Агрохимический анализ растений. Анализ почв и агрохимический анализ (стр. 1 из 7)

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Методы анализа растений агрохимические. Агрохимический анализ растений


Агрохимический анализ почвы | Анализ состава почвы

Агрохимический анализ почвы

Агрохимический анализ почвы. Диагностика

Агрохимический анализ почвы – мероприятие, проводимое для определения степени обеспеченности почвы основными элементами минерального питания, определения механического состава почвы, водородного показателя и степени насыщения органическим веществом, т.е. тех элементов, которые определяют ее плодородие и могут внести значительный вклад в получение качественного и количественного урожая. 

Говоря об агрохимическом анализе почвы, в первую очередь мы имеем в виду контроль содержания тех или иных компонентов на землях сельскохозяйственного назначения и землях, предназначенных для выращивания каких - либо культур (фермерские угодья, садовые наделы, дачные участки и многое другое).

Исследования почвы проводятся на предварительно отобранных образцах. В соответствии с действующими нормативными актами в области анализа почвы и методов отбора проб, образцы могут отбираться методом «конверта», либо методом «сетки».

В зависимости от площади используемой территории и вида анализа, варьируются и размеры закладываемых площадок. Для контроля состояния земель сельскохозяйственных угодий на каждые 0,5 – 20 га территории закладывается не менее одной пробной площадки размером не менее 10мх10м. При этом:

- однородный покров местности предполагает проведение отбора проб на пробных площадках в 1 – 5 Га для определения содержания химических веществ, структуры и свойств почвы; отбора проб на пробных площадках в 0,1 – 0,5 Га для определения содержания патогенных организмов в почве. 

- неоднородный покров местности проведение отбора проб на пробных площадках в 0,5 – 1 Га для определения содержания химических веществ, структуры и свойств почвы; отбора проб на пробных площадках в 0,1 Га для определения содержания патогенных организмов в почве. 

Схема отбора образцов для агрохимического анализа почвы выглядит следующим образом: с учетом вышеизложенных рекомендаций, на территории закладывается пробная площадка. Вдоль диагоналей, проходящих от одного угла площадки к другому углу, забирают точечные пробы пахотного слоя почвы, масса которых не должна быть менее 200 гр. Полученные точечные пробы перемешиваем между собой, тем самым получая нужную нам объединенную пробу. Объединенная проба состоит не менее чем из 5 точечных проб, взятых с одной пробной площадки. Масса одной объединенной пробы должна составлять не менее 1 кг.

Агрохимический анализ почвы отражает состояние почвы по следующим основным показателям 

- Основные агрохимические показатели (6 показателей):

Рн – кислотность почвы – это свойство почвы, обусловленное наличием водородных ионов в почвенном растворе и обменных ионов водорода и алюминия в почвенном поглощающем комплексе. 

Органическое вещество почвы – это совокупность всех органических веществ, находящихся в форме гумуса и остатков животных и растений, т.е. важная составная часть почвы, представляющая сложный химический комплекс органических веществ биогенного происхождения и определяющая потенциал плодородия почвы.  

Гранулометрический состав – механическая структура почвы, определяющая относительное содержание различных частиц в независимости от их химического и минерального состава.

Гидролитическая кислотность – кислотность почвы, проявляющаяся в результате воздействия гидролитической щелочной солью (СН3СООNa). Определение гидролитической кислотности важно при решении практических задач, связанных с применением удобрений, известкованием, фосфоритованием почв и другими агрохимическими приемами.

Сумма поглощенных оснований – степень насыщенности почв основаниями, показывает, какая доля от общего количества задерживающихся в почве веществ приходится на поглощенные основания.

Нитраты – общее содержание солей азотной кислоты. Данные вещества являются опасными для человека и могут накапливаться в продуктах сельского хозяйства по причине избыточного содержании в почве азотных удобрений.

- Макроэлементы :

Подвижный фосфор – усвояемая растениями форма фосфора (Р2О5). Источник пищи для растений, носитель энергии. Он входит в состав различных нуклеиновых кислот, а его дефицит резко сказывается на продуктивности растений.

Обменный калий – подвижная в почве форма калия, играющая важную роль в питании растений. Играет существенную роль в жизни растений, воздействуя на физико-химические свойства растений.

Азот нитратов – азот, содержащийся в почве в форме нитратов, использующийся растениями для образования аминокислот и белков.

Азот аммонийный – азот аммиачного соединения, которое используется растениями для синтеза аминокислот и белков.

Железо – элемент, участвующий в образовании хлорофилла, являясь составной частью зеленого пигмента. Регулирует процессы окисления и восстановления сложных органических соединений в растениях, играет важную роль в дыхании растений, так как входит в состав дыхательных ферментов. Участвует в фотосинтезе и преобразовании азотсодержащих веществ в растениях.

- Микроэлементы :

Кобальт – микроэлемент, необходимый не только растениям, но и животным. Входит в состав витамина B12, при недостатке которого нарушается обмен веществ – ослабляется образование гемоглобина, белков, нуклеиновых кислот, и животные заболевают акобальтозом, сухоткой, авитаминозом.

Марганец – микроэлемент, принимающий участие в окислительно-восстановительных процессах: фотосинтезе, дыхании, в усвоении молекулярного и нитратного азота, а также в образовании хлорофилла. Эти процессы протекают под влиянием различных ферментов, а марганец при этом выступает активатором эти процессов.

Медь – микроэлемент, необходимый для жизни растений в небольших количествах. Однако без меди погибают даже всходы. Валовое содержание меди в почвах колеблется от 1 до 100 мг/кг сухого вещества.

Молибден – микроэлемент, которому принадлежит исключительная роль в питании растений: он участвует в процессах фиксации молекулярного азота и восстанавливает нитраты в растениях. При его недостатке резко тормозится рост растений, вследствие нарушения синтеза хлорофилла они приобретают бледно-зеленую окраску (листовые пластинки деформируются, и листья преждевременно отмирают). Особенно требовательны к наличию молибдена в почве в доступной форме бобовые культуры и овощные растения (капуста, листовые овощи, редис).

Цинк – микроэлемент, участвующий во многих физиолого-биохимических процессах растений, являясь главным образом катализатором и активатором многих процессов. Недостаток цинка приводит к нарушению обмена веществ у растений.

Никель – микроэлемент, принимающий участие в ферментативных реакциях у животных и растений, необходимый для нормального развития живых организмов. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице.

- Токсичные элементы :

Кадмий – один из самых токсичных тяжелых металлов отнесен ко 2-му классу опасности – «высокоопасные вещества». Источником, которого в почве, является промышленность.

Свинец – тяжелый металл, обладающий высокой токсичностью. Присутствие повышенных концентрации свинца в воздухе и продуктах питания представляет угрозу для здоровья человека. Автомобильные выхлопы дают около 50% общего неорганического свинца.

Хром – соединение 1-ого класса опасности; микроэлемент, встречающийся в следовых количествах в живых и растительных организмах. Избыток хрома в почвах вызывает различные заболевания у растений.

Присутствие хрома в почвах (до 50-70 мг/кг сухой почвы) обуславливает его передвижение по пищевой цепочке: почва – растение – животное - человек. Основными источниками хрома и его соединений в атмосферу являются выбросы предприятий, где добывают, получают, перерабатывают и применяют хром и его соединения. Активное рассеяние хрома связано со сжиганием минерального топлива, главным образом, угля. Значительные количества хрома поступают в окружающую среду с промышленными стоками.

Ртуть – высокотоксичный химически стойкий элемент. Относится к рассеянным элементам (редким). Количество ртути, поступившее в окружающую среду в текущем столетии в результате антропогенной деятельности, почти в 10 раз превышает природное поступление и составляет 57000 т.

Мышьяк - микроэлемент. Относят к рассеянным элементам. Мышьяк является необходимым для функционирования живых организмов микроэлементом. В повышенных концентрациях мышьяк оказывает токсическое воздействие на живые организмы. Содержание мышьяка в почве определяет его содержание в природных водах.

Бенз-а-пирен – сложное химическое соединение, относящиеся к так называемым ПАУ (полиароматическим углеводородам). Элемент 1 класса опасности, образующийся при сгорании углеводородов не зависимо от их агрегатного состояния (жидкое, твёрдое, газообразное). Является наиболее типичным химическим канцерогеном окружающей среды, опасным для человека, даже при малой концентрации, поскольку обладает свойством накопления в организме человека. По отношения к окружающей природной среде, а непосредственно к ее факторам, можно сказать, что наибольшие концентрации находятся в воздухе и почве. Учитывая это, бенз-а-пирен очень легко подвергается перемещению по всей пищевой. Каждая последующий уровень пищевой цепи сопровождается в разы повышенными концентрациями канцерогена.

Нефтепродукты – углеводорода, а правильнее сказать их смесь, в составе которой могут входить более 1000 самостоятельных органических веществ. Каждое из этих соединений может рассматриваться как самостоятельное токсичное вещество. На практике, оценка загрязнения того или иного объекта нефтепродуктами проводится по следующим направлениям: содержание легких фракций (считается наиболее токсичной для живых организмов и среды, но в силу своей испаряемости, обеспечивают быстрое самоочищение почвы), содержание парафинов (относительно токсичные вещества, главным образом воздействующие физические свойства почвы), содержание серы (определение степени сероводородного загрязнения почвы).

- Бактериология :

Индекс БГКП – показывает количество бактерий группы кишечная палочка на 1 г почвы. БГКП являются сапрофитами кишечника человека и животных. Обнаружение их во внешней среде указывает на ее фекальное загрязнение, поэтому кишечную палочку относят к санитарно-показательным микроорганизмам.

Индекс энтерококков – санитарно-бактериологический показатель, характеризующий количественное содержание бактерий рода энтерококки (р. Enterococcus) в 1 грамме почвы известных, также, под другим термином - «фекальные стрептококки».

Патогенные бактерии, в т.ч. сальмонеллы – санитарно-бактериологический показатель, характеризующий количественное содержание бактерий в 1 грамме почвы, способных при соответствующих условиях вызывать инфекционные заболевания.

Агрохимического анализа почвы имеет немаловажное значение. Он способствует принятию целесообразных и продуманных решений, способствующих организации мероприятий по повышению эффективности и поднятии плодородия используемых земель. Конкретизация задач под тот или иной вид возделываемых культур не заставит себя долго ждать и позволит получить богатый урожай – так желаемый результат любого агрария.

minsemlab.ru

Введение в агрохимию

Понятие об агрохимии, ее целях и задачах

В период интенсивной химизации земледелия с каждым годом применяются все большие объемы минеральных и органических удобрений. В сельскохозяйственную практику внедряются прогрессивные технологии возделывания культур, а также возрастает комплексная антропогенная нагрузка на почву. Поэтому важно не только получать высокие урожаи культур, но необходимо также знать, какое влияние окажут средства химизации на биологические свойства почвы и экологическую обстановку в ней.

Агрономическая химия является современной научной основой применения удобрений. Она охватывает главнейшие вопросы химии в сельском хозяйстве и вместе с химической защитой растений является основой химизации земледелия. Ведь органические и минеральные удобрения представляют собой сильное средство воздействия на почву (ее химические, физические и биологические свойства) и растения – их питание, рост и развитие, устойчивость к неблагоприятным условиям, урожай и его качество.

Отечественный и зарубежный опыт показывает, что не менее половины прироста урожая сельскохозяйственных культур получают за счет применения минеральных удобрений, на 14% увеличиваются валовые сборы продукции земледелия благодаря использованию химических средств защиты растений.

В самом кратком определении агрохимия – это наука, изучающая питание растений и применение удобрений в целях повышения урожайности сельскохозяйственных культур. Агрохимия предусматривает также вопросы повышения плодородия почв.

Современное определение этой науки можно дать так:

Агрохимия -наука о химических и биохимических процессах в растениях и среде их обитания, а также о способах химического воздействия на эти процессы с целью повышения плодородия почвы и урожая с.-х. культур. Отдельные её разделы неразрывно связаны с физиологией растений, химией, биохимией, почвоведением, микробиологией, земледелием и растениеводством.

Многие приемы агрохимии, например, применение ряда органических удобрений, вошли в практику земледелия в глубокой древности и описаны еще в 1 в. н.э. Как наука агрохимия сформировалась лишь в 19 в., когда сложились основные представления о том, из чего состоят, чем и как питаются растения. Как вехи на пути становления агрохимии обычно отмечают опыты Я. Б. ван Гельмонта (1634), осветившие роль воды в питании растений, а также высказывания М. В. Ломоносова (1753) и А. Лавуазье (1761) о воздухе как источнике питательных веществ, вскоре подтвержденные опытами Дж. Пристли, Я. Ингенхауза, Ж. Сенебье и Н. Соссюра, показавшими, что растения поглощают из воздуха СО2; и выделяют О2; и что это связано с фотосинтезом.

Наиболее трудным оказался вопрос о корневом питании растений. Представления о том, что растения поглощают из почвы минеральные соли (Б. Палисси, 1563; А. Лавуазье, 1761; А. Т. Болотов, 1770), долгое время наталкивались на сопротивление сторонников так называемой гумусной теории питания растений (И. Валериус, 1761) и окончательно утвердились лишь в 19 в. после работ Ж. Буссенго (1836) и Ю. Либиха (1840) и особенно после разработки метода гидропоники (В. Кноп, Ю. Сакс, 1859), в котором растения выращиваются без участия почв. Большую роль в становлении агрохимии сыграли Ж. Буссенго и Ю. Либих. Первый развил представления о круговороте веществ в земледелии, роли азота в питании растений, разработал методологию агрохимических исследований. Второй обосновал теорию истощения почв вследствие выноса питательных веществ растениями и показал необходимость возврата этих веществ в виде минеральных удобрений. Связь агрохимии с микробиологией была обоснована Г. Гельригелем (1886) и С. Н. Виноградским (1893), выяснившими роль азотфиксирующих бактерий в природе и земледелии.

Становление отечественной школы агрохимии связано с именами М. Г. Павлова, А. Н. Энгелыардта, Д. И. Менделеева, К. А. Тимирязева, П. А. Костычева, Д. Н. Прянишникова, П. С. Коссовича, К. К. Гедройца и др., внесших существенный вклад в агропочвоведение и науку об удобрении почв. В послереволюционный период их работы продолжила плеяда советских агрохимиков во главе с Д. Н. Прянишниковым.

Основоположник научной школы в агрономической химии выдающийся агрохимик Дмитрий Николаевич Прянишников в простой и доходчивой форме представил содержание этой науки. Он изобразил ее в виде треугольника, по вершинам которого написаны основные объекты агрохимии: растение, почва, удобрение. Каждая из вершин соединена противоположно направленными стрелками с двумя другими (см. рисунок).

Стрелки означают взаимодействие: растение взаимодействует с почвой и удобрением, почва – с растением и удобрением, удобрение – с почвой и растением. Агрохимия исследует процессы взаимного влияния этих трех систем, результатом которых является урожай; высота и состав его определяются условиями взаимодействия.

При взаимодействии растения и почвы последняя оказывает влияние на растение содержащимися в ней элементами питания, но и растение в свою очередь поглощением питательных веществ, корневыми выделениями, отложением органических остатков, механическим и биохимическим воздействием оказывает влияние на почву, изменяет ее свойства.

Схема взаимодействия растения, почвы и удобрений

Рис. Схема взаимодействия растения, почвы и удобрений.

Удобрение является сильным средством изменения в растении характера обмена веществ и всех жизненных процессов, но в то же время физические и химические свойства удобрения изменяются под воздействием растения. Точно так же при взаимодействии почвы и удобрения, с одной стороны, изменяются свойства почвы, ее кислотность или щелочность, содержание питательных веществ, деятельность микроорганизмов и т. п., а с другой стороны, под влиянием почвы в удобрении изменяется растворимость и доступность растению элементов питания, их концентрация под влиянием вымывания или превращения в труднорастворимые соединения и т. д.

Д. Н. Прянишников в своем определении понятия «удобрение» указывал, что оно может содержать пищу для растений, усиливать мобилизацию питательных веществ в почве, повышать энергию жизненных процессов в ней и изменять свойства самой почвы.

Задача науки состоит в том, чтобы по возможности управлять этими условиями и давать соответственные рекомендации практике с учетом вида и даже сорта культуры, ее физиологических особенностей, свойств данной почвы, определяющих ее плодородие, природы действия конкретных удобрений на эту почву, и взятое для возделывания на ней растение. При этом наука вскрывает те принципиальные закономерности процессов, знание которых позволяет предвидеть их течение в обстановке, создающейся в результате различных комбинаций условий действия удобрений.

Знание этих закономерностей и помогает специалисту разработать правильное решение вопроса в каждом конкретном случае. Только при таком подходе к делу применения удобрений они становятся могучим фактором влияния и на почву, и на растение.

Таким образом, агрохимия изучает взаимоотношения между растением, почвой и удобрениями в процессе питания сельскохозяйственных культур.

Главная задача агрохимии по определению ее выдающегося представителя Д. Н. Прянишникова – изучение круговорота веществ в земледелии и выявление тех мер воздействия на химические процессы, протекающие в почве и растении, которые могут повышать урожай или изменять его состав. А с учетом современного состояния науки – управление круговоротом и балансом химических элементов в системе «почва - растение».

Задача агрохимика состоит в определении точных параметров круговорота всех биогенных элементов с учетом зон выращивания и специфики различных сельскохозяйственных растений и их сортов при заданных уровнях продуктивности. Цель – создание наилучших условий питания растений.

Главным способом вмешательства в этот круговорот является применение удобрений. Без них невозможно направлять процессы питания растений, изменять качество урожая и влиять на почвенное плодородие. Внесение минеральных удобрений позволяет вводить в круговорот веществ в данном хозяйстве новые количества элементов питания растений, а использование навоза и прочих отходов - повторноутилизировать элементы, уже входившие в состав предыдущих урожаев, выращенных на территории хозяйства.

Круговорот каждого из элементов питания растений имеет своеобразные черты. Важно отметить, что приход того или иного элемента в почву с удобрениями и расход его с урожаем осложняются целым рядом других процессов: потерей питательных веществ из-за выщелачивания за пределы почвенного профиля или даже в грунтовые воды, улетучивания в атмосферу, а также вследствие ветровой и водной эрозии почвы.

Вместе с тем некоторые элементы поступают в почву из атмосферы с осадками и благодаря жизнедеятельности микроорганизмов (азот). Кроме того, сильное влияние оказывает дальнейшая судьба урожая: вещества, входящие в состав его товарной части, продаваемой на сторону, уходят за пределы хозяйства, в то время как элементы, составлявшие нетоварную массу, используемую на корм и подстилку животным, в значительно большей степени возвращаются на поля с навозом. Отсюда ясно, что заботе о введении в круговорот веществ элементов, удаляемых с товарной продукцией, в агрохимии уделяется гораздо больше внимания, чем элементам, полнее возвращаемым в почву после использования нетоварной массы.

Крайне существенно и то, что содержание в почве различных элементов питания растений далеко не одинаково, а это, в свою очередь, не может не влиять на баланс питательных веществ, складывающийся в итоге их круговорота в хозяйстве. Следовательно, как изучение, так и в особенности управление круговоротом веществ, представляет нелегкую задачу.

Объекты агрохимии и основные методы их исследования

Основные объекты, традиционно изучаемые агрохимией: растения, почва и удобрения. Рассмотрим их подробней.

Почва — сложный объект исследования. Сложность исследования химического состояния почв обусловлена особенностями их химических свойств и связана с необходимостью получения информации, адекватно отражающей свойства почв и обеспечивающей наиболее рациональное решение, как теоретических вопросов почвоведения, так и вопросов практического использования почв. Для количественного описания химического состояния почв используют широкий набор показателей. В него входят показатели, определяемые при анализе практически любых объектов и разработанные специально для исследования почв (обменная и гидролитическая кислотность, показатели группового и фракционного состава гумуса, степень насыщенности почв основаниями и др.)

Особенностями почвы как химической системы является гетерогенность, полихимизм, дисперсность, неоднородность, изменение и динамика свойств, буферность, а так же необходимость оптимизации свойств почвы.

Гетерогенность: В составе почвы выделяют твердую, жидкую, газовую фазы. При исследовании химического состояния почвы и отдельных

Полихимизм: В почвах один и тот же химический элемент может входить в состав разнообразных соединений: легкорастворимых солей, сложных алюмосиликатов, органоминеральных веществ.

Дисперсность: Твердые фазы почвы состоят из частиц разного размера от крупинок песка до коллоидных частиц диаметром в несколько микрометров. Они неодинаковы по составу и обладают разными свойствами.

Неоднородность: Свойства почв неодинаковы даже в пределах одного и того же генетического горизонта.

В почвах непрерывно протекают разнообразные процессы, которые приводят к изменению химических свойств почв.

Свойства почв варьируют в пространстве, изменяются во времени и в то же время почвы обладают способностью противостоять изменению своих свойств, т. е. проявляют буферность.

Разные типы и даже виды и разновидности почв могут иметь столь разные свойства, что для их химической характеристики используют не только разные аналитические приемы, но и разные наборы показателей.

Перечисленные особенности почв во многом обусловливают принципиальные основы методов исследования химического состояния почв, номенклатуру и классификацию показателей химических свойств почв и химических почвенных процессов.

Анализ растений позволяет решить следующие задачи.

1. Исследовать трансформацию макро- и микроэлементов в системе почва - растение - удобрения при различных режимах выращивания растении.

2. Определить содержание основных биокомпонентов в растительных объектах и кормах: белков, жиров, углеводов, витаминов, алкалоидов и соответствие их содержания принятым нормам и стандартам.

3. Оценить меру пригодности растений для потребителя (нитраты, тяжелые металлы, алкалоиды, токсиканты).

При работе с различными видами удобрений необходимо различать их виды, уметь определить их состав как качественный, так при необходимости и количественный

Агрохимический анализ необходим для более эффективного ведения сельского хозяйства, сохранения окружающей среды и благоприятной экологической обстановки. Нарушение природного баланса может привести к разрушению гумусного слоя, снижению урожайности сельскохозяйственных культур, нарушению обменной функции почв, появлению заболеваний, опасных, в том числе, и для человека.

В соответствии с целями и задачами агрономической химии находятся методы ее исследований.

Их можно объединить в 4 группы:

1) лабораторные (химические, физико-химические, физические) анализы растения, почвы и удобрения;

2) физиологические эксперименты с растениями в специальных помещениях (теплицы, климатические камеры)

3) полевые опыты с сельскохозяйственными культурами в различных почвенно-климатических зонах

4) производственные опыты на больших площадях с экономической оценкой полученных результатов. Три последние группы методов являются биологическими.

Лабораторные исследования включают: определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др.; изучение влияния удобрений на растения и почву и др.

На основании лабораторных исследований делают выводы о необходимости проведения химической мелиорации почв (известкование, гипсование) с целью улучшения их состава, структуры и свойств. В настоящее время создан большой ассортимент твердых и жидких удобрений, содержащих как основные элементы (N, Р, К), так и микроэлементы. В больших масштабах применяют Nh4  и удобрения на основе мочевины. Внедряются в практику все новые препараты по защите растений.

Связь агрохимии с другими науками

Подводя итоги развития научного земледелия за все предшествующие 19 столетий, К. А. Тимирязев писал: « Земледелие стало тем, что оно есть, только благодаря агрономической химии и физиологии растений. Возникновением этих двух отраслей знания отмечены научные успехи за этот последний век, отразившиеся на земледелии, совершенно изменившие его характер, превратившие его из бессвязного собрания рецептов и слепого подражания успешным примерам в более или менее сознательную разумную деятельность… ».

«Чем питается растение и как это узнать? Вот коренной вопрос, на котором зиждется рациональное земледелие…», - говорил великий ученый.

Следовательно, изучение питания зеленых растений связывает агрохимию и физиологию растений. Но задача агрохимии более широкая: не только исследование, но и регулирование, управление этим процессом в производственной обстановке для увеличения продуктивности сельскохозяйственных культур и повышения их качества. Регулирование питания растений – мощное средство, поддерживающее единство организма и среды.

Наиболее частым случаем нарушения единство растения и среды бывает недостаток влаги и одного или нескольких питательных веществ в почве в состоянии, доступном для корневой системы. В зависимости от степени дефицита этих факторов роста возделываемые культуры либо бывают угнетены, либо вовсе погибают.

Изучая биологические, химические и физико-химические свойства почвы, агрохимия познает условия ее плодородия (формы и динамику соединений питательных элементов в связи с их растворимостью и усвояемостью для растений, поглотительную способность почв и ее влияние на подвижность ионов, потребляемых культурами, кислотность почвы и ее буферность и пр.) и превращение внесенных удобрений. Этот раздел агрономической химии тесно связан с наукой о почве – почвоведением.

Накопление в почве необходимой растениям влаги зависит не только от климатических и погодных условий, но и находится под влиянием приемов и сроков ее обработки. Обработка почвы – важный фактор динамики в ней питательных веществ, что связывает агрохимию и земледелие. Кроме того, земледелие разрабатывает проблему севооборотов, а это очень важно для обоснования определенной системы применения удобрений в конкретных условиях. Но применять удобрения рационально и экономно нельзя, не опираясь на агротехнические, организационно-экономические и хозяйственные приемы возделывания тех высших растений, для которых предназначается данная система удобрения. Поэтому агрономическая химия тесно связана и с указанными научными дисциплинами: растениеводством, экономикой и организацией предприятий.

Выше отмечалось, что динамика питательных веществ в почве имеет большое значение для питания растений. Но превращение многих элементов питания культур зависит от течения микробиологических процессов почве. Это особенно касается азота, фосфора, серы. Больше того, для активирования биологических процессов в почве применяют даже специальные бактериальные препараты, что связывает агрохимию с микробиологией. Исключительную важность представляет связывание бактериями и некоторыми грибками и водорослями, обитающими в почве, молекулярного азота атмосферы, что обогащает почву органическими азотистыми соединениями, являющимися резервом пищи растений.

Как ни велико значение минеральных удобрений, местные удобрительные ресурсы никогда не потеряют своего значения. Дешевизна и повсеместное распространение этих удобрений делают их весьма рентабельными.

Ни в одной стране, даже с высокоразвитой туковой промышленностью и большим количеством применяемых минеральных удобрений, использование навоза не сократилось. Наоборот, интенсификация земледелия и его обильная химизация позволили увеличить выход навоза и повысить нормы его использования. Агрохимик должен знать основы животноводства, чтобы быть хорошо ориентированным в свойствах и особенностях использования на удобрение отходов этой отрасли сельского хозяйства.

Наконец, химизация земледелия включает, помимо минеральных и органических удобрений, еще и многочисленные средства защиты растений – яды и гербициды, изучение и руководство применением которых ложится не только на специалистов по защите растений, но и на агрохимиков, что обязывает основательно изучать методы защиты растений, биологию насекомых-вредителей, возбудителей бактериальных и грибных болезней культур и особенности сорных растений. Только при этом условии средства химической защиты будут использованы эффективно.



biofile.ru

Основы агрохимии

Агрохимия – научная основа химизации земледелия

Агрохимия является научной основой химизации сельского хозяйства. Она развивается под воздействием требований земледелия и призвана способствовать повышению его культуры. Агрохимия применяет в своих исследованиях методику химического анализа растений, почвы и удобрений, широко пользуется методами лабораторного и полевого опыта, меченых атомов, спектроскопии и хроматографии и другими.

Агрономическая химия (Агрохимия) – наука об оптимизации питания растений, применения удобрений и плодородия почвы с учётом биоклиматического потенциала для получения высокого урожая и качественной продукции сельского хозяйства, прикладная наука, составная часть раздела химии – «неорганическая химия».

Агрохимия – также учебная дисциплина о химических процессах в почве и растениях, минеральном питании растений, применении удобрений и средств химической мелиорации почв. Включает определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др. Изучает влияние удобрений на растения и почву.

Агрохимия – наука, которая изучает круговорот веществ в системе «почва – растение – удобрения», а также их влияние на качество сельскохозяйственной продукции и проблемы охраны окружающей среды в зоне ведения аграрного сектора экономики государства.

Агрохимические исследования касаются вопросов воспроизводства плодородия почв, высокоэффективного использования минеральных, органических удобрений, микроэлементов на фоне других средств химизации, изучение агрохимической, экономической, энергетической и экологической эффективности удобрений, их физико-химических и агрохимических свойств, организации системы химизации отраслей агропромышленного комплекса (АПК).

Основные разделы агрохимии:

       ·  питания растений, химия почвы и удобрений;

       ·  взаимодействие удобрений с почвой и микроорганизмами;

       ·  применения удобрений под отдельные растения;

       ·  система удобрения в севообороте;

       ·  методика агрохимических исследований;

       ·  химические средства борьбы с сорняками, болезнями и вредителями сельскохозяйственных культур.

Отношение сельскохозяйственных культур к кислотности почвы и известкованию

Отношение сельскохозяйственных культур к кислотности почвы

Реакция среды в почве – один из основных показателей уровня плодородия почв для сельскохозяйственных культур, так как она является своего рода интегральным показателем целого комплекса свойств почв, который формирует урожай. Установлено, что кислая среда нарушает углеводный и белковый обмены в растениях. Отрицательное влияние кислой среды на ферментативный аппарат клеток приводит к замедлению и приостановлению процессов синтеза в растениях. Дикорастущие виды являются индикаторами почвенной кислотности. В. К. Каличкин (1998) отмечает, что индикаторами почвенной кислотности являются щавелек (Rumex acetosella), торица полевая (Sperguba arvensis), лисохвост луговой. По наблюдениям, надежным индикатором является хвощ полевой, который часто подавляет посевы ячменя и пшеницы. Оптимальный интервал рН в почвах для культурных растений в сильной степени зависит от доступности элементов питания и растворимости токсикантов. При улучшении минерального питания в оптимальных физических условиях (плотность почвы, содержание влаги и др.) урожайность существенно увеличивается, а оптимальный вариант значений рН смещается в более кислую сторону. Однако, несмотря на эти особенности, сельскохозяйственные растения по отношению к почвенной кислотности можно разделить на несколько групп. Первая группа характеризуется высокой чувствительностью к почвенной кислотности: клевер, эспарцет, корнеплоды, донник.

Вторая группа культур отличается умеренной чувствительностью к кислотности почв, хорошей отзывчивостью на известкование: яровая пшеница, кукуруза, ячмень, горох, вика.

Третья группа культур – слабочувствительные к кислотности, однако они положительно реагируют на известкование: озимая рожь, гречиха, тимофеевка.

Четвертая группа подразделяются на две подгруппы:

а) не переносящие избыток кальция в почве – лен;

б) удовлетворительно переносящие кислотность почвы и не нуждающиеся в известковании – картофель.

Оптимальная реакция почв не является строго фиксированной величиной, она зависит от уровня питания, а также от наличия тех или иных ионов в питательном растворе. Кроме того, большое влияние оказывают агрохимические, биологические свойства почвы и ее водно-воздушный режим. Важнейшим фактором, снижающим урожайность сельскохозяйственных культур на кислых почвах, является алюминий. Устойчивость растений к токсичности алюминия имеет сложную природу и контролируется генетически. Растения, клетки корней которых имеют устойчивую к действию металла плазмолемму, наряду с активным подщелачиванием среды интенсивно выделяют вещества, хелатирующие и осаждающие алюминий, устойчивы к нему.

А. И. Мещеряков (1937), по данным своих исследований и других авторов, расположил полевые культуры по степени их чувствительности к алюминию в следующем порядке: сахарная свекла →горчица белая →лен-долгунец →конопля →яровая пшеница →морковь → картофель →кенаф → подсолнечник → овес → горох → гречиха → люпин → яровая рожь.

Отношение сельскохозяйственных культур к известкованию

По отношению к кислотности почвы и известкованию основные культурные растения подразделяют на следующие группы:

I   группа – люцерна, клевер луговой, капуста белокочанная, свекла (сахарная, кормовая), очень чувствительны к кислотности почвы и требуют нейтральной реакции или слабощелочной (рН 6,2 – 7,2), очень хорошо отзываются на известкование.

II   группа – пшеница, ячмень, кукуруза, горох, бобы, вика, клевер шведский, кострец, турнепс, брюква, требуют слабокислой и близкой к нейтральной реакции (рН 5,1–6,0), хорошо отзываются на известкование.

Ш группа – рожь, овес, тимофеевка, гречиха, переносят умеренную кислотность (рН 4,6–5,0), но лучше растут при слабокислой реакции, положительно реагируют и на высокие дозы извести.

IV группа – картофель, лен, подсолнечник, легко переносят умеренную кислотность и требуют известкования только на сильно- и среднекислых почвах.

V группа – люпин, сераделла, чай, малочувствительны к повышенной кислотности почвы.

Таким образом, большинство сельскохозяйственных культур развивается в широком диапазоне рН, но лучше при слабокислой или нейтральной реакции среды. Особенности отдельных культур должны приниматься во внимание в практике известкования. Внесение извести уничтожает вредное действие на растение кислотности и подвижного алюминия. Кроме того, известь является источником кальциевого питания для растений, потребность в котором у некоторых растений особенно велика, например, у клевера, люцерны, капусты. Так, при высоких урожаях капусты (500–700 ц с 1 га) с 1 га потребляется 300–500 кг СаО, при высоких урожаях клевера, люцерны, подсолнечника – от 120 до 250 кг СаО, сахарная свекла при урожаях 200–300 ц с 1 га потребляет до 120 кг СаО, меньше потребляют зерновые культуры (при урожаях 20–30 ц с 1 га от 20 до 40 кг СаО).

В то же время следует отметить, что в дерново-подзолистых почвах кальций теряется в результате выщелачивания, особенно при использовании физиологически кислых минеральных удобрений. Исследования показывают, что из почвы ежегодно вымывается от 100 до 500 кг СаО с 1 га. Это обстоятельство стали учитывать при уточнении доз известкования в различных почвенно-климатических условиях.

Кальций положительно влияет на рост и развитие корневой системы растений, на физиологическую уравновешенность питательного раствора; катионы кальция оказывают сильное антагонистическое действие, препятствующее избыточному поступлению в растение катионов Н+, Al3+, Na+, Nh5+ и др. Кальций играет большую роль в превращении азотистых веществ в растении (ускоряет распад запасных белков в семенах при их прорастании). В растениях кальций положительно влияет на развитие клеточных оболочек (без кальция клеточные стенки ослизняются и затрудняется поступление питательных веществ в клетку).

Известкование повышает подвижность молибдена в почвах, и улучшает молибденовое питание растений.

Наряду с кальцием в питании растений большую роль играет магний, особенно на почвах легкого механического состава (песчаных, супесчаных), бедных магнием. Недостаток магния может быть в дерново-подзолистых сильнокислых почвах и более тяжелого ГМС. Поэтому не случайно, что для известкования этих почв применяют магнийсодержащие материалы – доломиты, доломитизированные известняки.

Необходимость магния для питания растений обусловлена тем, что он входит в состав хлорофилла и принимает непосредственное участие в фотосинтезе. Магний входит также в состав пектиновых веществ, фитина и других органических соединений, активирует фермент фосфатазу (которая расщепляет фосфорсодержащие органические соединения с высвобождением фосфорной кислоты), способствует усилению восстановительных процессов, что приводит к большему накоплению жиров, эфирных масел. Не случайно, что магний сосредоточивается преимущественно в семенах.

Недостаток магния отражается на внешнем виде листьев растений: наблюдается частичный хлороз, появляются бесцветные участки листьев (мраморовидность). Магний более подвижен в растениях, чем кальций, и может повторно использоваться в них – передвигаться из старых листьев в молодые, тогда как кальций этой способностью не обладает и содержится больше в старых листьях, чем в молодых.

Количественно потребность растений в магнии невелика. В зависимости от величины урожая различные культуры выносят от 10 до 70 кг MgO с 1 га.

Медленнодействующие азотные удобрения

Хорошая растворимость и подвижность в почве азотных удобрений не всегда полезны. В условиях промывного водного режима, особенно на легких почвах, нитратные формы удобрений вымываются из корнеобитаемого слоя. То же происходит и с аммонийными формами по мере их трансформации в нитраты. Значительны (в среднем 15–20%) и газообразные потери азота в процессе денитрификации. Все это снижает эффективность применения азотных удобрений. Поэтому в последние годы начато производство медленнодействующих форм азотных удобрений.

