ослабляются и урежаются, после чего наступает пауза. Затем цикл дыхания повторяется в той же последовательности и переходит в очередную дыхательную паузу. Название дано по именам медиков Джона Чейна и Уильяма Стокса, в чьих работах начала XIX века этот симптом был впервые описан. Механизм патологического дыхания Чейна — Стокса объясняется снижением чувствительности дыхательного центра к СО2: во время фазы апноэ снижается парциальное напряжение кислорода в артериальной крови (РаО2) и нарастает парциальное напряжение углекислого газа (гиперкапния), что приводит к возбуждению дыхательного центра, и вызывает фазу гипервентиляции и гипокапнии (снижение PaCO2). Дыхание Чейна — Стокса встречается в норме у детей младшего возраста, иногда у взрослых во время сна; патологическое дыхание Чейна — Стокса может быть обусловлено черепно-мозговой травмой, гидроцефалией, интоксикацией, выраженным атеросклерозом сосудов головного мозга, при сердечной недостаточности (за счёт увеличения времени кровотока от лёгких к мозгу).
  • большое и шумное дыха́ние Куссма́уля — глубокое, редкое, шумное дыхание, является одной из форм проявления гипервентиляции, часто ассоциируется с тяжёлым метаболическим ацидозом, в частности, диабетическим кетоацидозом, ацетонемическим синдромом (недиабетическим кетоацидозом) и терминальной стадии почечной недостаточности. Данный тип патологического дыхания носит имя Адольфа Куссмауля — немецкого врача, опубликовавшего своё исследование в 1874 году и описавшего появление этого типа дыхания как знак комы и неминуемой смерти лиц с сахарным диабетом. В настоящее время в научной литературе упоминается как симптом Куссмауля — глубокое шумное ритмичное дыхание пациента, находящегося в бессознательном состоянии, вызываемое раздражением дыхательного центра ацетоуксусной и бета-оксимасляной кислотами. Указывает на наличие метаболического ацидоза.

Основные типы нарушений внешнего дыхания:

  • альвеолярная гиповентиляция,
  • альвеолярная гипервентиляция,
  • нарушения лёгочной перфузии,
  • нарушения вентиляционно-перфузионных отношений,
  • нарушения диффузии.

Часто наблюдается сочетание типов нарушений.

Альвеолярная гиповентиляция

Альвеолярная гиповентиляция характеризуется недостаточной альвеолярной вентиляцией, в результате чего в кровь поступает меньше кислорода и обычно происходит недостаточный вывод из крови углекислого газа. Гиповентиляция приводит к снижению количества кислорода в крови (гипоксемия) и к увеличению количества углекислого газа в крови (гиперкапния).

Причины альвеолярной гиповентиляции:

  • нарушения проходимости дыхательных путей,
  • уменьшение дыхательной поверхности лёгких,
  • нарушение расправления и спадения альвеол,
  • патологические изменения грудной клетки,
  • механические препятствия экскурсиям грудной клетки,
  • расстройства деятельности дыхательной мускулатуры,
  • расстройства центральной регуляции дыхания.

Нарушения проходимости дыхательных путей:

  • спазм мелких бронхов (обструктивный бронхит, бронхиальная астма),
  • западение языка,
  • попадание в трахею или бронхи пищи, рвотных масс, инородных тел,
  • закупорка дыхательных путей новорождённых слизью, мокротой или меконием,
  • воспаление или отёк гортани,
  • обтурация или компрессия опухолью или абсцессом.

Тканевое дыхание

Тканево́е или кле́точное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекул аденозинтрифосфорной кислоты и других макроэргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом, физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.

Аэро́бное дыха́ние. В цикле Кребса основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2,5 молекулы АТФ, ФАДН2 — 1,5 молекулы. Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Анаэро́бное дыха́ние — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Дыхание и физические нагрузки

При физических нагрузках дыхание, как правило, усиливается. Обмен веществ ускоряется, мышцам требуется больше кислорода.

Приборы для исследования параметров дыхания

  • Капнограф — прибор для измерения и графического отображения содержания углекислоты в воздухе, выдыхаемом пациентом, в течение определённого периода времени.
  • Пневмограф — прибор для измерения и графического отображения частоты, амплитуды и формы дыхательных движений, в течение определённого периода времени.
  • Спирограф — прибор для измерения и графического отображения динамических характеристик дыхания.
  • Спирометр — прибор для измерения ЖЕЛ (жизненной ёмкости лёгких).

См. также

Литература

  • Дыхание // Малая медицинская энциклопедия. — Т. 2. — С. 146.

medviki.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта