Цветовая температура светодиодных ламп или 2700К, 4000К, 6500К какой это цвет? 4000К для растений
Цветовая температура светодиодных ламп или 2700К, 4000К, 6500К какой это цвет?
В вашей квартире, доме, офисе или продуктовом супермаркете через дорогу установлены лампы и устройства освещения.
И от того какую цветовую температуру они имеют. Зависит ваше восприятие объектов и даже настроение.
Давайте же разберемся в этих цифровых значениях.
2700К - в народе звучит как теплое свечение или теплый белый.
4000К - 4200К это естественно белый, хотя многие считают его холодным белым или холодным свечением, хотя данная температура наиболее приближена к утреннему солнцу и солнцу в обеденное время. :).
5500К - 6000К яркий белый или близкий к дневному свету.
Рис.1
Рис.2
В интерьер и экстерьере используют разные типы ламп исходя из задач, условий и личный предпочтений человека.
В классическом дизайне интерьера в основном используют теплый или теплый белый свет(2700К) для этих нужд идеально подойдут светодиодные лампы. В графе цветовая температура поставьте галочку "теплое свечение".
Для быстро развивающего мира все больше подходит температура свечение в 4000К-4200К, так в Hi-tech дизайн-интерьерах используют естественно белый свет.
И для этих целей у вас есть отличный выбор светодиодных ламп, галогенных ламп и энергосберегающих ламп. Перейдя по ссылкам в графе цветовая температура выберите необходимое свечение. Для офисов, конференц-залов, лабораториях и для других высокоточных работ выполняющихся в помещениях используют яркий белый от 6000К и выше.
При таком свечение мозг и глаза наиболее продуктивны и эффективны.
Рис.3
Видео про цветовую температуру.
Что такое Цветовая температура? from Elektrostandard.net on Vimeo.
elektrostandard.net
Свет для выращивания растений. Обзор типов ламп
Свет для выращивания растений. Обзор типов ламп. Если производитель, садовод или просто гровер - аматер не имеет возможности выращивать свой любимый цветок или растение в саду на открытом воздухе, или просто не имеет времени на поиск подходящего места для наружного роста, существует еще один способ как вырастить свой собственный, хороший урожай, относительно легко, и не выходя из дома.
Речь идет о так называемом закрытом культивировании. Это искусственное имитирование природы и ее естественного поведения. Но с одной большой разницей. В природе, производитель ограничивается различными внешними факторами, такими, как плохая погода, дикие животные, воры и завистливые соседи, которые постоянно заинтересованы в таинственных растениях, которые растут за забором. В домашней обстановке не предпринимаются никакие действия, которые могли бы нанести вред растениям. Производитель имеет возможность проверить свои навыки и искусственно стимулировать условия выращивания в целях создания более красивых и более продуктивных растений.
Основным условием для того, чтобы начать выращивать растения, является необходимое количество солнечного света. Это излучение может быть смоделировано искусственным освещением, которое дает подобный солнцу спектр света. При искусственном освещении садовод определяет, какой спектр света для растения в конкретный период времени будет наиболее подходящим.
Для роста и цветения растений подходят три типа освещения: лампы высокого напряжения, люминесцентные лампы, LED и плазменные лампы.
Растения не могут существовать без света, потому что свет является одним из основных факторов для их развития. Свет является источником энергии, который имеет важное значение для фотосинтеза.
Фотосинтез представляет собой совокупность этих процессов - поглощения, преобразования и использования энергии света с помощью квантовых различных реакций с участием превращения диоксида углерода в органические соединения. Другими словами, это процесс образования органических соединений на основе углекислого газа, воды, тепла и света, энергии.
Чтобы правильно выбрать освещение, необходимо ознакомиться со всеми видами ламп.
Газоразрядные лампы высокого напряжения (HID/High-intensity discharge lamps) классифицируются в зависимости от горелки и газа, содержащегося в них:
Ртутная газоразрядная лампа (MV/Mercury-Vapor lamps)
Ртутная газоразрядная лампа была разработана в качестве первой газоразрядной лампы в 1959 году. Ртутные лампы излучают свет в основном в синей и ультрафиолетовой невидимой части спектра. Эти лампы имеют низкий световой поток (около 65 лм / Вт). Такой свет по сравнению с металлогалогенными и натриевыми лампами (около 150 лм / Вт) для растениеводства считается слабым.
Металлогалогенные газоразрядные лампы (MH/Metal-Halide lamps)
Первые лампы MH были сконструированы где-то в начале 60- лет. Металлогалогенные лампы характеризуются "белым" цветом света, который, на первый взгляд отличается от, например, натриевых ламп. Металлогалогенные лампы имеют синий спектр света, а их цветовая температура составляет 6000 К и более. Синий спектр имеет положительное влияние на корневую систему растения, в результате чего способствует лучшему ветвлению и коротким междоузлиям. Растения под такой лампой ниже, но ветвистей. На стадии цветения, однако, такие лампы зачастую оказываются неподходящими.
Металлогалогенные лампы отлично подходят для использования при укоренении черенков и саженцев. Маленькие растения не тянутся к свету и с самого начала начинают хорошо ветвиться. Использовать этот тип ламп также рекомендуется для материнских растений, которые гарантируют больше побегов и быстрый рост растений.
Горелка внутри лампы имеет форму колбы. Колба заполнена смесью ртути, аргона и галогенидами металлов (например, соединений металлов с бромом или йодом).
Эти лампы имеют мощность 150 Вт, 250 Вт, 400 Вт, 600 Вт, 1000 Вт и имеют цветовую температуру 4000 К.
Натриевые газоразрядные лампы (HPS/High-Pressure Sodium lamps)
Натриевые лампы появились на рынке где-то в начале 70-х годов, и сегодня являются наиболее широко используемым типом освещения в мире для выращивания растений. Это главным образом потому, что они имеют самую высокую светоотдачу (около 150 лм / Вт), а также испускают FAR излучение наиболее подходящее для правильного фотосинтеза. Свет у HPS ламп имеет преимущественно красный спектр, который подходит для фазы цветения растения. Цветовая температура лампы изменяется в диапазоне от приблизительно от 2000 К до 2900 К и производит свет ярко-желтого цвета.
Горелка в натриевой лампе в основном из корунда.
Натриевые лампы производятся мощностью 70 Вт, 150 Вт, 250 Вт, 400 Вт, 600 Вт, 750 Вт и 1000 Вт, они могут быть использованы на стадии роста, при условии, что растения будет иметь больше междоузлий и, как правило, будет тянуться к свету.
Преимущества газоразрядных ламп по сравнению с другими источниками света действительно высоки. Эти лампы используются при выращивании в комнатах, а также в больших теплицах, предназначенных для коммерческого выращивания. К недостаткам можно отнести высокую рабочую температуру.
Вторым наиболее широко используемым источником света подходящим для выращивания растений являются линейные и компактные люминесцентные лампы, которые иногда также называют ресурсосберегающими, энергосберегающими, компактными люминесцентными и т.д.
Эти лампы имеют большое преимущество в том, что они не производят такого теплового излучения, как в случае HPS и MH ламп. Таким образом, их можно использовать для культивирования и в очень малом пространстве вблизи вершин растений, без опасения ожогов.
Использование люминесцентных ламп не определяется исключительно микро выращиванием. Производители освещают ими материнские растения, укорененные черенки и молодые саженцы. Но это еще не все. Благодаря своей разнообразной цветовой температуре, такие лампы могут быть использованы на всех этапах жизни растений.
Люминесцентные лампы относятся к категории ртутных ламп низкого давления и разделяются на компактные и линейные.
Люминесцентные лампы
Эти лампы широко используются с первых дней выращивания в закрытом помещении.
Флуоресцентные лампы, упоминаются, как люминесцентные лампы, имеют трубки, изготовленные из стекла и заполненные смесью паров ртути и аргона. В этих лампах светящийся разряд, испускает излучение главным образом в ультрафиолетовой части спектра. Это излучение обусловлено фосфором, который находится внутри трубы и производит свет в видимом спектре. На обоих концах флуоресцентных трубок размещены электроды, которые проводят электрический ток.
Люминесцентные лампы для выращивания обычно производятся с мощностью 18, 36 и 54 Вт, а их длина составляет 60 или 120 см.
Компактные люминесцентные лампы (CFL – Compact Fluorescent Lamps)
Если производитель ищет компактную люминесцентную лампу с достаточной мощностью и правильной цветовой температурой в обычном хозяйственном магазине, вероятно, поиск напрасен. Однако, этот недостаток был недавно решен производством более прочных компактных люминесцентных ламп, которые являются не только подходящими для выращивания, но и для группы производителей являются предпочтительнее других. Лампы наполнены малым количеством ртути и инертного газа, их можно приобрести только в специализированных магазинах.
Компактные люминесцентные лампы имеют в наличии следующие цветовые температуры:
2700 К - красный спектр света, пригодный для стадии цветения.
4000 К - двойной спектр света, для роста и цветения.
6400 K - синий спектр света, подходит для фазы роста.
14000 K - белый спектр света, подходит для укоренения черенков, саженцев и материнских растений.
Следует отметить, что при использовании комбинированных компактных люминесцентных ламп результаты будут ниже, а период жизни растения от посадки до урожая увеличится. Поэтому, рекомендуется использовать лампу, с синим спектром для роста, и с красным спектром для цветения.
CFL лампы, пригодные для выращивания, в настоящее время коммерчески доступны с мощностью 125 Вт, 200 Вт, 250 Вт.
Компактные люминесцентные лампы нужно менять чаще, чем линейные. Гарантированное время работы составляет около одного года в зависимости от времени использования. Затем интенсивность этих ламп достаточно быстро снижается.
На рынке также заняло достойное место LED освещение, однако, для некоторых LED представляет собой будущее в области растущих технологий, а для некоторых раздутые ожидания.
Осознание того, что в выращивании растений может быть использовано LED освещение(Light Emitting Diode) в настоящее время уже достаточно обширно. Однако лишь немногие люди знают, в чем преимущества и недостатки этого светодиодного варианта.
LED - электронный полупроводниковый прибор, который при прямом направлении тока, излучает световые лучи. С первый типом LED человечество познакомилось в 1962 году и с тех пор продолжается эволюция данного вида освещения. В настоящее время светодиоды имеют яркость 100 люмен на ватт, это достаточный показатель для культивирования. Конструкция LED представляет собой светодиодный чип (или комбинацию чипов) покрытый эпоксидной смолой с желаемыми оптическими свойствами. Некоторые производители также используют оптические свойства линз, чтобы усилить интенсивность света, сосредоточенного в одном месте. Наиболее распространенная мощность светодиодов, которые установлены в панели 1 и 3 Вт в некоторых странах доступны светодиоды с мощностью 6 Вт.
Светодиодные панели по сравнению с лампами HID имеют одну интересную особенность, они не выдают тепловое излучение, что является большим преимуществом для производителей, которые постоянно страдают от высокой температуры в комнате. К тому же, общее потребление лампой электроэнергии меньше.
LED полностью отличается от других источников света отсутствием нити накала вольфрама, который горит или падает с течением времени и отсутствием газообразных компонентов, что делает лампу более долговечной. Кроме того, в связи с тем, что светодиод имеет свой главный компонент (диод) скрытый под слоем эпоксидной смолы, становится нерушимым компонентом. Мнения о продолжительности жизни LED весьма разнообразны. В целом, однако, около 50000 часов работы.
Преимуществом LED панелей является комбинация диодов с разными цветовыми спектрами, благодаря которым такое освещение подходит для всех этапов жизни растений. Панели, оснащенные светодиодной подсветкой, имеют превосходную глубину. Возможно, из-за вышеупомянутой линзы, панель можно повесить над растениями, и достичь хорошего освещения нижних почек (в зависимости от типа и мощности на панели).
Однако такое освещение имеет и свои недостатки, например высокая стоимость, препятствует садоводам приобрести светодиодную панель. Многие производители любят экспериментировать и пробовать новые технологии, но из-за их высокой цены, им приходиться думать дважды, прежде чем сделать такую покупку.
Поскольку светодиодные панели изготавливаются в различных формах (круглые, квадратные, прямоугольные), они излучают свет только под определенным углом, поэтому довольно трудно достичь воздействия на всю площадь выращивания.
Одной из самых величайших новинок в свете растущих технологий является LEP (Light Emitting Plasma).
LEP также известна как плазма, сульфидная лампа, серная лампа сера и т.д. Некоторые производители также обозначают такую лампу как PLS (Plasma Light Systems). Несмотря на различную терминологию, этот один и тот же продукт, действие которого основано на микроволнах и сере.
Плазма самое большое новшество среди растущего света, она появилась на рынке в 1990 году. К сожалению, в том же году лампы были сняты с продажи в связи с коммерческим провалом, а позже вернулись на рынок.
Эта система освещения производит свет в очень широком диапазоне FAR (полезным для растений), близком к спектру солнца. Имитация солнечного излучения, первоначальное намерение практически всех производителей LEP.
Цветовая температура плазменной лампы LEP приблизительно 5600 К, что позволяет предположить, что она предназначена для фазы роста. Производитель рекомендует использовать этот свет для фазы роста и после перехода в стадию цветения стоит использовать HPS. Если вы решите питать растение плазменным светом и во время цветения, вы должны быть готовы к очень низкой урожайности, однако с высочайшим качеством. Отличные результаты, достигаются при использовании LEP в качестве освещения для материнских растений и черенков.
www.ya-fermer.ru
Как правильно выбрать хорошую лампу для досвечивания рассады
Рассада любых растений требует досвечивания. Выручают лампы, излучающие ультрафиолетовый свет. Они бывают индукционными, галогенными, натриевыми, а также светодиодными. По форме это трубы, ленты, прожекторы. Читайте, как выбрать правильную подсветку.
Правила выбора лампы с ультрафиолетовым излучением
Естественный солнечный свет важен для роста и развития растений. Без него будущая рассада становится бледной, вялой, восприимчивой к недугам и вредителям. Чтобы получить крепкую, здоровую рассаду, нужно вовремя восполнить дефицит освещения, выбрав соответствующую лампу. Их ассортимент велик, и прежде чем купить подходящий прибор, стоит учесть:
- потребности молодых ростков;
- эргономичность лампы в домашних условиях;
- возможность экономии и энергоэффективность.
Досвечивание очень важно для рассады и молодых растений
Полностью заменить солнце искусственной подсветкой невозможно. Задача огородника в этом случае – подобрать максимально близкий к естественному излучению цветовой спектр. В природе выделяют такую последовательность цветов:
- инфракрасный, не видимый человеком – имеет бактерицидные свойства, способствует развитию пышной зеленой массы;
- красный – оптимизирует выработку хлорофилла, стимулирует прорастание, цветение, развитие листвы;
- оранжевый – ускоряет процесс вызревания плодов;
- желтый и зеленый – важны как составляющие освещения, отражаются от листвы;
- голубой и синий – влияют на фотосинтез, развитие корней, благодаря им ростки не вытягиваются;
- ультрафиолетовый, неразличимый глазом человека – помогает бороться с болезнями, способствует развитию наземной части рассады.
Каждому из видимых человеку цветов соответствует своя температура, которая увеличивается по возрастающей. Минимальная – для красного, 1500 К, максимальная – для фиолетового, 8000 К. Для хорошего развития рассады нужен свет с температурой 1500 и 6000-7000 К. С этими показателями соотносятся красный и сине-голубой. В первые несколько недель для надежного укоренения ростков нужно больше синего, после пересадки требуется равное количество обоих цветов.
Внимание! Однозначно не рекомендуется брать для рассады традиционные лампы накаливания – те, которые чаще всего используются для освещения дома. 95% энергии в них трансформируется в тепло, что может привести к перегреву ростков, их уточнению, а также возникновению ожогов.
Характеристика галогенных, люминесцентных и индукционных ламп
Считается, что галогенные лампы — не лучший вариант для подсветки рассады. Они ярче ламп накаливания, но при этом меньше греются. Со временем у них снижается степень самоотдачи. При этом использование галогенных светильников оправдано в тех случаях, когда нужно добавить красного цвета – его температура здесь составляет 3000 К, т.е. вдвое больше обычного.
Люминесцентные лампы больше подходят для освещения рассады. Они экономичны, поскольку потребляют мало электричества, не нагревают воздух и дают при этом много света. Однако в их спектре практически отсутствует красный свет. Поэтому особенно нежелательно их использование при проращивании томатов, огурцов и цитрусов.
Люминесцентные лампы
В то же время много в люминесцентных источниках света синих и фиолетовых лучей, полезных для развития корней. Еще одно преимущество – можно выбрать лампочку с любым спектром: теплым, холодным или дневным. Каждый из них имеет свои особенности:
- Теплый – хорош в период цветения.
- Холодный – необходим в фазу вегетативного роста.
- Дневной – используется в любое время, иногда – на протяжении всего цикла выращивания рассады.
Совет. Для подсветки рассады существуют специальные фитолюминесцентные лампы, которые отличаются длительным сроком службы и экономичностью. Однако они излучают неестественный сиренево-розовый цвет, поэтому применение их в жилой комнате – например, на подоконнике – нежелательно.
Индукционные лампы также потребляют мало энергии, позволяя экономить на электричестве. При этом они имеют достаточно высокую светоотдачу. Наиболее совершенными считаются биспектральные светильники, излучающие и красный, и синий цвета. Эти лампы не мерцают и равномерно распределяют свет.
Плюсы и минусы натриевых ламп для рассады
Очень часто такие приборы освещения используются в тепличных хозяйствах. Они излучают красно-оранжевый свет, который благоприятно влияет на зрелые растения в стадии цветения и плодоношения. Натриевые лампы не раздражают зрение, поэтому их можно использовать и в домашних условиях. Но для этого следует выбирать лампу мощностью до 100 Вт.
Натриевая лампа
Дополнительные преимущества натриевых ламп:
- экономное потребление электроэнергии;
- эффективность применения как в теплицах, так и на небольших участках с рассадой;
- долгий срок службы.
К недостаткам относятся:
- относительная громоздкость;
- отсутствие синего цвета в спектре;
- сложное подключение;
- необходимость дополнительного использования регулирующего устройства.
Совет. Повысить энергоэффективность натриевой лампы можно, используя при подключении конденсатор.
Описание светодиодных ламп для растений
На сегодняшний день этот вид подсветки является, пожалуй, самым распространенным. Для человеческого глаза такое излучение кажется мрачным, но для растений его красно-синий спектр оптимален. Светодиодные LED лампы стоят дороже остальных, при этом они имеют ряд достоинств:
- Экономичность.
- Долговечность. Срок службы – до 50 тыс. ч.
- Легкость ремонта – пришедший в негодность светодиод можно заменить.
- Быстрое включение и свет без мерцания.
- Слабый нагрев – растения не получают ожоги.
- Возможность установки светодиодов различного спектра и мощности. Это позволяет максимально правильно подобрать излучение, необходимое рассаде в конкретный период. Например, если нужно добавить синего или красного цвета.
- Небольшие габариты.
Светодиодная лампа
Отдавать предпочтение конкретной модели стоит с учетом того, где будет расположено освещение, для рассады каких культур и на каком расстоянии от верхушек ростков. В зависимости от вида стеллажей и количества рассады можно выбрать светильник любой формы. В магазинах вы найдете такие их разновидности:
- Труба. Зачастую применяется на подоконнике или в длинных узких рядах.
- Таблетка (другое название – фитопанель). Выглядит как большой квадрат. Используется профессиональными агрономами для подсветки рассады на широких стеллажах.
- Одиночный светильник. Наиболее подходящий вариант для досвечивания небольшого количества ростков в домашних условиях.
- Прожектор. Охватывают более широкую площадь, если сравнивать с одиночными лампами. При этом эффективно работают на большом расстоянии от рассады.
- Лента. Она собирается в любом порядке. Обычно используется для самостоятельного изготовления подсветки своими руками.
Фитопанель
Советы по использованию агроламп
- Чем сильнее нагревается лампа, тем выше следует размещать ее над контейнерами с рассадой. Узнать температуру работающего прибора можно из описания его технических характеристик.
- В разные фазы развития растениям нужна различная подсветка. Например, сразу после посева нужно досвечивать будущую рассаду круглые сутки. В этот период полезен сине-голубой спектр. В дальнейшем нужно добавить красного цвета.
- Не забывайте про индивидуальный подход к каждой культуре – учитывайте теневыносливость растений. Средняя длина светового дня для ростков овощей составляет 12-13 ч. При этом помидорам требуется 14-16 ч, огурцам – 13-15 ч, белокочанной капусте – 16 ч, перцам – 9-10 ч.
- Эффективно освещать и при этом экономить электроэнергию помогают отражатели и световые экраны, а также рефлекторы. Их можно изготовить самостоятельно. Проще всего поставить на подоконник своеобразный щит белого цвета – например, из матового картона. Можно покрыть ее фольгой – наверняка всем известна ее отражающая способность.
Следите за поведением растений, чтобы вовремя подкорректировать положение лампы
Также обращайте внимание, как развиваются ростки под действием дополнительного искусственного освещения, и вовремя вносите коррективы:
- появление ожогов на листьях – признак низко расположенной фитолампы. Подвесьте ее выше;
- бледность листьев, чересчур вытянутые стебли – сигналы диаметрально противоположной проблемы: светильник висит слишком высоко/далеко. Опустите его, чтобы дать возможно рассаде набирать силу;
- стебли тянутся в сторону, становятся кривыми, деформируются – переусердствовали с боковым освещением. Расположите источник света сверху.
Вне зависимости от того, какую лампу вы решили выбрать, важно правильно ее использовать. Только в этом случае можно будет улучшить качество рассады и снизить количество слабых растений.
Как выбрать лампу для растений: видео
Лампа для досвечивания растений: фото
dachadizain.ru
Освещение для аквариума с живыми растениями
Освещение для аквариума
О общем и декоративном эффекте мы писали в прошлой статье об аквариумном освещении. Какие бывают типы освещения, и что лучше, а так же фотографии, как выглядят аквариумы под различным освещением.Здесь возвращаться к этим вопросам не будем, а будем описывать только освещение для растений.
Все советуют что угодно: поставьте лампы накаливания; поставьте только синие/красные/смешанные лампы; не имеет значение какие лампы вы поставите. И все скажут — да, у нас все растет, да так, что выбрасываем растения. Как ни звучит парадоксально, но все они отчасти правы. Как такое может быть? Да очень просто. Слово рост у них неизмеримо. Они не видят разницы, как под каким светом что растет. И потому, выращивая что-то в аквариуме под своим светом, считают данный вариант самым правильным. И доказывают его на всех форумах.Здесь мы опишем тонкости со светом. Разберем
Чем отличается аквариум с искусственными и живыми растениями
Аквариум без света минимум скучен.
Начнем с основного вопроса. Какая разница какое там освещение. Аквариум, он и в Африке аквариум. И что посадим, то в нем и будет.
Такой подход совсем не корректен. Мы должны разделить в аквариумы животных и растения. У них совсем разные способы питания, и нужны совсем другие условия для содержания. Если в аквариуме мы подразумеваем, что 100% будут животные, то у всех аквариумов создаются условия для содержания их (в большинстве случаев так, что бы Вы ходили постоянно в магазин за рыбкой и препаратами). Но системы для животных созданы.Для растений такие системы не создают. А зачем, ведь аквариум тогда вырастет в цене и его нужно будет дороже продавать. Так что стараются не расстраивать лишний раз покупателя. Ведь для растений так же нужно создать условия.
Что нужно аквариумным растениям
Начнем с ухода за растениями и создании им благоприятных условий. Как ни парадоксально, но без базовых знаний биологии невозможно правильно подобрать аквариумное освещение. Это на первый взгляд кажется, что все оно отдельно. Но давайте окунемся чуток в теорию.
И так, с биологии. Растения это живые организмы, которые посредством фотосинтеза способны превращать неорганические вещества в органические. Кажется все просто и банально. Но здесь раскрыто все, что нужно для растений. И так, фотосинтез требует определенный свет и СО2 (углекислый газ), ну и неорганические (и органические тоже) вещества. оно требует ВСЕ. И если чего-то растениям не дать, то не будет роста.
Как работает система. Допустим мы строим дом. Для дома нам нужен кирпич (микро/макро элементы в аквариуме), крыша (СО2) и двери с окнами (освещение). Давайте предположим, что Вы дали для стройки в аквариуме много много света (дверей и окон), но других материалов не привезли. Сможете ли Вы построить дом? Конечно же нет. Но вот большинство людей услышали звон, что аквариуму нужен свет для растений. И нужно 1 ватт на литр. И вот они пытаются добиться данного результата. Только вместо красивого травника они получают вечно зарастающее болото. Стенки зеленые, растения в водорослях. Потому, нельзя просто брать давать один элемент из конструктора, а убирать другие.
Я Вас запутал? Я в примерах распутаю позже ситуацию. Но без знания основ нельзя добиться красивого аквариума, а «выдергивание» из системы каких то знаний или элементов приводит до нарушения всего баланса в аквариуме. Потому, нужно подходить с головой.
Сколько нужно аквариумного света для растений
Для объяснения нужно дать ответ на вопрос зачем растениям свет? Он стимулирует деление клеток и процесс фотосинтеза. Правильно. Вот дали много света, и пошел рост растений. Но для роста одного света не достаточно. Им нужен и углекислый газ СО2, и микро и макро элементы для строения своих клеток. Вот давая только свет, оторвано от других параметров, мы превратим аквариум в зеленое болото. Потому, что бы не было такой ситуации, начните с малого.
Вот в данной схеме нельзя рассматривать отдельно свет для растений оторвано от других показателей. все должно быть сбалансировано.
Рекомендации которые можем дать, так это ориентировочно на высоту аквариума в 45 см ставить 1 ряд ламп на 10-15 см глубины аквариума. Это для аквариума с растениями вполне достаточно. Если увеличивать мощность освещения и более плотно ставить лампы, то без дополнительной подкормки растений Вам не обойтись.
Что еще влияет на мощность света? Главный параметр это высота. Чем выше аквариум, тем тяжелее пробиться свету ко дну, и тем меньше его будет поступать в нижние слои. Аквариум для растений рекомендуем до 60 см ставить. Рекомендованная высота 40-50 см. С данными аквариумами все просто, для них все рассчитано и нет подводных камней. Можно и выше делать 70 см., но там уже освещение подбирать нужно по опыту аквариумистов и просчитывать индивидуально. Общих правил здесь нет.
Сколько нужно ватт/литр для аквариума с растениями
Скажу сразу, что формула полный бред и ахинея. Нельзя измерять освещение ваттами. Это то же, что измерять быстроту копание траншее землекопами. Ну 1 метр траншеи нужен 1 землекоп, что бы выкопать траншею за 1 час. Не глупо? А каким инструментом пользуется землекоп, лопатой или экскаватором (какие лампы стоят, накаливания, или профессиональные), и какой у нас ров размером (какой размер аквариума).
Если есть сомнения, что все пишут правду, а мы одни такие умные, то можем сказать да мы такие. Не всегда толпа делает умно (можете посмотреть на вату в РФ. Там 90% разве умеют думать?). Пускай ответят: чем измеряется мощность освещения, ваттами или люменами; какой тип освещение на ваттах использовали, люминесцентную лампу, лампу накаливания, и были ли отражатели; пускай ответят, как меняется освещенность аквариума от его высоты.
Давайте сделаем короткое сравнение.
1. Аквариум 50*50*90 (последняя высота) на 275 литров. Что бы получить 1 ватт на литр мы можем поставить 6 ламп накаливания по 100 ватт, и даже получим больше показатель в 2 ватт/литр. Что будет расти в данном аквариуме? Валиснерия и роголистник. ВСЕ. Но мы ведь их условия выполнили, более того, перевыполнили в 2 раза.2. Аквариум 70*30*30 на 63 литра. Поставим 1 лампочку Т8 на 18 ватт. Результат 0,28 ватт/литр. Что можно в таком аквариуме выращивать? Да ВСЕ растения, которые живут в аквариуме. ВСЕ. Но формула в 4 раза нарушена.
Мы с уверенностью можем сказать, что формула ватт/литр для растений лишена абсолютно любого смысла. Она вообще не отображает реальности, и даже теоретически с логикой не дружит
Сколько должен гореть свет в аквариуме с растениями
Теперь нам предстоит вспомнить географию. Вообще, большинство знаний у нас есть из школы. Нам всего лишь нужно ими пользоваться для анализа. И так, у нас тропический аквариум, в котором растут тропические растения. Все банально. Но что такое тропики? Это территория которая включает экватор, на глобусе полоска внизу и вверху его. Как там горит освещение и сколько длиться день? Вот особенности тропиков есть то, что световой день там длиться 12 часов и точка. И летом, и зимой только 12 часов. Не 9, не 15, а 12. Других значений быть не может.
Из практики я делаю до 12 часов световой день.
Световой день в аквариуме с тропическими растениями должен длиться ровно 12 часов. Если аквариум большой, можно по очереди включать освещение, а не все сразу. Но длительность светового дня должна составлять 12 часов
Из теории, что будет, если пойти против природы и поставить им больший световой день. А случится, что водорпослям это будет УРА, нам добавляют порцию. А растения устают, и некоторые даже закрывают свою точку роста листьями. Мы так сразу определяем по данному признаку, что таймер выключен. Сразу закрыты точки роста у растений. После 12 часов растения прекращают процесс фотосинтеза. Это касается тропических растений, а не из наших водоемов.
Перерыв на обед. Мы делаем. Есть теория, что водоросли хуже растут, если создавать перерыв на час. Вполне возможно и так, но на практике мы не можем сказать, что данная функция работает. Второе, зачем мы это делаем, так мы увеличиваем срок службы лампы. При перерывах она медленней выгорает. Кажется, нам выгодней более часто продавать им освещение. Но у нас привычка — делать как для себя. Вот и распространяется данная привычка на сервисное обслуживание аквариумов. Беречь лампы и продливать им срок службы.
Лед освещение для аквариумов с растениями
Вбейте в гугл фразу и поищите картинки «аквариум с живыми растениями LED» Результат — почти нет аквариумов с растениями. Будут ли расти растения под LED освещением? Смотря что Вы подразумеваете под словом рост. Японцы даже промышленно салат выращивали под данным освещением. Но там и светодиод совсем другой. Будет ли у Вас расти? Не знаю, и точно хуже, чем под другими источниками света. У светодиодного освещения есть свои преимущества, но технология реально до конца не работает. Мы же со своей стороны ждем, пока другие ее доработают, сделают нормальный продукт, и мы потом запустим его в производство. Сейчас нормальный продукт стоит от 0,5 до 1 у.е. за 1 ватт источника. И это без блоков питания и цоколей. Для сравнения простые лампы для растений 0,12 у.е/1 ватт, а аквастар стоит 0,38 у.е. на ватт. По сравнению минимально с 1 у.е. на ватт становится совсем не интересным использование данной технологии.
Теперь о результате.Это наш аквариум. Почти те же условия, что в аквариуме внизу под светодиодами. Растения специально на дне растут и не тянем их высь. При том что мало света для них, они растут достаточно плотно, что бы не видно было дна.
Пример травника под светодиодами в аквариум с дискусами и подачей СО2
Старт
Ну и вот результат. Травка, что растет у нас и «захватила» все свободное пространство да так, что дна за ней не видно, здесь пропала сагитария. Полностью. Амбулия вытянулась, т.к. не хватает синего спектра. Сказать, что здесь растения растут можно. Но и с другой стороны можно вполне сказать, что это совсем не тот рост, какой должен быть. Нас такой бы рост не устроил даже на сервисе, если там есть растения и СО2.Есть ли смысл под светодиодами выращивать растения? Мы на данном этапе развития технологий светодиодного освещения (2016 год) не увидели. Никто промышленно данный тип освещения не использует. Ну а продавцам нужно «втюхивать»дорогой товар, вот они и рекомендуют. Не разбираясь в технических параметрах, а пересказывая рекламные буклетики, где технические данные сильно «подтасованы» и не отвечают действительности.
Как растут под лампами накаливания и энергосберегающими лампами
Ну что же. Под лампами накалыивания растут самые простые растения. Они вытягиваются, междужилья становятся большими, листы маленькими. Но все растет. Могут даже криптокарины вырастать под данным освещением.
Думаю данная фотография говорит сама за себя. Кртптокарина, валиснерия и роголистник. Весь стандартный набор аквариума времен СССР. Время пошло, аквариум остался тот же. Автор считает что у него 0,5 ватт/литр и все у него растет. Растет то растет, но вот только это трудно назвать травником . Ведь ничего другого расти не будет, и плюс достаточно сильно аквариумный свет «режет глаз»
Неужели им нет применения в травниках?
Достаточно сомнительный тип для использования в аквариуме. Лампы греются, и потому считаем плохим вариантом. Массово его используем в аквариумах с черепахами. Им данное освещение оптимальное. И со сверчками так же используем, но не в декоративных аквариумах.
Использовать энергосберегающие лампы и лампы накаливания для роста растений весьма сомнительное занятие, и даже если добьетесь роста некоторых видов растений, то затраты электроэнергии на 1 выращенный куст будут в разы больше, чем при использовании других технологий
Растут ли растения под энергосберегающими лампами? Не могу сказать, т.к. их не проверял на практике. Можно сказать, что результат будет приближен к предыдущему варианту.
Металогалогенные и другие типы освещения
Очень редко используем данное освещение и в ограниченных вариантах. Используем только в очень больших аквариумах, у которых нет крышки. Я не буду расписывать каждый отдельный тип промышленного освещения в аквариумах, а подведу короткий анализ.
Проблема, почему они широко не используются в аквариумах:
- они греются. Если Т5 лампа греется к 70 градусам, и плавит крышку, то рабочая температура данных ламп 300-500 градусов. Капля воды, которая попадет на колбу лампу моментально ее взрывает. Поверхность воды будет всегда горячая, будет повышенное испарение. Случайное прикосновение к лампе вызывает ожоги
- экономически они не являются более выгодны чем Т8 лампы ни по стоимости запуска, ни по затратам на дальнейшее обслуживание. Нельзя купить данные лампы (кроме ламп по типу накаливания), что бы просто вставить их в светильник. Там нужны дросселя и стартеры. И они далеко не дешевые.
- Слишком мощные. Минимально, с чего начинается лампа это 100 Вт, а для некоторых типов 150 Вт. Нужно ли столько аквариуму однотипного освещения? а если нужны различные типы спектров подобрать? А сумарную мощность для аквариума в 80 Вт нужно?
Да, мы и используем данный тип освещения для аквариумов с растениями. Но только нужно подходить с головой. Аквариум больше 70 см, в верху нет крышки, и лампа на некотором расстоянии от воды. Они дороже стоят, но даже заставив все пространство люминесцентными лампами мы не получим достаточного количества освещения. Если взять мощность освещения на площадь, то использовать нужно именно их. Они занимают минимально площади, и на нее выдают максимально возможное мощное освещение.
Данный тип освещения не для любительских аквариумов.
Почему нельзя копировать тепличное хозяйство для промышленного разведения растений
Мы все стараемся «скопировать» чужой опыт и перенести его к себе. В этом мы видим положительные стороны, когда со смежных наук мы что-то новое вносим в аквариумы и пытаемся улучшить аквариумистику. Мы тоже таким занимаемся. И конечно же была идея. Вон в теплицах используют лампы Gro-lux. Они дешевле получаются, они выдают больше люмен/ватт.
Но реальность оказалась другой.
Почему в теплицах используют именно данный тип ламп, тем более под цоколь Е 40 как в светильниках на улице. В теплицах оправданно. Они греются, но для теплиц зимой это не является проблемой, а летом их все равно не используют. Так что эта для них не проблема, а бонус. Второе, к растениям попадает и солнечный свет, и если все заставить по площади люминесцентными лампами, то солнечный свет не будет доходить к растениям. Вот потому для них логично.
Второе, не совсем они и выгоднее. Светильник под данный тип цоколя стоит почти 100 у.е. Лампа служит дольше, но все равно первоначальные издержки слишком большие.
Третье, цели света в акваримистике и цели света в теплицах отличаются. Что нужно от растений в теплице? Что бы растения цвели и плодоносили, что бы плоды были постоянные и большие. Под данную цель подбирается освещение, и на период роста они освещают растения другим светом. А что нужно аквариумисту? Как правило рост растений. А для роста растений данное освещение не совсем подходит. И под данным типом освещения мало того что медленней растут, так еще и внешне многие виды теряют привлекательность и их просто нельзя продать.
Так что технологии выращивания растений как в теплице в прямом копировании не даст результата. Теплица и аквакультура отличаются. Если найдутся умники и скажут а вон в Таиланде в теплицах все выращивают, то я попрошу предоставить информацию об дополнительном освещении, которое они используют, и ответить, почему они накрывают свои теплицы рассеивающими сетками. Просто бездумно копировать данную технологию нельзя.
Длина волны света, как подбирать для растений
Теперь самое интересное. Если Вы дочитали до данного момента, значит Вы готовы к получению более узкой специализации. Дав мощное освещение в аквариум не под любыми типами ламп получите рост. Для растений важным параметром является спектр. Мы бы сказали ключевым параметром.
Будут специалисты, которые будут доказывать, что рост возможен только под красным или голубым спектром, или же только под смешанным. Дискуссия эта была в интернете и будет вечно. Ведь кто-то поставил у себя какой-то вариант, у него рост есть, и он всем начинает доказывать что его вариант самый правильный, т.к. есть результат. Результат познается в сравнении, но вот как раз его и не хватает большинству аквариумистов. Что говорить, даже большинство аквариумных фирм категоричны в своих высказываниях на счет спектров света.
Мы же говорим, все познается в сравнении и в деталях. Потому, свойства света мы знаем хорошо.
Вот как мы видим свет относительно длинны волн.
Очень тесно с длинной волн связан показатель как температура света или Кельвин.
Если сравнить две картинки, можем провести некоторые параллели. С другой стороны это не корректно. Для приблизительного подбора в уме может крутиться схема соединения температуры света и длинны волн. Но это приблизительно и не точно. Хотя, для экспериментов мы пользуемся данными преобразованиями. Но проблема состоит в следующем. Если лампа накаливания имеет цветовую температуру в 2700 кельвинов и длину волны в 650 нм., и здесь все в порядке, то большинство люминесцентных ламп выдают разные длинны световых волн. Они не выдают одну волну, а различные. Вот потому не всегда корректно переводить Кельвины и длинны волн, и на счет таких переводов информации нет.
Вот есть таблица, которая показывает активность хлорофилла в зависимости от цветовой температуры.
Вот пики волн в самых распространенных лампах.
Почему растения зеленые? Они не воспринимают свет с длинной волны в зеленом спектре, и потому данный свет отбивается. И потому нам листья кажутся зелеными. Есть теория, что и он нужен растениям. Но, посмотрев на спектр любых ламп, мы увидим, что часть зеленого спектра растения все равно получат.
Вот здесь в таблице более детально описаны процессы в растениях и температуры света.
Синтез хлорофилла — чуть больше при синем спектре (здесь в таблице представлен хлорофилл а, при хлорофилле б значительно более усваивается синий спектр). Не будем вдаваться в формулы (они довольно сложны и можете почитать в интернете все 15 реакций, которые происходят). Но для чего растениям хлорофилл? Это фабрика для преобразования углекислоты в кислород. Без него фотосинтеза не будет.
Фотосинтез образовывает органические вещества при использовании света и углекислого газа (ну без него никак). Как правило крахмал и сахар. Значительно больше активен при красном спектре света. Нужно уточнить, что сахар и крахмал в основном оседают в плодах растений, а не в зеленой массе.
Фотоморфогенез — это процесс, стимулирующий прорастание семян. В аквариумистике почти не используется на бытовом уровне.
Итог. Для аквариумных растений более важный процесс синтеза хлорофилла, т.к. от него растет зеленая масса растений. Растения могут расти в одном спектре (синем или красном), но при этом будут совершенно разно выглядеть и будут отличаться количественно процессы внутри растений.
Холодный свет аквариуме
Синие и фиолетовые лучи (445 нм). Они стимулируют процессы деления клеток, стимулируют образования белков, угнетают рост клеток в длину. В аквариуме междоузлия в растениях становятся меньшими, они становятся более приземленными и пушистыми. Как ни странно, но растения, особенно которые содержат красный пигмент, становятся насыщенными. Под данным типом освещения растения образуют густые красивые заросли. В большинстве случаев мы используем освещения, с преобладанием именно данных длин волн света. Есть и побочные действия. Сагитария и иволистная гигрофила становятся белыми. Второе, перестают растения цвести а эхинодорусы пускать цветочные стрелы. При данном типе освещения хорошо развивается нитчатка, но плохо зеленые водоросли на стеклах и борода.
Теплый свет в аквариуме
Красные и оранжевые лучи (660 нм. только используем). Их разделяют на 2 типа, т.к. под различным освещением по разному прорастают семена. Но вопрос семян мы вынесем в данном случае, и весь свет будем рассматривать просто как теплый красный свет. В аквариуме без синего цвета растения вытягиваются, стебель не держится вертикально, междузлья большие, листья мельчают в быстрорастущих растениях, зато увеличиваются у валиснерий и гигрофил. Гигрофила и сагитария становятся более зелеными. Под красным светом хорошо растет борода и зеленые водоросли на стеклах, хуже нитчатка. Кстати, для любителей, что бы растения «пузыряли». Для этого нужен красный спектр.
Вариант с комбинированием ламп уже становится более простым. В основной массе мы используем синий спектр, для эхинодорусов или для цветения растений в палюдариуме используем дополнительно красный спектр. Главное знать для чего какой свет используется. И еще нюанс, под синим спектром на наш взгляд аквариумы выглядят более симпатично.
На 1 фото анубиас в палюдариуме выросший под смешанным освещением. Затем были убраны лампы с красным спектром. Результат на 2 фото. Новый лист, выросший под синим светом, приобрел иную более светлую окраску. А лимонник, на котором постоянно были цветы, под синими лампами не зацвел ни разу.
Подобный эксперимент был проведен в аквариуме с эхинодорусами, где использовались 827 лампы. Затем их заменили на 765. Результат на фото. Слева до замены, справа — после.
Изменился характер роста у эхинодорусов. Новые листья стали мельчать. Цвет их почти не изменился. За время эксперимента не появилось ни одной новой стрелки, но на двух эхинодорусах уже появившиеся до начала экспиремента стрелки продолжили расти и на них появились детки.
Ультрафиолетовые свет и растения
Лучи УФ можно разделить на следующие типы:
- Короткие 200-290 нм;
- Средние 290-350 нм;
- Длинные 350-400 нм.
Короткие смертельные, средние угнетающие. Разрушают белки и нуклеиновые кислоты. В промышленности при ограниченном облучении растений на определенное время получали приличное ускорение роста. Для декоративного применения в аквариумах бесполезно. Не думаю, что укрупнение плодов на 25% задачи для аквариумных растений.
Используя длинные волны мы можем добиться того, что листья станут более красными. При различной продолжительности освещенности растений можем получить как ускорение(при коротком облучении), так и уменьшение синтеза хлорофила (рост растений).
Итог можем сделать один — он вообще растениям не нужен (в нашем случае). Зачем же мы здесь начали о нем писать?
Бытует мнение, что без УФ водоросли не растут. Во всем интернете нет информации о влиянии УФ на их жизнь. Но есть продавцы.
Есть специальные лампы, которые ограничивают прохождения УФ лучей. И говорят под ними растения растут, а водоросли нет. Там ограничен спектр 400 нм, и все что ниже просто обрезается. В любой лампе доля УФ лучей существует.
Почему выгорают лампы
Растения используют не свет для фотосинтеза, а его фотоны. люмены, величина привязана к человеческому взгляду. Как мы видим яркость света. Растениям для стимулирования фотосинтеза нужен другие измеряемы параметры. С другой стороны раньше мы писали, что для аквариума фотосинтез не является главной задачей. А сейчас рассматриваем усваивание фотонов растениями.
PAR(photosynthetic active radiation) — показатель полезного для растений освещения (для процесса фотосинтеза). Единица измерения ватт PAR.
PPF (photosynthetic photon flux) — показатель количества фотонов. Измеряется мкмоль/м2/с
bluebarbus.com.ua
Освещение аквариума и выбор ламп, какие лучше выбрать?
Правильное освещение в аквариуме – это один из глобальных вопросов аквариумистики. Сложен он для понимания новичков аквариумного ремесла, а опытные аквариумисты постоянно дискутируют и спорят по поводу мощности, спектра и источников освещения. В данной статье хотелось бы разложить все по полочкам, сконцентрировать всю информацию об аквариумном освещении, и главное постараться изложить ее доступно. Так чтобы ее понимали все и новички, и профи. |
Общие характеристики аквариумного освещения
Начать разговор стоит с определения мощности освещения для того или иного аквариума. СПРАВКА: Мощность измеряется в Ваттах. Ватт (рус. сокращение: Вт, международное: W) – это единица измерения мощности в Международной системе единиц (СИ). Названа в честь шотландско-ирландского изобретателя Джеймса Уатта (рус. Ватта). В Рунете бродят «общепринятые» нормы мощности освещения: 0,1-0,3 Ватт на литр чистого объема аквариумной воды (далее - «Ватт/л») - для водоема без живых аквариумных растений. 0,2-0,4 Ватт/л - для содержания тенелюбивых рыб (сомов, ночных рыб). При этом в аквариуме можно содержать живые аквариумные растения, которые не требуют сильного освещения: криптокорины, валлиснерия, мох яванский, некоторые эхинодорусы, прочие. 0,4-0,5 Ватт/л - подойдет для аквариумов с ограниченным количеством растений. При таком освещении большинство аквариумных растений будут расти, но их рост будет замедлен, а внешний вид искажен - растения будут тянутся изо всех сил вверх – поближе к источнику освещения. 0,5-0,8 Ватт/л - оптимальная освещенность подходящая для красивого, декоративного аквариума с живыми аквариумными растениями. 90% растений прекрасно развиваются и принимают яркую окраску. 0,8-1 Ватт/л и выше – освещение необходимое при плотной посадке аквариумных растений или для содержания почвопокровных растений. Такие аквариумы называются: голландскими, амановскими... акваскейп, одним словом =) Для понимания сути сказанного, давайте посмотрим, что же происходит с светом при попадании его в воду! Увы, интенсивность освещения в воде неумолимо падает. В воде средней прозрачности, через каждые 10 см. толщи интенсивность изучения падает, примерно на 50%. Не сложно подсчитать, что если у вас, например, освещение 50 Ватт, то до дна аквариума высотой 50 см. доходит всего лишь – 12,5 Ватт. Именно поэтому, если вы решили воссоздать аквариум с красивыми аквариумными растениями и при этом не устанавливать мощное освещение он должен быть как можно ниже. Не менее любопытно мнение Такаши Амано и ADA, по этому поводу. Амановский подход к определению мощности ламп заметно отличается от общепринятого. Амано однозначно уходит от мерила Ватт на литр. По характеристикам освещения аквариумов Такаши Амано, определено, что мощность освещения (ламп) не зависит прямо пропорционально от объема водоема. Например, для маленьких аквариумов Такаши Амано 8 Ватт/л – это слишком мало, а для объёмов более 450л. – 2 Ватта на литр слишком много. Утверждая это, Амано исходит из того, что освещенность больше зависит от площади поверхности воды. Кроме того, вышеперечисленные цифры приблизительны и условны. Многое зависит не только от ваттности освещения, но и от параметров самого аквариума (длина, ширина, высота), от состояния аквариумной воды и прочих более мелких параметров: старение ламп, потери в покровном стекле, нагрев воздуха и пр. Более того, измерять в ваттах мощность освещения - некорректно. Ведь эта величина, говорит лишь о потреблении источником освещения электричества, но ни как, о его силе. Корректней измерять освещение в Люменах.Завершая разговор о ваттах, который можно продолжать до бесконечности, все далее углубляясь в тонкости и нюансы, следует отметить еще один момент: мощность освещения – это первоочередной параметры от которого следует отталкиваться при решении вопроса содержания аквариумных растений. Никакие УДО (удобрения), ни подача СО2 (углекислый газ) не спасут ситуацию при отсутствии должного освещения. И дело тут вот в чем. Потребление СО2 растениями напрямую зависит от мощности, интенсивности освещения аквариума. Если быть точнее от суммарного дневного освещения. Интенсивность фотосинтеза аквариумных растений задает не концентрация СО2, ни микро и макро элементы (УДО), а только лишь ОСВЕЩЕНИЕ! И НИКАК НЕ НАОБОРОТ! Процесс фотосинтеза растений происходит только при наличии энергии света, при этом растения преобразуют воду, СО2 и питательные вещества (УДО) в такни растения. Если в аквариуме нет должного уровня освещения, фотосинтез просто не происходит, СО2 и УДО остаются просто невостребованными. Когда же освещения достаточно, есть достаточное количество СО2 и УДО, вы получаете феноменальный результат – пышный рост и яркую зелень! Визуальным внешним признаком фотосинтеза является образование пузырьков кислорода на листьях растений через пару часов после включения аквариумного освещения. И это возможно только при балансе всех 3-х факторов: Света + CO2 + УДО. Пузыряние - это перенасыщение аквариумной воды кислородом, который выделяют растения. Это визуальный признак отличного фотосинтеза и состояния аквариума. Два слова об ошибках! Частой ошибкой при содержании аквариумных растений, является попытка использования специальных аквариумных ламп для аквариумных растений с пиками красного и синего спектра или попытка увеличения светового дня, как компенсация недостатка освещения. К сожалению, данные манипуляции не дают должного результата и даже наоборот приводят к вспышке водорослей: появлению нитчатки, бороды и прочим неприятностям. В интернете упорно бродит тезис: «Аквариумным растениям нужен красный и синий спектр»… хоть ты тресни, но только он и больше ничего!!! Почему же тогда существуют и другие спектры? Неужели Всевышний переборщил? Ответ напрашивается сам собой – НЕТ! Вопреки эфемерным представлениям о предпочтении растениями только лишь красного и синего спектра, поглощение света происходит фактически равномерно во всем спектральном диапазоне видимого света. Использование ламп, освещения с пиками красной и синей области безосновательны. Лампы достаточной мощности, с широким спектром, с цветовой температурой от 6500 до 8000 Кельвинов, вот все что нужно! Использование же специальных ламп имеет место быть при воплощении принципа смешанного освещения, т.е. когда один источник света дополняет другой. Теперь давайте немного отвлечемся от параметров освещения и поговорим о его источниках. Если далее по тексту вам попадутся непонятные величины и измерения – не пугайтесь, ниже мы осветим и этот вопрос.Источники освещения для аквариума
Лампа накаливания (ЛН) – это всем известные «Лампочки Ильича». Освещение в таких лампах происходит путем накаливания вольфрамовой нити или его сплавов. Данный вид освещения активно использовался в советские времена, за неимением альтернативы. Ныне, канул в лету. Достоинства ЛН: Удивительно, но спектр света ламп накаливания максимально приближен к солнечному свету, что очень приветствуется аквариумными растениями. Почем уже же такой хороший источник освещения, сошел на нет? Недостатки ЛН: Лампы накаливания имеют низкий/мизерный коэффициент полезного действия (далее – «КПД») и светоотдачи. Пример, 100Ваттная ЛН имеет всего 2,6% КПД, 97% уходит в пустую - на выделение тепла. Светоотдача, увы, 17,5 Люмен/Вт. Срок эксплуатации ЛН, так же маловат - 1000 часов. Выводы: С учетом низкого КПД, для выращивания аквариумных растений понадобится много, много ЛН. Которые, будут давать много, очень много тепла, что приведет к чрезмерному нагреву воды, что плохо и для рыб и для растений. Да, конечно, можно попробовать поставить 4-е кулера в аквариумную крышку, но это не панацея!Галогенные лампы (ГЛ) – можно сказать, что это «поколение Next» в линейке ламп накаливания. Более высокотехничны, компактны.
Показатели КПД чуть выше, светоотдача 28 Люмен/ватт, срок эксплуатации до 4000 часов. Использование в аквариуме таких ламп, по понятным причинам, так же не рекомендовано.
Люминесцентные лампы (ЛЛ) – самый популярный, ходовой, газоразрядный источник освещения аквариума. Почему? Достоинства: Во-первых доступная ценовая политика, во-вторых: светоотдача ЛЛ в разы выше чем у ЛН (ЛЛ в 23 Вт = ЛН в100 Вт), срок жизни в надцать раз больше. Недостатки: Во-первых, спектр многих ЛЛ дискретен – урезан. Только специальные аквариумные лампы имеют более-менее хороший спектральный диапазон. Не смотря на длительный срок службы, ЛЛ нужно менять раз в 6-12 месяцев, так как они к этому сроку теряют все свои «полезные свойства». Плюс ко всему, ЛЛ имеют низкую проницаемость в толщу воды и дают рассеянный свет, эффективное использование таких ламп возможно с применением отражателей/рефлекторов. Говоря об ЛЛ, необходимо отметить, что они делятся по типу на Т8, Т5 и другие, например, Т4 (редко используются в аквариумистике). Т8 - самые ходовые аквариумные лампы, некое сочетание цены и качества. Т5 - значительно лучше, чем Т8, но на порядок дороже. Благодаря небольшому диаметру и оптимальной световой отдаче при 36°С, Т5 дают более интенсивный и более направленный свет, чем T8.
Металлогалогеновые лампы (МГЛ) (МГ), панели, прожектора Если вы решили воссоздать в своем аквариуме амановски травник или высота вашего аквариума 60см. и выше, то МГЛ – это идеальное решение! МГЛ используется многими профессиональными аквариумистами. Почему? Достоинства: разумная ценовая политика, мощность, направленность светового потока, световая температура от 2500К (желтый свет) до 20000К (синий), огромная производительность (100 Люмен/Вт), до 15000 часов срок службы. Проще говоря, при небольших размерах МГЛ, вы получаете отличную цветопередачу и высокий световой поток в течение всего срока эксплуатации ламп. Аквариум начнет сиять, будут создаваться мерцания волн на дне, будут видны тени от рыбок и растений. Металлогалогеновые лампы «пробивают» самые глубокие аквариумы. Одним словом – это отличный источник аквариумного освещения, как для растений и рыб, так и для общей визуальной картинки восприятия аквариума! Недостатки: Использование такого источника освещения возможно только лишь на подвесах или стойке на расстоянии от 30 см. до толщи воды, причина – МГ очень много выделяют тепла, они ну очень горячие!
Светодиодные светильники (СД), панели, прожекторы. Если по МГЛ аквариумисты, хоть как то пришли некому консенсусу, то в отношении применения светодиодов в аквариуме согласия нет, как говорится кто в лес, кто по дрова. Во-первых, это обусловлено быстрым ростом и развитием светодиодных технологий, в связи с чем, в интернете много устаревшей информации. Во-вторых, отсутствие, в настоящее время, полноценной практики применения. Чтобы не опровергать бесчисленное количество мифов об СД. Скажем так, в настоящее время существуют отличные светодиодные панели/прожекторы для аквариумных растений, с широким/полным спектром, с нормальной световой температурой в 6500К, с достаточным количеством Lm (люменов). Прибавьте к этому колоссальную эргономичность и экономность, безопасность (работают при низком напряжении). Плюс еще фактическое отсутствие нагрева с лицевой стороны и терпимый нагрев с задней части светового прибора, что позволяет использовать СД под аквариумной крышкой, т.е. без подвесов и стоек. Визуальный эффект почти идентичен МГЛ. Недостаток: ценовая политика, хорошие СД панели и прожекторы достаточно дорого стоят, но стоит заметить, если ранее - это были зашкаливающие цены, то ныне цены стали доступными для большинства потребителей. Часто на форумах задают вопрос, а можно ли использовать бытовые/мебельные светодиодные ленты в аквариуме. Ответ – ДА, но только как дополнительное освещение или как ночное освещение. К сожалению или к счастью, большинство СД-лент маломощны, чтобы обеспечить необходимую интенсивности освещения нужно купить и установить под крышкой километры СД-ленты. Данный абзац, может быть опровергнут, т.к. СД технологии не стоят на месте и постоянно развиваются. Тем не менее, большинство СД-лент – это не лучший вариант решения вопроса с освещением. Примечание 2017г. - опровергнут ))) Есть мощные сд-летны, гуглим.Говорить о СД освещение можно очень долго, уж очень много всяких нюансов, равно как, и о любом другом популярном аквариумном источнике света. Но, все же надеюсь, что приведенная выше выкладка поможет читателю разобраться, что к чему и взять основу. Если у Вас есть вопросы или сомнения предлагаю обсудить их на нашем Форуме. Завершая эту часть статьи, давайте обратим внимание на то, что использует маэстро Такаши Амано, решая вопрос с освещением. Думаю, это будет любопытно.
Преимущественно Амано использует следующие подвесы: ADA Grand Solar I c ЛЛ - T5 2x36Ватт и одной МГЛ - MH-HQI 150Ватт или просто ADA Solar I с одной МГЛ MH-HQI 150W лампой Вывод очевиден, металлогалогеновые светильники в чистом виде или добавлением ЛЛ (смешанное освещение) – лучший вариант для профессионального содержания аквариумных растений и акваскейпинга. Уж с гуру аквариумистики сложно поспорить.Стоит отметить, что используя принцип смешанного освещения, Такаши Амано включает металогалогеновый светильник лишь на 3 часа, все остальное время работают ЛЛ. Из этого можно сделать выводы: 1. «Жарить» аквариум 12 часов в сутки не нужно. Нужно создавать пик интенсивного освещения, а все остальное время освещение должно быть спокойным. Данный подход абсолютен, ведь солнышко не светит 24 часа в сутки: сначала наступает рассвет, потом зенит, а потом закат. Собственно – это природное явление и нужно сымитировать в аквариуме. 2. В то же время при отсутствии должного освещения светить таким светом 24 часа в сутки – это не самый лучший вариант. Солнце так не делает!
Как некое руководство, дополнительно, ниже приведем интересную таблицу от Aqua Design AmanoЕще, мощность флуоресцентных ламп в аквариуме с растениями по Эрику Олсону, составлено по данным освещенности аквариумов Такаши Амано
Освещенность W/m2 20L 40L 80L 200L 400L низкая 200 15W 24W 38W 69W 110W средняя 400 30W 47W 79W 137W 220W высокая 800 60W 94W 149W 274W 440WВот еще не которое руководство-памятка для подбора количества ЛЛ: - какую мощность освещения вы хотите получить - низкую, среднюю, или высокую; - будет ли использоваться крышка или подвес и на какой высоте он будет находиться от воды; - какая глубина аквариума; - будет ли использован принцип смешанного освещения; - какой тип ламп будет использован: Т5 или Т8, СД.- тип отражателей\рефлекторов.
Режим светового дня и варианты контроля
Как уже ранее говорилось, никогда не пытайтесь восполнить недостаток освещения аквариума длительностью светового дня! Это лишь приведет к «цветению воды». Для ЛЛ ламп продолжительность светового дня должна составлять 8-10 часов, для можного МГЛ или СД – 6-8 часов. Конечно, длительность освещения аквариума – это сугубо индивидуальный вопрос, но все же однозначно можно сказать, что бродящая по всему интернету информация о том, что для растений световой день должен составлять 12 часов, а то и 14 часов – это далеко не догма! Более того, как правило, такое длительное освещение аквариума, является причиной водорослевой вспышки. Как же облегчить контроль длительности освещения аквариума. Все очень просто! К счастью мы живем не в каменном веке и во всех бытовых/строительных магазинах продаются розетки таймеры, которые можно разделить на: электронные и механические. Механические таймеры – простые, недорогие (~200руб.), по отзывам аквариумистов реже ломаются. Электронные таймеры – простые, функциональность выше, дорогие (~500руб.), в отличии от механических таймеров не сбиваются при отключении и скачках напряжения, что не мало важно!!
Параметры и термины, характеризующие освещение
Как уже ранее говорилось, мерить освещение только в Ваттах не стоит. Существуют другие параметры, характеризующие качественную составляющую освещения. Для более глубокого понимая, ниже давайте рассмотрим эти параметры света.Спектр света – это наше, человеческое впечатление от облучения сетчатки глаза волнами длиной от 380 нм до 780 нм (1 нм = 0,000 001 мм). Электромагнитное излучение другой частоты мы не способны воспринимать.
В указанном диапазоне волн, в видимом нами спектральном диапазоне, волны разной длины воспринимаются нами, как разные цвета. Например, самые короткие волны мы называем фиолетовыми, а на другом краю спектра находятся самые длинные волны, мы их называем красными. Между этими границами лежат все остальные цвета и оттенки. Природное явление радуга, является ничем иным, как разложением (преломлением) света на видимый спектр: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.
Люкс – это единица освещенности, равная одному люмену на 1 кв.м. Яркость солнечного света достигает 100000 Люкс, в тени 10000 Люкс, в освещенной комнате — около 300 Люкс.Люмен – это количество света, излучаемое/испускаемого источником света. Источник света со световым потоком в 1 Люмен, который равномерно освещает какую-либо поверхность площадью 1 квадратный метр, создает на ней (поверхности) освещенность 1 Люкс. Совет, всегда узнавайте и отталкивайтесь от люменов при выборе источника освещения.
Кельвины (К ) - это цветовая температура любого источника света. Это мера нашего впечатления от цвета данного источника света. Кельвины определяют цветность ламп и цветовую тональность: теплую, нейтральную или холодную. Цветовая температура света !!!не указывает на спектральный состав света лампы!!! - она лишь обозначает, как воспринимается цвет света от источника человеческим глазом. Это характеристика восприятия. Чем ниже цветовая температура, тем больше доля красного, и меньше синего цвета, и на оборот. - Белый сверхтеплый – 2700 К; - Белый теплый – 3000 К; - Белый естественный (или просто белый) – 4000 К; - Белый холодный (дневной) – больше 5000 К. Рекомендации для гидробионтов: Для рыб от 5500 до 20000 K (в зависимости от разновидности). Для растений от 6500 до 8000 К. Для рифового аквариума от 9000 до 20000 K.Ниже наглядная таблица:Ra (CRI) - это коэффициент цветопередачи. Он говорит о том, насколько близки к истинным будут цвета объектов, при рассматривании их человеком под конкретным источником освещения. Ra может быть от 0 до 100. Коэффициент цветопередачи, равный 0, соответствует свет, который не передает цветов вообще. Ra=100, соответствует источнику. Ra 91 – 100 очень хорошая цветопередача. Ra 81 — 91 – хорошая цветопередача. Ra 51 — 80 – средняя цветопередача. RaPAR - фотосинтетическая активная радиация. Это единица измерения светового потока, которая измеряет свет в количестве фотонов.
Вот спросите, зачем я все это знать, зачем такие сложности?... Хм. Это лишь верхушка айсберга =) Вот, например, что касается цветовой температуры. Лампы с малой температурой (<5000K) придают красноватый оттенок, а лампы с большой температурой цвета (>5000K) зеленый цвет. На практике, это выглядит так, при 5000K свет плохой, потому что имеет желтые тона, а свет при 10000K белёсый и цвета становятся голубоватыми, как от НЛО. При световой температуре менее 5000K растения имеют желтый оттенок и выглядят, как больные. При световой температуре в 10000K аквариумные растения становятся насыщенно зелеными и выглядят как пластмассовые. Чтобы растения под водой выглядели естественно, нужно выбирать лампы с цветовой температурой 6500-8000K. Кроме того, источники света с температурой менее 5400 K способствуют росту низших - водорослей.
Безмерно долго можно разговаривать об аквариумном освещении, это интересная и нескончаемая тема. Но, увы, лимиты данной статьи исчерпаны. Другие нюансы обсудим в других статьях.
Рекомендуем так же почитать:
fanfishka.ru
Как выбрать лампы для рассады: потребности побегов, эргономичность, эффективность
В ведении домашнего хозяйства или на даче часто приходится решать вопрос: какая лампа нужна для рассады? Способы искусственного освещения сельскохозяйственных культур, выращиваемых в тепличных хозяйствах, многообразны. Из имеющихся на рынке вариантов можно выбрать наиболее подходящий по затратам, энергопотреблению и эффективности.
Помимо перечисленных параметров, существенным является участок спектра, в котором лампа дает свой свет. В этом отношении искусственное освещение активно развивающихся побегов рассады имеет свои нюансы. Перед тем, как выбрать фитолампу для растений, необходимо оценить её позитивные и негативные стороны при эксплуатации.
Спектр света, необходимый для рассады
В свете рассматриваемой темы представляются важными следующие критерии оценки:
- Оптимальность лампы с точки зрения потребностей молодых побегов растений.
- Эргономичность лампы для освещения рассады, размещенной в домашних условиях.
- Энергоэффективность лампы и возможность экономии на выращивании рассады.
Лампа с наилучшими параметрами в соответствии с перечисленными критериями будет признана оптимальной для целей освещения молодых побегов сельскохозяйственных культур.
Напомним из школьного прошлого: «каждый охотник желает знать, где сидит фазан». Во фразе зашифрована последовательность цветов спектра, которым соответствует следующая цветовая температура:
- красный – 1500 К;
- оранжевый – 2000 К;
- желтый – 3000 К;
- зеленый – 4000 К;
- голубой – 6000 К;
- синий – 7000 К;
- фиолетовый – 8000 К.
Плюс два цвета, которые человеческий глаз не видит: инфракрасный и ультрафиолетовый – начинают и замыкают список.
Растения чувствительны к одним частям спектра, на другие – реагируют слабо.
Используя ту или иную часть спектра, можно оказывать дополнительное влияние на развитие растений.- Желтый и зеленый свет хорошо отражаются от растений, их присутствие не столь важно.
- Оранжевый свет способствует созреванию плодов.
- Небольшое количество ультрафиолетового света оказывает бактерицидное действие.
- Инфракрасный — стимулирует рост наземной части растений, однако в домашних условиях его применением вызывает неудобство.
- Красный и голубой-синий свет стимулирует жизнедеятельность растений наилучшим образом: способствуют повышенному фотосинтезу и ускоряют развитие.
Для самостоятельного подключения LED ленты необходимо соблюдать некоторые рекомендации по разным схемам установки, учитывающие тип подсветки, общую мощность, а также расчет запаса блоков питания и усилителей RGB.
Синий спектр света оказывает благоприятное влияние на корневую систему, не позволяя слишком тянуться вверх: рассада вырастает крепкой и здоровой. Красный, напротив, ускоряет рост стебля и листьев.
Таким образом, для самого лучшего роста рассады необходим свет двух видов: температурой 1500 К и 6000-7000 К.
При этом первые недели для хорошего укоренения требуется больше синего спектра света, после рассаживания – синего и красного в соотношении 50%:50%.
Рассмотрим, какими лампами лучше подсвечивать рассаду, то есть — какие источники света наиболее подходят под вышеуказанные критерии.
Особенности натриевых ламп
Натриевые лампы дают свет температурой 2000 К – глаз воспринимает его как красно-оранжевый. Этот вид является наиболее используемым в тепличных хозяйствах, т.к. излучаемый ими свет способствует развитию на стадии зрелого растения, которое цветет или плодоносит. Его близость к красной части спектра позволяет поддерживать процессы жизнедеятельности растений на хорошем уровне.
Кроме того, свет этих ламп приятен для глаза – именно такими освещаются улицы наших городов (для дополнительных удобств бытового освещения уличных площадок возле дома можно изготовить по соответствующей схеме фотореле своими руками). Некоторые модели для теплиц и их меньшие аналоги для домашнего использования снабжены зеркальными плафонами, позволяющими эффективно и мягко рассеивать свет.
Натриевые лампы не лишены недостатков:
- Громоздкость – колба лампы большая, возможно, не на каждом окне ее удобно использовать.
- Плохая энергоэффективность – потребляет 100 и более ватт.
- Требует усложненного способа подключения при помощи дросселя и импульсно-зажигательного устройства.
- Наконец, самый большой минус – это отсутствие синей части спектра в свете лампы.
Некоторые схемы подключения предполагают использования конденсатора, что позволяет несколько увеличить энергоэффективность.
Вывод, который может быть сделан: натриевые лампы – не самые подходящие для рассады.
Использование люминесцентных ламп для рассады
По своим техническим характеристикам люминесцентные лампы отличаются широким диапазоном цветовых температур: от 2700 до 7700 К. При этом в продаже представлены осветительные приборы как отечественных, так и зарубежных производителей по вполне приемлемой стоимости. Интересным вариантом может быть светильник для растений с люминесцентной лампой и зеркальным отражателем. Лампы дневного света не греются, относительно экономичны (от 20 Вт), долговечны.
Между тем, при использовании в домашних условиях для стимулирования роста рассады люминесцентные лампы обладают рядом недостатков:
- Большой размер ламп в длину. В продаже есть относительно короткие лампы, но даже они, возможно, будут не эргономичны для наших целей.
- Рассеивает свет во все стороны, что соответственно требует размещения отражателя сверху от лампы, а в некоторых случаях – бокового заграждения, чтобы свет от лампы не мешал людям.
- Экономичность оставляет желать лучшего: потребуется лампа мощностью минимум 40 Вт.
- Не имеет красного света в спектре.
Таким образом, люминесцентные лампы могут быть использованы для подсветки растений, однако они оставляют желать лучшего в смысле удобства для людей, а также создают для рассады дефицит красной части спектра.
Применение светодиодных источников света для выращивания растений
В настоящее время LED лампы получают все большее распространение и становятся доступными по цене. Постепенно потребители осознают, что светодиоды – наиболее прогрессивная технология, которая прекрасно справляется с освещением.
В продаже представлены диодные лампы для дома различных цветовых температур: от 2000 до 6500 К. Кроме того, светодиоды производятся различных цветов, включая такой необходимый для эффективного роста рассады как красный.
К безусловным плюсам светодиодов можно отнести:
- Малые габариты, что удобно для целей небольших площадей размещенной в домашних условиях рассады.
- Практически бесконечный срок службы ламп, которые быстрее успеют морально устареть, чем выйти из строя.
- Наивысший класс энергоэффективности: от 6 Вт.
- Вариант установки нескольких ламп с различным цветовым излучением: можно усиливать в зависимости от периода жизни растения ту или иную часть спектра.
Лампы на основе световых диодов не имеют недостатков.
Выбор схемы подключения диммера зависит от запланированного количества точек управления освещением, а также от типа используемых источников света.Чтобы подробнее узнать об особенностях работы светорегуляторов, просто перейдите по этой ссылке. Насколько эффективно использование диммера с обычными лампочками, можно узнать здесь.
Подведем итоги в решении вопроса — какие лампы лучше для рассады:
- Оптимальным является красный и синий части спектра – этому критерию наиболее соответствуют светодиодные лампы.
- С точки зрения эргономики, LED лампы существенно удобнее для размещения в домашних условиях.
- Если говорить об энергоэффективности, то лидирующую позицию занимает опять же лампа на основе световых диодов.
Таким образом, наилучшим решением для освещения рассады в домашних условиях является комбинация из светодиодных ламп красного и синего спектральных диапазонов.
Относительная дороговизна светодиодов компенсируется их долговечностью, а также возможностью использовать эти лампы в освещении жилища.
Определяемся, какую выбрать лампу для рассады по видео
elektrik24.net
Лампы для рассады растений: обзор, советы по выбору
Посадив рассаду для своего огорода, ожидаешь увидеть уже через неделю проклюнувшиеся ростки, а еще через две пышный ковер из листьев. Однако для этого нужно помочь растениям, им нужна поливка, свежий воздух, свет и, самое главное, правильная досветка. Поговорим о лампах для рассады растений.
Какое освещение необходимо растениям
Вопросы о том, какой свет лучше всего подходит для растений, в том числе для выращивания рассады, очень подробно были рассмотрены еще в начале прошлого века. Именно тогда был открыт хлорофилл, фотосинтез и установлена их ключевая роль в развитии растений.
Для фотосинтеза нужны электромагнитные волны видимого спектра с длиной приблизительно 440 и 630–660 нм. Ультрафиолет фактически не используется при этом, а инфракрасное излучение нужно лишь как источник тепла. Зеленый цвет никак не участвует в жизни растений и потому полностью отражается. Именно поэтому вся растительность для нас богата зеленью.
Идеальное освещение должно включать в себя излучение всех основных цветов спектра средней интенсивности с формированием пиков на строго определенных длинах волн. Кроме этого желательно иметь возможность регулировки яркости и времени работы осветительного оборудования и даже направленности света.
Лампы накаливания
- Цветовая температура — 2400–2700 К (3000 К для галогенной лампы).
- Спектр — сплошной.
- Световая отдача — 12–14 лм/Вт (обычная лампа накаливания), 16–25 лм/Вт (галогенная).
- КПД — 1,9–3,5%.
Для выращивания рассады и взрослых растений слабо подходят, за исключением тенелюбивых декоративных видов, которым в принципе не нужна большая интенсивность света. Однако если лампы накаливания, а лучше галогенные, использовать для подсветки рассады, тогда нужно оценить в нормальном привычном освещении состояние зеленых побегов, почвы. Часто их используют как дешевый и простой в обращении источник инфракрасного излучения, обогрева теплички для рассады.
Легко регулируются по яркости, а простой таймер способен задавать расписание работы лампы.
Люминесцентные
- Цветовая температура — зависит от состава люминофора 3000–6500 К.
- Спектр — линейчатый.
- Световая отдача — 60–100 лм/Вт.
- КПД — 9–15%.
Источником видимого света является вторичное излучение люминофора, покрывающего колбу лампы. У обычной бытовой люминесцентной лампы на фоне равномерно низкого излучения всего видимого спектра, наблюдаются мощные всплески в зеленой и синей его части. Белым цвет лампы только кажется человеческому глазу.
Для растениеводства специально подбирают люминофор, способный выдать два основных пика в красной и синей области (630 и 440 нм соответственно). Популярность получили стандартные линейные колбы с разъемами G17, которые помещаются в пыле-влагозащищенном корпусе с отражателем.
Люминесцентные лампы для рассады используются в комбинации «флора» + бытовая (с маркировкой 840). Специально для растениеводства используются спаренные индукционные люминесцентные лампы, одна из которых преимущественно дает красный цвет, а вторая — синий. С помощью таймера настраивают излучение красного или синего освещения в зависимости от времени суток, имитируя правильное распределение дневного света. Корректировать яркость самой лампы невозможно.
Газоразрядные
- Цветовая температура — зависит от выбора газа, в котором формируется плазма, 2000–20000 К.
- Спектр — сплошной, чаще с одним пиком определенного цвета.
- Световая отдача — 85–200 лм/Вт.
- КПД — 10–30%.
В газоразрядных лампах свет дает газ, через который пропускают электрический ток. Такие газы, как неон, аргон, криптон, ксенон, используются в виде наполнителя для большого число подготовленных амальгам на основе натрия и других металлов с ртутью.
Для растениеводства используются газоразрядные лампы там, где требуется временный или постоянный источник узкого спектра определенного цвета, чаще в красном диапазоне. Использовать их для рассады в домашних условиях неэффективно.
Дуговые
- Цветовая температура — 2000–20000 К.
- Спектр — сплошной.
- Световая отдача — 30–50 лм/Вт.
- КПД — 4–8%.
Источником света является электрическая дуга между двух электродов, помещенных в среду инертного газа. Отличаются огромным тепловыделением и массивным излучением в красной или желтой части спектра. В растениеводстве не востребованы, сложно создать оптимальные условия для лампы и при этом ограничить тепловыделение.
Светодиоды
- Цветовая температура для белых светодиодов — 2700–6500 К.
- Спектр — линейчатый, полосовой.
- Световая отдача — 10–150 (250) лм/Вт.
- КПД — 1,5–15%.
Точечный узконаправленный источник света, по умолчанию со свечением в определенном цвете.
Белый свет получается как смешение трех основных цветов (красного, зеленого и синего) или как результат переизлучения люминофором при облучении его ультрафиолетовым диодом.
Уже производятся специализированные светодиодные лампы для рассады и выращивания растений в закрытом грунте. Светодиоды строго подобраны по длине волны. Можно контролировать на одном устройстве спектр излучения, что существенно упрощает габариты всего освещения и расширяет сферу применения.
Следует учесть, что имеющиеся в продаже светодиодные ленты и отдельные диоды чаще обладают не тем набором длин волн, который нужен для растений.
Для декоративных растений
Для комнатных растений важна эффективность освещения не только для поддержания фотосинтеза и роста, но и для хорошего внешнего вида. Предпочтение отдается комбинированным вариантам освещения, в которых есть постоянный источник фитоизлучения в красном и синем диапазоне, а также сбалансированный белый свет с преобладанием зеленого оттенка.
Под такие требования подходят лучше всего светодиодные лампы и люминесцентные с комбинацией фито-нормализированных светильников с обычными.
Для плодоовощных культур
На передний план выходит эффективность роста и поддержка развития растений.
Для проращивания и вегетативного периода роста растений в освещении должен преобладать синий цвет. Для этого подойдут:
- Металлогалогенные лампы (от 4000 К) в сочетании с лампой накаливания или люминесцентной серии 840 или 954 (965).
- Люминесцентные фитолампы с преобладанием синего цвета.
- Синие светодиоды с охватом длин волн 400–480 нм.
Для цветения и плодоношения нужен больше красный цвет:
- Натриевые лампы с желтым светом + люминесцентные лампы серии 840.
- Газоразрядные лампы с температурой свечения ниже 3500 К.
- Индукционные люминесцентные лампы в комбинации синего и красного цвета 40% и 60% соответственно.
- Светодиодные лампы белого цвета с фито-люминофором теплого свечения.
Светодиоды и люминесцентные лампы позволяют максимально близко расположить источники света к растениям без опаски обжечь листья и побеги. В то же время свет от люминесцентных ламп легко распределяется отражателями, а светодиоды компактны, и их можно закрепить на подвижной арматуре, имитируя суточный цикл.
Все остальные источники света сложно уместить в компактные теплицы для проращивания. Потребуется активное проветривание и отвод тепла от осветительного прибора, а также применение инфракрасных фильтров, не допуская перегрев поверхности почвы и листвы.
рмнт.ру
rmnt.mirtesen.ru