Медленнодействующие удобрения подразделяются на две группы: первая объединяет слаборастворимые в воде удобрения (конденсаты мочевины и различных альдегидов), вторая – капсулированные удобрения, то есть удобрения, гранулы которых покрыты тонкими труднорастворимыми пленками – формальдегидной или акриловой смолой, серой, стеарином и т.д.

Для получения медленнодействующих удобрений используют различные альдегиды: формальдегид, ацетальдегид, кротоновый и изомасляный альдегиды и др. При этом получают соответственно следующие удобрения: мочевиноформальдегидное удобрение (МФУ), или уреаформ, содержащее 38–40% азота (в том числе 28 – 32% нерастворимого в воде), кротонилидендимочевина (КДМ) с содержанием азота около 32%, изобутилендимочевина (ИБДМ), содержащая 31% слаборастворимого в воде азота, мочевино-фор-мацетальдегид (МФАА) и др.

Конденсацию проводят в концентрированных растворах обычно при эквимолярном (равномолярном) соотношении мочевины и формальдегида, подкислении реакции среды до рН 3 и при температуре 30–60°С. Образующийся конденсат отфильтровывают, высушивают и размалывают. Получается белый рассыпчатый порошок, который не слеживается и хорошо рассеивается.

Условия целесообразного применения медленнодействующих азотных удобрений

Труднорастворимые формы азотных удобрений перспективны для районов с избыточным увлажнением и на орошаемых землях, а также при внесении под овощные культуры, лугопастбищныс травы, травостои на спортплощадках и газонах, под которые азот вносят в высоких дозах и обычно в несколько приемов.

При внесении в обычных дозах эти удобрения в первый год менее эффективны, чем мочевина. Однако при больших дозах внесения они не создают избыточно высокой вредной концентрации почвенного раствора, азот почти не вымывается и меньше теряется в результате денитрификации, но по мере их разложения в течение длительного времени используется растениями.

Эти удобрения можно вносить в высоких дозах один раз в два-три года, не опасаясь вымывания азота. В этом случае обеспечивается питание азотом первой культуры и наблюдается значительное последействие удобрения на последующие культуры.

Недостатком медленнодействующих удобрений является высокая стоимость их по сравнению с обычными легкорастворимыми азотными удобрениями. Кроме того, скорость высвобождения азота из удобрения не всегда соответствует характеру поглощения этого элемента большинством культур в течение вегетации, чем и объясняется меньшая по сравнению с мочевиной эффективность их в год внесения. Вследствие этого медленнодействующие удобрения пока не имеют широкого применения.

В настоящее время начато производство и опытное применение капсулированных азотных удобрений. Для этого используют обычные водорастворимые формы удобрений, но их гранулы покрывают пленками, через которые медленно и трудно проникает влага. Капсулированные азотные удобрения обладают улучшенными физико-механическими свойствами: они менее гигроскопичны, гранулы механически более прочны, не слеживаются при хранении. Из гранул этих удобрений происходят постепенное высвобождение азота и его усвоение растениями по мере окисления и разрушения пленок. Подбором состава и толщины пленок можно получать удобрения с заданной интенсивностью отдачи азота в соответствии с биологическими особенностями сельскохозяйственных культур с учетом периодичности их питания.

Капсулированные азотные удобрения используются растениями в процессе вегетации лучше и равномернее, что положительно сказывается на урожае и качестве продукции.

Проведенные опыты показали, что применение капсулированных азотных удобрений перспективно под рис, на лугах и пастбищах длительного пользования, а также под овощные культуры, особенно в районах с большим количеством осадков и при орошении. На посевах зерновых культур они не имеют преимущества перед растворимыми удобрениями. Однако из-за высокой стоимости капсулированных удобрений применение их в сельском хозяйстве пока весьма ограничено.

Взаимодействие водорастворимых фосфорных удобрений с почвой.

Влияние способа внесения удобрений на коэффициент использования фосфора растениями

Водорастворимые удобрения являются более универсальными, так как их можно использовать и на щелочной, и на кислой почве. Их вносят на подзолистых почвах в дозах 60–90 кг фосфора на 1 га. Водорастворимые удобрения не обязательно глубоко заделывать в почву, а в некоторых случаях это даже вредно, так как может привести к уменьшению усвояемости удобрения растениями.

Растворимость фосфорных удобрений (в том числе водорастворимых) по сравнению с азотными и калийными значительно ниже. При внесении в почву фосфорных удобрений по мере их растворения фосфат-ион постепенно переходит в разные соединения, характерные для данной почвы, обусловленные ее генетическими особенностями (направленностью почвообразовательного процесса), физико-химическими и минералогическими свойствами, степенью окультуренности и т.д.

Однако процесс этот идет очень медленно. Частично же внесенные фосфорные удобрения (в особенности гранулированные, а также полурастворимые и нерастворимые) длительно сохраняются в почве в неизменном виде.

Взаимодействие водорастворимых фосфорных удобрений с почвой

Трансформация растворимого фосфора удобрений в почве может быть обусловлена рядом процессов:

химическим поглощением фосфора катионами кальция, магния, оксидами и гидроксидами железа, алюминия, марганца и титана;

коллоидно1химическим (обменным) поглощение фосфора на поверхности твердой фазы почвы;

биологическим поглощением фосфора корневой системой растений и почвенной микрофлорой.

Обменное поглощение (адсорбция) фосфат-ионов наблюдается на поверхности положительно заряженных коллоидных частиц (коллоидах гидратов полуторных оксидов) или на положительно заряженных участках отрицательно заряженных коллоидов (у минералов каолинитовой и монтмориллонитовой групп и гидрослюд, коллоидов белковой группы). Обменное поглощение фосфатов сильнее выражено в условиях кислой среды. Так иллит (минерал из группы гидрослюд), бентонит (минерал из монтмориллонитовой группы) и каолинит адсорбировали при рН 4–4,5 от 7,7 до 9,7 мг • экв. Н2 Р042 – на 100 г. минерала. Заметных различий в поглощении анионов у минералов монтмориллонитовой и каолинитовой групп (как в случае с обменным поглощением катионов) не наблюдалось. Реакция среды вызывает изменение электрического потенциала почвенных коллоидов. Подкисление почвенного раствора способствует большему поглощению анионов; подщела-чивание, наоборот, вызывает уменьшение этого процесса. Поэтому для почв, имеющих слабокислую и нейтральную реакции, обменное поглощение выражено слабее (Антипов–Каратаев и др.):

Почва Адсорбировано Р043 – из 0,05 н. Н3 Р04, мг• экв/100г почвы

Чернозем 18,3

Подзолистая   41,9

Краснозем 74,0

Обменно-поглощенные анионы фосфорной кислоты могут легко вытесняться в раствор (десорбция) другими анионами минеральных и органических кислот (НС03 –, лимонной, яблочной, щавелевой, муравьиной, гуминовыми и др.). Эти анионы всегда присутствуют в почвенном растворе как результат дыхания растений, их корневых выделений, а также разложения микроорганизмами растительных остатков и органических удобрений и др., т.е. недостатка в агентах десорбции фосфатов в почвенном растворе не бывает. Это и определяет хорошую подвижность обменно-поглощенных фосфатов в почвах, а стало быть, и их доступность растениям. Часть фосфат-ионов удобрений, растворившихся в почвенном растворе, поглощается почвой по типу химического связывания.

Ход и тип химического поглощения фосфатных удобрений в почвах обусловливаются в значительной мере типом почвы и степенью ее кислотности.

Величина рН почвы определяет растворимость солей кальция, магния, алюминия, железа, марганца, титана, которые, взаимодействуя с водорастворимыми фосфат-ионами, переводят его в труднорастворимые соединения. Так, при рН ниже 5 в почве могут появляться ионы алюминия, при рН ниже 3 – ионы железа. Считается, что наименьшее связывание фосфатов и их наибольшая подвижность обнаруживаются в интервале рН от 5,0 до 5,5. На более кислых почвах происходит поглощение фосфора главным образом оксидами алюминия и железа, на менее кислых почвах возрастает поглощение фосфора кальцием и магнием.

Таким образом на почвах с реакцией среды, близкой к нейтральной, водорастворимые, фосфорные удобрения-монофосфаты через некоторое время превращаются в результате химического поглощения в двузамещенные фосфаты кальция и магния (СаНР04 • 2Н2 0 или MgHP04 ) и остаются долгое время в таком (доступном для растений) виде. В дальнейшем происходит постепенное замещение иона водорода, оставшегося в двузамещенной соли, кальцием или магнием с образованием трехзамещенных фосфатов этих элементов Ca3 (P04 )2, Mg3 (P04 )2, а в последующем и более основных фосфатов типа октакальцийфосфата (еще менее растворимого соединения).

Но и эти соли, пока они находятся в свежеосажденном аморфном состоянии, сохраняют свойство заметно растворяться в слабых кислотах, а значит, и остаются в частично доступном для растений виде. Только по мере «старения» трехзамещенных и более основных солей фосфорной кислоты, их перехода из аморфного в кристаллическое состояние они становятся недоступными для большинства растений. Процесс «старения» фосфатов получил название ретроградация фосфатов.

В дерново-подзолистых почвах с кислой и слабокислой реакцией основными компонентами химического связывания фосфат-ионов из водорастворимых удобрений являются подвижные, то есть несиликатные, полуторные оксиды:

Аl(ОН) з + Н3 Р04 → А1Р04 + ЗН2 0;

Fe(OH)3 + Н3 Р04 → FeP04 + ЗН2 0.

Свежеосажденные аморфные фосфаты алюминия и железа так же могут усваиваться растениями, но по мере их «старения» они кристаллизуются и становятся нерастворимыми. Химическому поглощению в почвах подвергаются как водорастворимые фосфат-ионы удобрений, так и фосфат-ионы, перешедшие в раствор из обменно-поглощенного состояния в процессе десорбции.

Процесс поглощения почвами фосфатов удобрений и их дальнейшей трансформации очень медленный. Опыт длительного применения высоких доз фосфатных удобрений (в несколько раз превышает вынос Р2 05 ) показал, что существенная часть фосфора удобрений накапливается в таких почвах в легкорастворимой форме в значительных количествах (600–1000 мг/кг почвы и более).

Длительное выращивание растений в условиях дефицита фосфорных удобрений ведет к истощению почвенных запасов этого элемента и постепенной деградации почв.

Сочетание органических и минеральных удобрений в севообороте

Сочетание органических и минеральных удобрений – один из важнейших принципов правильной системы удобрения для различных севооборотов. В этом случае создаются наиболее благоприятные условия для повышения плодородия почвы и нормального питания растений. Питательные вещества легкорастворимых минеральных удобрений при правильной технике их внесения в почву действуют очень быстро, обеспечивая растение питанием с самого раннего периода его жизни, а элементы пищи из навоза и других органических удобрений обычно действуют медленно, снабжая растение пищей в более поздние сроки. Кроме того, органические удобрения уменьшают вредное действие высокой концентрации легкорастворимых минеральных удобрений.

При размещении удобрений в полях севооборота важно правильно сочетать применение органических и минеральных удобрений. Д. Н. Прянишников писал, что совместное внесение навоза и минеральных удобрений «…позволяет обильно снабдить растения усвояемой пищей в первых стадиях развития и дать в то же время в виде навоза резерв постоянно приходящих в действие питательных веществ», т.е. обеспечивает наилучшие условия питания растений в течение всего вегетационного периода. Кроме того, при внесении органических удобрений вместе с минеральными ослабляется отрицательное влияние физиологической кислотности и повышенной концентрации питательных веществ, особенно заметное при внесении высоких норм минеральных удобрений. Опыты показывают, что при совместном внесении половинных норм навоза и минеральных удобрений, как правило, получают более высокие прибавки урожая, чем при раздельном внесении полной нормы каждого из этих удобрений. Особенно эффективно совместное внесение навоза и минеральных удобрений на песчаных и супесчаных почвах, слабоокультуренных суглинистых дерново-подзолистых серых лесных почвах и выщелоченных черноземах.

Органических удобрений в хозяйстве обычно бывает недостаточно для всех полей севооборотов. Поэтому их прежде всего необходимо вносить совместно с минеральными удобрениями под овощные культуры, картофель, кормовые корнеплоды, силосные культуры, а из зерновых – в первую очередь под озимые культуры. Пропашные культуры дают более высокие прибавки урожая на каждую тонну внесенного навоза. Навоз, внесенный под пропашные и озимые, будет оказывать последействие на все остальные культуры севооборота, под которые непосредственно вносят только минеральные удобрения. При наличии в хозяйстве специализированных прифермских и овощных севооборотов их обеспечивают органическими удобрениями в первую очередь и в больших количествах.

Средние нормы навоза в Нечерноземной зоне обычно 30–40 т на 1 га (в кормовых и овощных севооборотах до 60–80 т на 1 га), а в южных районах 20–30 т на 1 га.

К навозу на всех почвах, в том числе на черноземах, в первую очередь необходимо добавлять азотные удобрения. На дерново-подзолистых суглинистых почвах наряду с азотными на фоне навоза эффективны фосфорные, а на супесчаных – калийные удобрения.

Комбинированная система удобрения, при которой сочетается применение органических и минеральных удобрений, является наиболее распространенной. В связи с созданием крупных животноводческих комплексов большое внимание уделяется разработке системы удобрения в кормовых севооборотах с максимальным насыщением бесподстилочным навозом, которая, однако, обязательно должна включать корректировку соотношения питательных веществ с помощью минеральных удобрений.

В то же время значительная удаленность полей отдельных севооборотов от ферм или ограниченное количество органических удобрений в хозяйстве обусловливает существование безнавозной системы удобрения, основанной на применении только минеральных туков. В этом случае для пополнения запаса органического вещества в почве целесообразны посев промежуточных культур на зеленое удобрение и запашка соломы.

Система удобрения в севообороте это план распределения удобрений по полям севооборота на всю его ротацию. Согласно этой системе на каждый год составляется план применения удобрений в севообороте.

При непрерывном росте плодородия почвы система удобрений должна обеспечить получение высоких урожаев. Из этого следует, что удобрения, которые вносят должны создать бездефицитный баланс основных элементов питания и гумуса.

Для разработки системы применения удобрений учитываются почвенно-климатические условия. На выщелоченных черноземах наиболее сильно проявляется действие азотных удобрений. Снижение эффективности азотных удобрений отличается также на почвах, бедных фосфором и калием.

Распределение удобрений действующего вещества в% по приемам использования – под основную обработку – 69%, под припосевную обработку 6,7%, под подкормки – 24,3%.

В среднем на гектар пашни севооборота планируется действующего вещества N – 63,3; Р2О5 – 66,7; К2О – 45, навоза – 7,5 т.

Экологические функции агрохимии

Экологическая агрохимия – это наука о расширенном, постоянно увеличивающемся круговороте веществ в агроценозах, изучающая на элементарном, молекулярном, клеточном, организменном, популяционном и биосферном уровнях химические взаимодействия растений с почвой и окружающей средой в целом.

Экологические функции агрохимии:

организовать внесение химических элементов в почву, определяемое точными расчетами, позволяющими максимально повысить их использование растениями, увеличивающими продуктивность растений, снижающими потери питательных элементов и загрязнение ими окружающей среды, а также улучшающими саму почву и повышающими ее плодородие;

выдавать рекомендации по оптимизации круговорота химических элементов в сельскохозяйственных угодьях и естественных биоценозах, способствующие постоянному улучшению окружающей среды;

осуществлять разработку методов определения параметров питания растений при добавлении в среду одних химических элементов и переводе в неусвояемые формы других с целью получения сельскохозяйственной продукции заданного элементного состава с учетом закона о генетически закрепленных коэффициентах использования поступивших в организм элементов питания;

изучать регуляторные функции микроэлементов и их роль в реализации адаптивных свойств растений, механизмов поступления элементов в растения и их влияние на проницаемость клеточных мембран как важнейшего фактора формирования качества биомассы растений;

организовать постоянный территориально развитый мониторинг содержания всех элементов в удобрениях, почве, воздухе, поливной и питьевой воде, растениях и животных. Обеспечить дальнейшее получение знаний по элементному составу диеты человека с учетом наследственности, мест проживания и возрастных особенностей людей;

постоянно проводить изучение причинно-следственных связей между изменениями внешней среды и возникающими в растениях явлениями, с тем чтобы своевременно реагировать на любые нежелательные изменения в биохимических и физиологических процессах у растений, ведущие к нарушению качества продукции. Фиксировать возникающие сдвиги в интенсивности отдельных биохимических реакций и физиологических процессов и изменение ряда процессов обмена и, как следствие, изменение количества и качества продукции, получаемой от данного вида;

осуществлять определение оптимумов элементного состава различных сельскохозяйственных, лекарственных и интрадуцируемых растений в биогеохимических провинциях, организацию территориального размещения культурных растений в соответствии с картой биогеохимического районирования и имеющимися ресурсами содержания элементов;

проводить выявление искусственных потоков элементов за счет перемещения посевного материала и пищевых продуктов по территории стран и континентов, оценку их размеров и сравнение с мощностью естественных биогеохимических миграций элементов, оценку влияния промышленности и другой хозяйственной и бытовой деятельности человека на изменение элементного состава сельскохозяйственных объектов в регионах, субрегионах и провинциях;

регулировать с использованием естественной экологической обстановки целенаправленную корректировку элементного состава сельскохозяйственной продукции до оптимальных значений.



biofile.ru

Анализ почв и агрохимический анализ

Содержание

1. Введение. Агрономическая химия

2. Агрономический анализ

А) Анализ почв

1)Особенности почвы, как объекта анализа

2)Система показателей хим. состава почв

3)Принципы определения и интерпретации

4)Подготовка проб почв с исследуемого участка

5)Подготовка почвы к анализу

6)Получение водного раствора почв

7)Методы количественного анализа вытяжек

8)Методика определения. Кислотность почв

9)Определение рН, обменной кислотности и подвижного Al по Соколову

10)Методы определения приоритетных загрязняющих веществ

Б) Анализ растений

1)Отбор растительной пробы

2)Фиксирование растительных материалов

3)Размол и хранение

4)Определение различных веществ в растительных материалах

5)Определение общего азота по Кьельдалю

В) Анализ удобрений

1)Определение видов и форм некоторых минеральных удобрений по качественным реакциям

2)Определение в удобрениях содержания аммиачного азота методом открытого кипячения

Заключение

Список цитируемой литературы

1 ВВЕДЕНИЕ. АГРОНОМИЧЕСКАЯ ХИМИЯ

Агрономическая химия изучает гл. обр. вопросы азотного и минерального питания с.-х. растений с целью повышения урожая и улучшения продукции. Таким образом, а. х. исследует состав с.-х. растений, почвы, удобрений и процессы их взаимного влияния. Равным образом она изучает процессы приготовления удобрений и вещества, употребляемые для борьбы с вредителями, а также разрабатывает методы хим. анализа агрономических объектов: почвы, растений и продуктов, из них получаемых, и пр. Особенно значимы микробиологические процессы почвы. В этой области а. х. соприкасается с почвоведением и общим земледелием. С другой стороны, а. х. опирается на физиологию растений и с ней соприкасается, поскольку а. х. занимается изучением процессов, происходящих при прорастании, питании, созревании семян и пр., и пользуется методами водных, песчаных и почвенных культур. При своих исследованиях агрономы-химики, пользуясь главным образом химическими методами, из которых в последнее время особенно широко применяются физико-химические, в то же время должны владеть методикой искусственных культур и бактериологическими методами исследования. Вследствие сложности и многообразия задач а. х., некоторые группы вопросов, входивших ранее в а. х., выделились в самостоятельные дисциплины. Это относится к химии, изучающей химический состав растений, главным образом с.-х. и технических, а также к биологической химии и биологической физике, изучающим процессы живой клетки.

2 АГРОНОМИЧЕСКИЙ АНАЛИЗ

Агрономическийанализ: 1) почвы, 2) растительных веществ, 3) удобрений. А. а. обслуживает опытные с.-х. станции и лаборатории при выработке научных оснований животноводства и растениеводства, контролирует с.-х. производство и переработку продуктов с.-х. Каждый отдел а. а. имеет ряд отдельных методов определения.

I. По анализу почв.

А) Методы валового анализа почвы:

1) определение гигроскопической влаги,

2) общего содержания минеральных веществ,

3) углекислоты,

4) карбонатов,

5) перегноя,

6) азота,

7) химически связанной воды,

8) различные валовые определения минеральной части почвы после разложения почвы фтористоводородной кислотой или сплавлением с углекислыми щелочами.

Б) Анализ солянокислой вытяжки.

В) Анализ водной вытяжки.

II. По анализу растительных веществ :

1) определение гигроскопической влажности,

2) золы,

3) сырого жира,

4) нечистой клетчатки,

5) чистой клетчатки и сопутствующих ей лигнина и кутина,

6) пентозанов,

7) крахмала,

8) общего количества безазотных экстрактивных веществ,

9) растворимых углеводов,

10) тростникового сахара,

11) общего количества азота,

12) белковых веществ — по содержанию белкового азота,

13) азота небелковых веществ:

а) свободного аммиака,

б) амидов кислот (аспарагина и глютамина),

в) аминокислот,

14) нитратного азота. Кроме того, определяются иногда органические вещества растений, а также все минеральные составные части золы растительных веществ.

III. По анализу удобрений детально разработаны методы анализа:

1) фосфорнокислых удобрений,

2) азотных,

3) калийных

4) известковых.

А) Анализ почв

1) Особенности почвы как объекта химического исследования и

показатели химического состояния почв

Почва — сложный объект исследования. Сложность исследования химического состояния почв обусловлена особенностями их химических свойств и связана с необходимостью получения информации, адекватно отражающей свойства почв и обеспечивающей наиболее рациональное решение, как теоретических вопросов почвоведения, так и вопросов практического использования почв. Для количественного описания химического состояния почв используют широкий набор показателей. В него входят показатели, определяемые при анализе практически любых объектов и разработанные специально для исследования почв (обменная и гидролитическая кислотность, показатели группового и фракционного состава гумуса, степень насыщенности почв основаниями и др.)

Особенностями почвы как химической системы является гетерогенность, полихимизм, дисперсность, неоднородность, изменение и динамика свойств, буферность, а так же необходимость оптимизации свойств почвы.

Полихимизм почв . В почвах один и тот же химический элемент может входить в состав разнообразных соединений: легкорастворимых солей, сложных алюмосиликатов, органоминеральных веществ. Эти компоненты обладают разными свойствами, от которых, в частности, зависит способность химического элемента переходить из твердых фаз почвы в жидкую, мигрировать в профиле почвы и в ландшафте, потребляться растениями и т.п. Поэтому в химическом анализе почв определяют не только общее содержание химических элементов, но и показатели, характеризующие состав и содержание индивидуальных химических соединений или групп соединений, обладающих близкими свойствами.

Гетерогенность почв. В составе почвы выделяют твердую, жидкую, газовую фазы. При исследовании химического состояния почвы и отдельных ее компонентов определяют показатели, характеризующие не только почву в целом, но и ее отдельные фазы. Разработаны математические модели, позволяющие оценить взаимосвязь уровней парциального давления диоксида углерода в почвенном воздухе, рН, карбонатной щелочности и концентрации кальция в почвенном растворе.

Полидисперсность почв. Твердые фазы почвы состоят из частиц разного размера от крупинок песка до коллоидных частиц диаметром в несколько микрометров. Они неодинаковы по составу и обладают разными свойствами. При специальных исследованиях генезиса почв определяют показатели химического состава и других свойств отдельных гранулометрических фракций. С дисперсностью почв связана их способность к ионному обмену, которая в свою очередь характеризуется специфическим набором показателей — емкостью катионного и анионного обмена, составом обменных катионов и пр. От уровней этих показателей зависят многие химические и физические свойства почв.

Кислотно-основные и окислительно-восстановительные свойства почв. В состав почв входят компоненты, проявляющие свойствакислот и оснований, окислителей и восстановителей. Прирешении разнообразных теоретических и прикладных проблемпочвоведения, агрохимии, мелиорации определяют показатели,характеризующие кислотность и щелочность почв, их окислительно-восстановительное состояние.

Неоднородность, вариабельность, динамика, буферность химических свойств почв. Свойства почв неодинаковы даже в пределаходного и того же генетического горизонта. При исследованиипроцессов формирования почвенного профиля оцениваютхимические свойства отдельных элементов организации почвенноймассы.Свойства почв варьируют в пространстве, изменяются вовремени и в то же время почвы обладают способностьюпротивостоять изменению своих свойств, т. е. проявляют буферность.Разработаны показатели и способы характеристики вариабельности,динамики, буферности свойств почв.

Изменение свойств почв. В почвах непрерывно протекают разнообразные процессы, которые приводят к изменению химических свойств почв. Практическое применение находят показатели, характеризующие направление, степень выраженности, скорости протекающих в почвах процессов; исследуются динамика изменения свойств почв и их режимы. Разнокачественностъ состава почв. Разные типы и даже виды и разновидности почв могут иметь столь разные свойства, что для их химической характеристики используют не только разные аналитические приемы, но и разные наборы показателей. Так, в подзолистых, дерново-подзолистых, серых лесных почвах, определяют рН водных и солевых суспензий, обменную и гидролитическую кислотность, обменные основания вытесняют из почв водными растворами солей. При анализе засоленных почв определяют рН только водных суспензий, а вместо показателей кислотности — общую, карбонатную и другие виды щелочности. Перечисленные особенности почв во многом обусловливают принципиальные основы методов исследования химического состояния почв, номенклатуру и классификацию показателей химических свойств почв и химических почвенных процессов.

2) Система показателей химического состояния почв

Группа 1 . Показатели свойств почв и почвенных компонентов

Подгруппы:

1. Показатели состава почв и почвенных компонентов;

2. Показатели подвижности химических элементов в почвах;

3. Показатели кислотно-основных свойств почв;

4. Показатели ионообменных и коллоидно-химических свойств почв;

5. Показатели окислительно-восстановительных свойств почв;

6. Показатели каталитических свойств почв;

Группа 2 . Показатели химических почвенных процессов

Подгруппы:

1. Показатели направления и степени выраженности процесса;

mirznanii.com

агрохимический анализ - это... Что такое агрохимический анализ?

 агрохимический анализ

агрохими́ческий ана́лиз, определение лабораторными методами химического состава растений, кормов, почвы, удобрений, пестицидов, качества сельскохозяйственных продуктов. А. а. проводят агрохимические лаборатории. При анализе растений определяют содержание в них макро- и микроэлементов, органических соединений (белки, жиры, углеводы и др.), характеризующих качество растительных продуктов и кормов. Например, в корнях сахарной свёклы определяют содержание сахара, в клубнях картофеля — крахмала, в семенах подсолнечника — жира, в зерне — белка. В удобрениях устанавливают количество и форму питательных веществ, кислотность и щёлочность, в известковых удобрениях — содержание кальция и магния, в навозе — азота, фосфора, калия, микроэлементов, влаги; в торфе — влажность, зольность, кислотность, степень разложения. В А. а. используют различные методы — озоления, колориметрический, флуоресцентный, нейтронную активацию и др.; всё шире применяют спектрофотометрию, пламенную фотометрию, хроматографию, радиоактивные изотопы. См. также Кормов анализ и Почвы анализ.

Сельское хозяйство. Большой энциклопедический словарь. - М.: Большая Российская энциклопедия. В. К. Месяц (главный редактор) и др. . 1998.

  • агрохимическая лаборатория
  • агрохимическое обслуживание

Смотреть что такое "агрохимический анализ" в других словарях:

  • Агрохимический анализ —         определение лабораторными методами химического состава растений, кормов растительного происхождения (см. Кормов анализ), почвы (см. Почвы анализ), удобрений, пестицидов (ядохимикатов). А. а. проводят агрохимические лаборатории (См.… …   Большая советская энциклопедия

  • АГРОХИМИЧЕСКИЙ АНАЛИЗ — определение лабораторными методами хим. состава р ний, кормов, почвы, удобрений, пестицидов, качества с. х. продуктов. А. а. проводят агрохим. лаборатории. При анализе р ний определяют содержание в них макро и микроэлементов, органич. соединений… …   Сельско-хозяйственный энциклопедический словарь

  • агрохимический анализ торфа — Определение содержания химических элементов в торфе. [ГОСТ 21123 85] Тематики торф Обобщающие термины поиски и разведка торфяных месторождений EN agrochemical analysis of peat DE agrochemische Torfanalyse …   Справочник технического переводчика

  • Агрохимический анализ торфа — 96. Агрохимический анализ торфа Определение содержания химических элементов в торфе Источник: ГОСТ 21123 85: Торф. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 21123-85: Торф. Термины и определения — Терминология ГОСТ 21123 85: Торф. Термины и определения оригинал документа: 96. Агрохимический анализ торфа Определение содержания химических элементов в торфе Определения термина из разных документов: Агрохимический анализ торфа 94.… …   Словарь-справочник терминов нормативно-технической документации

  • Агрохимия — I Агрохимия         агрономическая химия, наука, изучающая приёмы воздействия на химические и биохимические процессы, протекающие в почве и в растениях, минеральное питание растений, применение удобрений и средств химической мелиорации почв с… …   Большая советская энциклопедия

  • Агрохимия — I Агрохимия         агрономическая химия, наука, изучающая приёмы воздействия на химические и биохимические процессы, протекающие в почве и в растениях, минеральное питание растений, применение удобрений и средств химической мелиорации почв с… …   Большая советская энциклопедия

  • Агрономия — (от Агро... и греческого nómos закон)         буквально наука о законах полеводства, в широком смысле научная основа с. х. производства, совокупность знаний о всех отраслях сельского хозяйства. С развитием теории и практики с. х. производства из… …   Большая советская энциклопедия

  • Картограмма агрохимическая —         карта, показывающая степень обеспеченности почвы усвояемыми для растений питательными элементами фосфором, калием, азотом, магнием, микроэлементами, или потребность почвы в известковании и гипсовании. Подразделяются на крупномасштабные,… …   Большая советская энциклопедия

  • АГРОХИМИЯ — агрономическая химия, наука о минер. питании р ний, применении удобрений и средств хим. мелиорации почвы, хим. процессах в почве и растениях; является науч. основой химизации сельского хозяйства. Задача А. изучение состава и свойств видов и форм… …   Сельско-хозяйственный энциклопедический словарь

selskoe_hozyaistvo.academic.ru

Б) Анализ растений. Анализ почв и агрохимический анализ

Похожие главы из других работ:

Биологическая роль азота

3. АЗОТ В ЖИЗНИ РАСТЕНИЙ

Без кислорода, углекислого газа, света, воды растению не обойтись. Растение берет из окружающей среды также и минеральные соли. Многие химические элементы таблицы Д.И. Менделеева входят в состав живого вещества растения...

Биологически активные органические соединения, применяемые в сельском хозяйстве

IV. Регуляторы роста растений.

1) Стимуляторы - вещества, непосредственно стимуллирующие рост семян и растений; 2) Дефолианты - вещества, вызывающие опадание листьев; 3) Десиканты - средства для удаления лишних цветов и завязей; 4) Ретарданты - вещества...

Биологически активные органические соединения, применяемые в сельском хозяйстве

5. Регуляторы роста растений

Многие органические соединения в незначительной степени и по разным причинам оказывают благоприятное влияние на рост растений...

Изучение свойств природных индикаторов, содержащихся в растениях

5. Роль антоцианов в жизни растений

Антоцианы содержатся почти во всех растительных тканях в самых разных частях растений: в лепестках, плодах, листьях. Они обычно окрашивают цветки и плоды в фиолетовый цвет...

Инновационный путь развития технологии создания новых лекарственных средств

4. Анализ примеров

Анализ приведенных примеров позволяет предложить следующую схему использования компьютерного моделирования в создании новых лекарственных препаратов: 1) Анализ литературы по фармацевтической химии и синтезу лекарственных препаратов...

Исследование кинетики реакции хлорирования бензола

Анализ коэффициентов

Производят оценку точности определения коэффициентов и анализ их значимости. Дисперсия коэффициентов: Sbj2= Cji Sy2 где Сji - диагональные элементы ковариационной матрицы...

Качественный и количественный анализ образца сплава

1. Качественный анализ

Стружка магнитится, следовательно, в сплаве находится железо. В HCl при нагревании сплав растворяется не полностью, остаются частички сплава. При добавлении HNO3 сплав растворяется, но на дне колбы остается мелкий черный кристаллический осадок...

Магнитопласты

1.Информационный анализ

Наполнение является одним из наиболее распространённых способов физического модифицирования полимеров с целью придания им специфических свойств (теплостойкости, механической прочности, сопротивления усталости, уменьшения усадки...

Методы качественного и количественного анализа. Методика определения катиона Сu2+

1. Качественный анализ

Анализируемая проба в большинстве случаев содержит несколько компонентов в различных соотношениях. Для разделения и концентрирования компонентов анализируемой смеси используют методы осаждения, соосаждения, экстракции, хроматографии...

Производство бутадиена-1,3

5 Анализ ХТС

...

Производство серной кислоты

8. Термодинамический анализ

Расчет теплового эффекта реакции окисления SO2 в SO3: 2SO2 + O2 = 2 SO3 кДж Q=-?Н=196,6 кДж Реакция экзотермическая - протекает с выделением тепла. ?S= ?G=?H-T?S=-196,6-298*17,66=-5459,28 Энергия Гиббса значительно меньше нуля. Это значит...

Синтез и анализ ХТС в производстве ацетона

5. Анализ ХТС

Реакционная масса, полученная в результате разложения гидроперекиси изопропилбензола, представляет собой довольно сложную смесь. Кроме фенола и ацетона, она содержит диметилфенилкарбинол, ацетофенон, ?-метилстирол, окись мезитила...

Синтез и анализ ХТС в производстве бензина

5. Анализ ХТС

...

Токсическое влияние таллия

II. Воздействие на организм животных и растений

Восемьдесят первый элемент постоянно присутствует в тканях растений, животных и человека. В почвах в среднем содержится 10-5 % таллия, морская вода менее богата этим металлом -- всего 10-9 %, а вот в живых организмах таллия гораздо больше -- 4*10-5 %...

Хроматографический анализ

2. Хроматографический анализ

В широком смысле слова хроматография - это разделение двух- и многокомпонентных смесей газов...

him.bobrodobro.ru

Методы анализа растений агрохимические - это... Что такое Методы анализа растений агрохимические?

 Методы анализа растений агрохимические совокупность методов анализа химического состава растений, позволяющая судить о количественных и качественных изменениях содержания в растениях отдельных элементов питания, об использовании растениями питательных веществ п. и удобрения, о скорости и последовательности поступления элементов питания в растения в течение вегетации, а также о качестве с.-х. продукции.

Толковый словарь по почвоведению. — М.: Наука. Под редакцией А.А. Роде. 1975.

  • Метод флотационный
  • Методы потенциометрические

Смотреть что такое "Методы анализа растений агрохимические" в других словарях:

  • Диагностика питания растений —         определение степени обеспеченности растений питательными веществами в период их вегетации. Д. п. р. позволяет установить недостаток того или иного питательного элемента в растении и своевременно проводить подкормку. Наиболее… …   Большая советская энциклопедия

  • СССР. Естественные науки —         Математика          Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… …   Большая советская энциклопедия

  • Агрохимия — Агрономическая химия (Агрохимия)  наука об оптимизации питания растений, применения удобрений и плодородия почвы с учётом биоклиматического потенциала для получения высокого урожая и качественной продукции сельского хозяйства, прикладная… …   Википедия

  • Агрохимический анализ —         определение лабораторными методами химического состава растений, кормов растительного происхождения (см. Кормов анализ), почвы (см. Почвы анализ), удобрений, пестицидов (ядохимикатов). А. а. проводят агрохимические лаборатории (См.… …   Большая советская энциклопедия

  • Казахская Советская Социалистическая Республика — (Казак Советтик Социалистик Республикасы)         Казахстан (Казакстан).          I. Общие сведения          Казахская ССР образована первоначально как Киргизская АССР в составе РСФСР 26 августа 1920; 5 декабря 1936 АССР была преобразована в… …   Большая советская энциклопедия

  • Цыганов, Александр Риммович — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Александр Риммович Цыганов  российский и белорусский химик, агрохимик, агроэколог, историк высшего аграрного …   Википедия

pochvovedenie.academic.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта