Строение клетки животного и растения картинки с названиями и описанием. Особенности строения и основные органеллы животных клеток

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Сходство и различия строения клеток растений и животных. Строение клетки животного и растения картинки с названиями и описанием


Строение животной клетки Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией. Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10–20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы. Основные свойства клетки: обмен веществ чувствительность способность к размножению Клетка живет во внутренней среде организма – кровь, лимфа и тканевая жидкость. Основными процессами в клетке являются окисление, гликолиз – расщепление углеводов без кислорода. Проницаемость клетки избирательна. Она определяется реакцией на высокую или низкую концентрацию солей, фаго- и пиноцитоз. Секреция – образование и выделение клетками слизеподобных веществ (муцин и мукоиды), защищающие от повреждения и участвующие в образовании межклеточного вещества. Виды движений клетки: амебоидное (ложноножки) – лейкоциты и макрофаги. скользящее – фибробласты жгутиковый тип – сперматозоиды (реснички и жгутики) Деление клеток: непрямое (митоз, кариокинез, мейоз) прямое (амитоз) При митозе ядерное вещество распределяется равномерно между дочерними клетками, т.к. хроматин ядра концентрируется  в хромосомах, которые расщепляются на две хроматиды, расходящиеся в дочерние клетки. Структуры живой клетки Хромосомы Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели. Цитоплазма Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы. Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100–120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках низших животных и растений – центросома, животных – лизосомы, у растений – пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д. Мембрана Клетка окружена плазматической мембраной (от лат. «мембрана» – кожица, пленка). Ее функции очень разнообразны, но основная – защитная: она защищает внутреннее содержимое клетки от воздействий внешней среды. Благодаря различным выростам, складкам на поверхности мембраны клетки прочно соединяются между собой. Мембрана пронизана специальными белками, через которые могут перемещаться определенные вещества, необходимые клетке или подлежащие удалению из нее. Таким образом, через мембрану осуществляется обмен веществ. Причем, что очень важно, вещества пропускаются через мембрану избирательно, за счет чего в клетке поддерживается нужный набор веществ. У растений плазматическая мембрана снаружи покрыта плотной оболочкой, состоящей из целлюлозы (клетчатки). Оболочка выполняет защитную и опорную функции. Она служит внешним каркасом клетки, придавая ей определенную форму и размеры, препятствуя чрезмерному набуханию. Ядро Расположено в центре клетки и отделено двуслойной оболочкой. Имеет шаровидную или вытянутую форму. Оболочка – кариолемма – имеет поры, необходимые для обмена веществ между ядром и цитоплазмой. Содержимое ядра жидкое – кариоплазма, в которой содержатся плотные тельца – ядрышки. В них выделяется зернистость – рибосомы. Основная масса ядра – ядерные белки – нуклеопротеиды, в ядрышках – рибонуклеопротеиды, а в кариоплазме – дезоксирибонуклеопротеиды. Клетка покрыта клеточной оболочкой, которая состоит из белковых и липидных молекул, имеющих мозаичную структуру. Оболочка обеспечивает обмен веществ между клеткой и межклеточной жидкостью. ЭПС Это система канальцев и полостей, на стенках которых располагаются рибосомы, обеспечивающие синтез белка. Рибосомы могут и свободно располагаться в цитоплазме. ЭПС бывают двух видов – шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая ЭПС выглядит как система тонких трубочек и цистерн. Рибосомы Мелкие тельца диаметром 15–20 мм. Осуществляют синтез белковых молекул, их сборку из аминокислот. Митохондрии Метахондрия Это двумембранные органоиды, внутренняя мембрана которых имеет выросты – кристы. Содержимое полостей – матрикс. Митохондрии содержат большое количество липопротеидов и ферментов. Это энергетические станции клетки. Пластиды (свойственны только клеткам растений!) Их содержание в клетке – главная особенность растительного организма. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов. Зеленые хлоропласты способны переходить в хромопласты – поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу. Основная функция хлоропластов – фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Комплекс Гольджи Это система полостей, отграниченных от цитоплазмы мембраной, может иметь разную форму. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Образует лизосомы. Основной структурный элемент аппарата Гольджи – мембрана, которая образует пакеты уплощенных цистерн, крупные и мелкие пузырьки. Цистерны аппарата Гольджи соединены с каналами эндоплазматической сети. Произведенные на мембранах эндоплазматической сети белки, полисахариды, жиры переносятся к аппарату Гольджи, накапливаются внутри его структур и «упаковываются» в виде вещества, готового либо к выделению, либо к использованию в самой клетке в процессе ее жизнедеятельности. В аппарате Гольджи образуются лизосомы. Кроме того, он участвует в наращивании цитоплазматической мембраны, например во время деления клетки. Лизосомы Тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. В лизосомах находится более 30 типов ферментов (вещества белковой природы, увеличивающие скорость химической реакции в десятки и сотни тысяч раз), способных расщеплять белки, нуклеиновые кислоты, полисахариды, жиры и другие вещества. Расщепление веществ с помощью ферментов называется лизисом, отсюда и происходит название органоида. Лизосомы образуются или из структур комплекса Гольджи, или из эндоплазматической сети. Одна из основных функций лизосом – участие во внутриклеточном переваривании пищевых веществ. Кроме того, лизосомы могут разрушать структуры самой клетки при ее отмирании, в ходе эмбрионального развития и в ряде других случаев. Вакуоли Представляют собой полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке. Клеточный центр Состоит из двух маленьких телец – центриолей и центросферы – уплотненного участка цитоплазмы. Играет важную роль при делении клеток Органоиды движения клеток Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений Миофибриллы – тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна Псевдоподии (выполняют функцию движения; за счет их происходит сокращение мышц) Сходства растительных и животных клеток К признакам, которыми похожи растительные и животные клетки, можно отнести следующие: Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы. Обменный процесс веществ и энергии близки по принципу осуществления. И в животной, и в растительной клетке имеется мембранное строение. Химический состав клеток очень похож. В клетках растения и животного присутствует похожий процесс клеточного деления. Растительная клетка и животная имеет единый принцип передачи кода наследственности. Существенные различия между растительной и животной клеткой Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них. Отличия клеток заключаются в следующем: Наличие пластидов. В растительных клетках различают такие виды пластидов как хлоропласты, хромопласты и лейкопласты. А в животных клетках пластиды отсутствуют. Питание растительной клетки считается автотрофным, который, в свою очередь, разделяется на фототрофный и хемотрофный. А животная клетка питается гетеротрофным путём, который включает паразитический и сапротрофный виды. Процесс распада аденозинтрифосфорной кислоты в растительной клетке происходит в хлоропластах и прочих клеточных элементах, где необходима затрата энергии. В животной клетке такой процесс происходит во всех частях клетки, требующих энергетической затраты. Наличием клеточного центра у растений отличаются клетки низших растений. А среди животных клеток клеточный цент распространён у всех. Клетка растения содержит клеточную стенку из целлюлозы, а у животной клетки таковой не имеется. Второстепенные и необязательные компоненты растительной клетки состоят из запаса питательных веществ в качестве крахмальных зёрен, а также зёрен белка и капель масла. Также сюда входят вакуоли, содержащие клеточный сок и солевые кристаллы. А животная клетка содержит в качестве необязательных компонентов питательные вещества из зёрен и капель белков, жиров и углеводов. Также есть содержание солевых кристаллов, пигментов и конечных обменных продуктов. Растительные вакуоли представляют собой полости с соком. А у животной клетки имеются мелкие вакуоли, разделяющиеся на сократительные, пищеварительные и выделительные. Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах. ВидеоИсточникиhttp://www.activestudy.info/stroenie-kletki/ http://scienceland.info/biology7/animal-cell http://vsedz.ru/content/3-строение-растительной-и-животной-клеток http://uclg.ru/education/biologiya/8_klass/stroenie_organizma/lecture_lec_osnovyi_tsitologii_-_kletka.html http://shkolo.ru/stroenie-kletki/ https://dist-tutor.info/mod/resource/view.php?id=12830 http://poznayka.org/s36039t1.html http://vchemraznica.ru/chem-rastitelnaya-kletka-otlichaetsya-ot-zhivotnoj/

Строение животной клетки

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10–20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Основные свойства клетки:

  • обмен веществ
  • чувствительность
  • способность к размножению

Клетка живет во внутренней среде организма – кровь, лимфа и тканевая жидкость. Основными процессами в клетке являются окисление, гликолиз – расщепление углеводов без кислорода. Проницаемость клетки избирательна. Она определяется реакцией на высокую или низкую концентрацию солей, фаго- и пиноцитоз. Секреция – образование и выделение клетками слизеподобных веществ (муцин и мукоиды), защищающие от повреждения и участвующие в образовании межклеточного вещества.

Виды движений клетки:

  1. амебоидное (ложноножки) – лейкоциты и макрофаги.
  2. скользящее – фибробласты
  3. жгутиковый тип – сперматозоиды (реснички и жгутики)

Деление клеток:

  1. непрямое (митоз, кариокинез, мейоз)
  2. прямое (амитоз)

При митозе ядерное вещество распределяется равномерно между дочерними клетками, т.к. хроматин ядра концентрируется  в хромосомах, которые расщепляются на две хроматиды, расходящиеся в дочерние клетки.

Структуры живой клетки

Хромосомы

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Цитоплазма

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы. Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100–120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках низших животных и растений – центросома, животных – лизосомы, у растений – пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Мембрана

Клетка окружена плазматической мембраной (от лат. «мембрана» – кожица, пленка). Ее функции очень разнообразны, но основная – защитная: она защищает внутреннее содержимое клетки от воздействий внешней среды. Благодаря различным выростам, складкам на поверхности мембраны клетки прочно соединяются между собой. Мембрана пронизана специальными белками, через которые могут перемещаться определенные вещества, необходимые клетке или подлежащие удалению из нее. Таким образом, через мембрану осуществляется обмен веществ. Причем, что очень важно, вещества пропускаются через мембрану избирательно, за счет чего в клетке поддерживается нужный набор веществ.

У растений плазматическая мембрана снаружи покрыта плотной оболочкой, состоящей из целлюлозы (клетчатки). Оболочка выполняет защитную и опорную функции. Она служит внешним каркасом клетки, придавая ей определенную форму и размеры, препятствуя чрезмерному набуханию.

Ядро

Расположено в центре клетки и отделено двуслойной оболочкой. Имеет шаровидную или вытянутую форму. Оболочка – кариолемма – имеет поры, необходимые для обмена веществ между ядром и цитоплазмой. Содержимое ядра жидкое – кариоплазма, в которой содержатся плотные тельца – ядрышки. В них выделяется зернистость – рибосомы. Основная масса ядра – ядерные белки – нуклеопротеиды, в ядрышках – рибонуклеопротеиды, а в кариоплазме – дезоксирибонуклеопротеиды. Клетка покрыта клеточной оболочкой, которая состоит из белковых и липидных молекул, имеющих мозаичную структуру. Оболочка обеспечивает обмен веществ между клеткой и межклеточной жидкостью.

ЭПС

Это система канальцев и полостей, на стенках которых располагаются рибосомы, обеспечивающие синтез белка. Рибосомы могут и свободно располагаться в цитоплазме. ЭПС бывают двух видов – шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая ЭПС выглядит как система тонких трубочек и цистерн.

Рибосомы

Мелкие тельца диаметром 15–20 мм. Осуществляют синтез белковых молекул, их сборку из аминокислот.

Митохондрии

Метахондрия

Это двумембранные органоиды, внутренняя мембрана которых имеет выросты – кристы. Содержимое полостей – матрикс. Митохондрии содержат большое количество липопротеидов и ферментов. Это энергетические станции клетки.

Пластиды (свойственны только клеткам растений!)

Их содержание в клетке – главная особенность растительного организма. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов.

Зеленые хлоропласты способны переходить в хромопласты – поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу.

Основная функция хлоропластов – фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

Комплекс Гольджи

Это система полостей, отграниченных от цитоплазмы мембраной, может иметь разную форму. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Образует лизосомы.

Основной структурный элемент аппарата Гольджи – мембрана, которая образует пакеты уплощенных цистерн, крупные и мелкие пузырьки. Цистерны аппарата Гольджи соединены с каналами эндоплазматической сети. Произведенные на мембранах эндоплазматической сети белки, полисахариды, жиры переносятся к аппарату Гольджи, накапливаются внутри его структур и «упаковываются» в виде вещества, готового либо к выделению, либо к использованию в самой клетке в процессе ее жизнедеятельности. В аппарате Гольджи образуются лизосомы. Кроме того, он участвует в наращивании цитоплазматической мембраны, например во время деления клетки.

Лизосомы

Тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. В лизосомах находится более 30 типов ферментов (вещества белковой природы, увеличивающие скорость химической реакции в десятки и сотни тысяч раз), способных расщеплять белки, нуклеиновые кислоты, полисахариды, жиры и другие вещества. Расщепление веществ с помощью ферментов называется лизисом, отсюда и происходит название органоида. Лизосомы образуются или из структур комплекса Гольджи, или из эндоплазматической сети. Одна из основных функций лизосом – участие во внутриклеточном переваривании пищевых веществ. Кроме того, лизосомы могут разрушать структуры самой клетки при ее отмирании, в ходе эмбрионального развития и в ряде других случаев.

Вакуоли

Представляют собой полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Клеточный центр

Состоит из двух маленьких телец – центриолей и центросферы – уплотненного участка цитоплазмы. Играет важную роль при делении клеток

Органоиды движения клеток

  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы – тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии (выполняют функцию движения; за счет их происходит сокращение мышц)

Сходства растительных и животных клеток

К признакам, которыми похожи растительные и животные клетки, можно отнести следующие:

  1. Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы.
  2. Обменный процесс веществ и энергии близки по принципу осуществления.
  3. И в животной, и в растительной клетке имеется мембранное строение.
  4. Химический состав клеток очень похож.
  5. В клетках растения и животного присутствует похожий процесс клеточного деления.
  6. Растительная клетка и животная имеет единый принцип передачи кода наследственности.

Существенные различия между растительной и животной клеткой

Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них.

Отличия клеток заключаются в следующем:

  1. Наличие пластидов. В растительных клетках различают такие виды пластидов как хлоропласты, хромопласты и лейкопласты. А в животных клетках пластиды отсутствуют.
  2. Питание растительной клетки считается автотрофным, который, в свою очередь, разделяется на фототрофный и хемотрофный. А животная клетка питается гетеротрофным путём, который включает паразитический и сапротрофный виды.
  3. Процесс распада аденозинтрифосфорной кислоты в растительной клетке происходит в хлоропластах и прочих клеточных элементах, где необходима затрата энергии. В животной клетке такой процесс происходит во всех частях клетки, требующих энергетической затраты.
  4. Наличием клеточного центра у растений отличаются клетки низших растений. А среди животных клеток клеточный цент распространён у всех.
  5. Клетка растения содержит клеточную стенку из целлюлозы, а у животной клетки таковой не имеется.
  6. Второстепенные и необязательные компоненты растительной клетки состоят из запаса питательных веществ в качестве крахмальных зёрен, а также зёрен белка и капель масла. Также сюда входят вакуоли, содержащие клеточный сок и солевые кристаллы. А животная клетка содержит в качестве необязательных компонентов питательные вещества из зёрен и капель белков, жиров и углеводов. Также есть содержание солевых кристаллов, пигментов и конечных обменных продуктов.
  7. Растительные вакуоли представляют собой полости с соком. А у животной клетки имеются мелкие вакуоли, разделяющиеся на сократительные, пищеварительные и выделительные.

Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах.

Видео

Источники

mfina.ru

Строение животной клетки | Дистанционные уроки

23-Июл-2013 | Нет комментариев | Лолита Окольнова

Как мы уже обсуждали в теме «Строение клетки«, есть органеллы, входящие в состав клеток любых живых организмов, есть органеллы, присущие клеткам только определенных царств (растительным, животным, клеткам грибов и бактерий).

 

   

 

Основное питательное вещество клетки животных — белок.

 

Основные органеллы клетки животных:

 

  1. Ядро и ядрышко — хранение и передача наследственной информации. Существуют многоядерные клетки животных, например, мышечные клетки; есть и безъядрные, например, эритроциты.
  2. Мембрана клетки — защита, поддержание формы, активный и пассивный транспорт веществ.
  3. Цитоплазма  — внутренняя жидкая среда любой клетки, содержит все органойды, органические и неорганические вещества. 

    Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор (внутреннее давление) клетки.

     

  4. Эндоплазматическая сеть (эндоплазматический ретикулум) — это и внутренний «скелет» клетки, и обеспечение транспорта питательных веществ, в случае шероховатой ЭПС — это синтез белка,.
  5. Аппарат Гольджи — «сортирует»  белки, выводит вещества, произведенные ЭПС, образует лизосомы.
  6. Лизосомы — пищеварительные органеллы клетки.
  7. Митохондрия — «энергетическая станция» клетки.
  8. Рибосомы — производство белка.
  9. Центриоли (микротрубочки, клеточный центр) — это органелла, присущая только клетке животных.Эта органелла был изучена сравнительно недавно, потому что в световой микроскоп (длина микротрубочки 0,2 — 0,6 мкм) ее можно было увидеть, но изучить строение можно было только с помощью электронного микроскопа.

    Между собой микротрубочки соединены белковыми связями — так они удерживаются вместе.

 В клетке центриоли располагаются обычно возле ядра, сами трубочки находятся в слегка уплотненном белковом окружении — матриксе. Такая система называется клеточным центром. 

Основные функции клеточного центра — участие в делении клетки, функции микротрубочек —  формирование цитоскелета клетки… Когда начинается процесс профазы митоза, они формируют веретено деления и помогают хромосомам разъезжаться к разным полюсам клетки — они играют роль своеобразных рельс.

  

То, что здесь перечислено — это общее строение животной клетки. В многоклеточных организмах клетки слагаются в ткани и строение и функции этих тканей очень различны — в одних некоторые органеллы могут отсутствовать, в других какая-то из органелл доминирует как по размеру, так и по функциям, но, глядя на клетку в микроскоп, всегда можно точно определить, к какому царству она относится.

 

 

  • в ЕГЭ это вопрос A2 — Клеточная теория. Многообразие клеток
  • A3 — Клетка: химический состав, строение, функции органоидов
  • А27 — Клеточный ровень организации
  • B2

 

       

Еще на эту тему:

Обсуждение: "Строение животной клетки"

(Правила комментирования)

distant-lessons.ru

Строение клетки

Клетки, образующие ткани растений и животных, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Биологические превращения, происходящие в клетке, неразрывно связаны с теми структурами живой клетки, которые отвечают за выполнение гой или иной функции. Такие структуры получили название органоидов.

Клетки всех типов содержат три основных, неразрывно связанных между собой компонента:

  1. структуры, образующие ее поверхность: наружная мембрана клетки, или клеточная оболочка, или цитоплазматическая мембрана;
  2. цитоплазма с целым комплексом специализированных структур — органоидов (эндоплазматическая сеть, рибосомы, митохондрии и пластиды, комплекс Гольджи и лизосомы, клеточный центр), присутствующих в клетке постоянно, и временных образований, называемых включениями;
  3. ядро — отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

Строение клетки

Поверхностный аппарат клетки (цитоплазматическая мембрана) растений и животных имеет некоторые особенности.

У одноклеточных организмов и лейкоцитов наружная мембрана обеспечивает проникновение в клетку ионов, воды, мелких молекул других веществ. Процесс проникновения в клетку твердых частиц называется фагоцитозом, а попадание капель жидких веществ — пиноцитозом.

Наружная плазматическая мембрана регулирует обмен веществ между клеткой и внешней средой.

В клетках эукариот есть органоиды, покрытые двойной мембраной, — митохондрии и пластиды. Они содержат собственные ДНК и синтезирующий белок аппарат, размножаются делением, то есть имеют определенную автономию в клетке. Кроме АТФ, в митохондриях происходит синтез небольшого количества белка. Пластиды свойственны клеткам растений и размножаются путем деления.

Строение клеточной оболочки Виды клеток Строение и функции наружного и внутреннего слоев клеточной оболочки химический состав функции
наружный слой (хим. состав, функции)

внутренний слой — плазматическая мембрана

Клетки растений Состоят из клетчатки. Этотслой служит каркасом клетки и выполняет защитную функцию Два слоя белка, между ними — слой липидов Ограничивает внутреннюю среду клетки от внешней и поддерживает эти различия
Клетки животных Наружный слой (гликокаликс) очень тонкий и эластичный. Состоит из полисахаридов и белков. Выполняет защитную функцию. Тоже Специальные ферменты плазматической мембраны регулируют проникновение многих иононов и молекул в клетку и выход их во внешнюю среду

К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, различные типы вакуолей.

Современные средства исследования позволили биологам установить, что по строению клетки все живые существа следует делить на организмы «безъядерные» — прокариоты и «ядерные» — эукариоты.

У прокариот-бактерий и сине-зеленых водорослей, а также вирусов имеется всего одна хромосома, представленная молекулой ДНК (реже РНК), расположенной непосредственно в цитоплазме клетки.

Строение органоидов цитоплазмы клетки и их функции Главные рганоиды Строение Функции
Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды
  1. Обеспечивает взаимодействие ядра и органоидов
  2. Регулирует скорость биохимических процессов
  3. Выполняет транспортную функцию
ЭПС — эндоплазматическая сеть Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая
  1. Осуществляет реакции, связанные с синтезом белков, углеводов, жиров
  2. Способствует переносу и циркуляции питательных веществ в клетке
  3. Белок синтезируется на гранулированной ЭПС, углеводы и жиры — на гладкой ЭПС
Рибосомы Мелкие тельца диаметром 15—20 мм Осуществляют синтез белковых молекул, их сборку из аминокислот
Митохондрии Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная — гладкая, и внутренняя — образует выросты-кресты, на которых расположены дыхательные ферменты
  1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)
  2. Синтез АТФ осуществляется ферментами на мембранах митохондрий
Пластиды — свойственны только клеткам раститений, бывают трех типов: Двумембранные органеллы клетки
хлоропласты Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл Используют световую энергию солнца и создают органические вещества из неорганических
хромопласты Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина Придают различным частям растений красную и желтую окраску
лейкопласты Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) В них откладываются запасные питательные вещества
Комплекс Гольджи Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце
  1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети
  2. Образует лизосомы
Лизосомы Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов Выполняют пищеварительную функцию — переваривают пищевые частицы и удаляют отмершие органоиды
Органоиды движения клеток
  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы — тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии
  1. Выполняют функцию движения
  2. За счет их происходит сокращение мышц
  3. Передвижение за счет сокращения особого сократительного белка
Клеточные включения Это непостоянные компоненты клетки — углеводы, жиры и белки Запасные питательные вещества, используемые в процессе жизнедеятельности клетки
Клеточный центр Состоит из двух маленьких телец — центриолей и центросферы — уплотненного участка цитоплазмы Играет важную роль при делении клеток

Эукариоты обладают большим богатством органоидов, имеют ядра, содержащие хромосомы в виде нуклеопротеидов (комплекс ДНК с белком гистоном). К эукариотам относятся большинство современных растений и животных как одноклеточных, так и многоклеточных.

Выделяют два уровня клеточной организации:

  • прокариотический — их организмы очень просто устроены — это одноклеточные или колониальные формы, составляющие царство дробянок, синезеленых водорослей и вирусов
  • эукариотический — одноклеточные колониальные и многоклеточные формы, от простейших — корненожки, жгутиковые, инфузории — до высших растений и животных, составляющие царство растений, царство грибов, царство животных

Особенности клеточного строения прокариотов н эукариотов

Строение и функции ядра клетки Главные органоиды Строение Функции
Ядро растительной и животной клетки Округлой или овальной формы
Ядерная оболочка состоит из 2-х мембран с порами
  1. Отграничивает ядро от цитоплазмы
  2. Осуществляется обмен между ядром и цитоплазмой
Ядерный сок (кариоплазма) — полужидкое вещество Среда, в которой находятся ядрышки и хромосомы
Ядрышки сферической или неправильной формы В них синтезируется РНК, которая входит в состав рибосомы
Хромосомы — плотные удлиненные или нитевидные образования, видимые только при делении клетки Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Все органоиды клетки, несмотря на особенности их строения и функций, находятся во взаимосвязи и «работают» на клетку, как на единую систему, в которой связующим звеном является цитоплазма.

Особые биологические объекты, занимающие промежуточное положение между живой и неживой природой, представляют собой вирусы, открытые в 1892 г. Д. И. Ивановским, они составляют в настоящее время объект особой науки — вирусологии.

Вирусы размножаются только в клетках растений, животных и человека, вызывая различные заболевания. Вирусы имеют очень прослое строение и состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки. Вне клеток хозяина вирусная частица не проявляет никаких жизненных функций: не питается, не дышит, не растет, не размножается.

shkolo.ru

характеристика, строение и основные органеллы

Клетки животных являются типичными эукариотическими клетками, заключенными в плазматическую мембрану и содержат окруженное мембраной ядро ​​и органеллы. В отличие от эукариотических клеток растений и грибов, клетки животных не имеют клеточной стенки. Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили царство животные. Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Читайте также: Основные отличия строения клеток растений и животных.

Клетки были обнаружены в 1665 году британским ученым Робертом Гуком, который впервые наблюдал их в своем грубом (по сегодняшним меркам) оптическом микроскопе XVII века. Фактически, Гук придумал термин «клетка» в биологическом контексте. Микроскоп является фундаментальным инструментом в области клеточной биологии и часто используется для наблюдения или изучения клеток различных организмов.

Особенности животных и их клеток

Отсутствие жесткой клеточной стенки позволило животным развить широкое разнообразие типов клеток, тканей и органов. Специализированные клетки, образовавшие нервы и ткани мышц, которые невозможно развить растениям, способствовали мобильности этих организмов. Способность двигаться с помощью специализированных мышечных тканей является отличительной чертой животного мира, хотя некоторые животные, в первую очередь губки, не обладают дифференцированными тканями. Примечательно, что простейшие могут передвигаться, но только через немышечные движение, а при помощи псевдоподий, ресничек и жгутиков.

Животное царство уникально среди эукариотических организмов, потому что большинство тканей животных связаны во внеклеточном матриксе тройной спиралью белка, известной как коллаген. Растительные и грибковые клетки связаны в тканях или агрегатах другими молекулами, такими как пектин. Тот факт, что никакие другие организмы не используют коллаген таким образом, является одним из признаков того, что все животные возникли от одного одноклеточного предка. Кости, раковины, спикулы и другие упрочненные структуры образуются, когда коллагенсодержащий внеклеточный матрикс между животными клетками становится кальцифицированным.

Животные — большая и невероятно разнообразная группа организмов. Будучи мобильным, они способны воспринимать и реагировать на окружающую среду, обладают гибкостью при поиске пищи, защите и размножении. Однако, в отличие от растений, животные не могут производить свою пищу, и поэтому всегда прямо или косвенно зависят от растительной жизни.

Большинство клеток животных диплоидны, что означает, что их хромосомы существуют в гомологичных парах. Известно, что иногда встречаются различные хромосомные плоиды. Распространение животных клеток происходит разными путями. В случаях полового размножения сначала необходим клеточный процесс мейоза, так что могут быть получены гаплоидные дочерние клетки или гаметы. Затем две гаплоидные клетки сливаются с образованием диплоидной зиготы, которая развивается в новый организм, путем деление клеток в процессе митоза.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое массовое вымирание закончилось этим периодом, но в течение последующего кембрийского периода, взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что позвоночные животные появились до раннего ордовикского периода (505-438 миллионов лет назад).

Строение животных клеток

Схема строения клетки животных

Используйте приведенные ниже ссылки, чтобы получить более подробную информацию о различных органеллах, которые содержатся в клетках животных.

  • Центриоли — самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.
  • Реснички и Жгутики — необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для передвижения клетки или группы клеток.
  • Эндоплазматический ретикулум — сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой.
  • Эндосомы — мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как эндоцитоз, и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время экзоцитоза или клеточной секреции.
  • Комплекс (аппарат) Гольджи — отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты — широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов цитоскелета. Они функционируют как элементы, которые помогают поддерживать форму и жесткость клетки.
  • Лизосомы — осуществляют пищеварительные функции, перерабатывая клеточные отходы.
  • Микрофиламенты — нити из глобулярных белков, называемые актином. Эти филаменты являются преимущественно структурными по своей функции и важным компонентом цитоскелета.
  • Микротрубочки — прямые, полые цилиндры, присутствующие в цитоплазме всех эукариотических клеток (у прокариот их нет) и выполняющие различные функции, от транспортировки до структурной поддержки.
  • Митохондрии — продолговатые органеллы, которые находятся в цитоплазме каждой эукариотической клетки. В клетке животных они являются основными генераторами энергии, превращая кислород и питательные вещества в энергию.
  • Ядро — высокоспециализированная органелла, которая служит в качестве информационно-административного центра клетки. Эта органелла имеет две основные функции: 1) хранение наследственного материала клетки или ДНК; 2) координиция деятельность клетки, которая включает в себя рост, посредственный метаболизм, синтез белка и размножение (деление клеток).
  • Пероксисомы — группа связанных одной мембраной сферических органелл, встречающиеся в цитоплазме.
  • Плазматическая мембрана — защитный слой клетки, который также регулируют прохождение молекул внутрь и из клеток.
  • Рибосомы — крошечные органеллы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы состоят из четырех нитей РНК. В прокариотах они включают три нити РНК.
← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Основные отличия строения растительных и животных клеток

Клетки животных и растений схожи между собой, поскольку они являются эукариотическими клетками, имеющими истинное ядро, которое содержит ДНК и отделено от других клеточных структур ядерной мембраной. Оба типа клеток имеют сходные процессы размножения (деления), которые включают митоз и мейоз.

Животные и растительные клетки получают энергию, используемую ими для роста и поддержания нормального функционирования в процессе клеточного дыхания. Также, характерным для обоих типов клеток является наличие клеточных структур, известных как органеллы, которые специализированы для выполнения конкретных функций, необходимых для нормальной работы. Животные и растительные клетки объединяет наличие ядра, комплекса Гольджи, эндоплазматического ретикулума, рибосом, митохондрий, пероксисом, цитоскелета и клеточной (плазматической) мембраны. Несмотря на схожие характеристики животных и растительных клеток, они также имею множество различий, которые рассмотрены ниже.

Основные различия в клетках животных и растений

Схема строения животной и растительной клеток

  • Размер: клетки животных, как правило, меньше, чем растительные клетки. Размер животных клеток колеблются от 10 до 30 микрометров в длину, а клеток растений — от 10 до 100 микрометров.
  • Форма: клетки животных бывают разных размеров и имеют округлые или неправильные формы. Растительные клетки более схожи по размеру и обычно имеют форму прямоугольника или куба.
  • Хранение энергии: животные клетки хранят энергию в виде сложного углеводного гликогена. Растительные клетки хранят энергию в виде крахмала.
  • Белки: из 20 аминокислот, необходимых для синтеза белков, только 10 производятся естественным образом в клетках животных. Другие так называемые незаменимые аминокислоты получаются из пищи. Растения способны синтезировать все 20 аминокислот.
  • Дифференциация: у животных только стволовые клетки способны превращаться в другие типы клеток. Большинство типов растительных клеток способны дифференцироваться.
  • Рост: клетки животных увеличиваются в размерах, увеличивая число клеток. Растительные клетки в основном увеличивают размер клеток, становясь более крупными. Они растут, накапливая больше воды в центральной вакуоли.
  • Клеточная стенка: у клеток животных нет клеточной стенки, но есть клеточная мембрана. Клетки растений имеют клеточную стенку, состоящую из целлюлозы, а также клеточной мембраны.
  • Центриоли: клетки животных содержат эти цилиндрические структуры, которые организуют сборку микротрубочек во время деления клеток. Клетки растений обычно не содержат центриоли.
  • Реснички: встречаются в клетках животных, но, как правило, отсутствуют в растительных клетках. Реснички — это микротрубочки, которые обеспечивают клеточную локомоцию.
  • Цитокинез: разделение цитоплазмы при делении клеток, происходит в клетках животных, когда образуется спайная борозда, которая зажимает клеточную мембрану пополам. В цитокинезе растительных клеток образуется клеточная пластинка, разделяющая клетку.
  • Гликсисомы: эти структуры не встречаются в животных клетках, но присутствуют в растительных. Гликсисомы помогают расщеплять липиды на сахара, особенно в прорастающих семенах.
  • Лизосомы: клетки животных обладают лизосомами, которые содержат ферменты, переваривающие клеточные макромолекулы. Растительные клетки редко содержат лизосомы, поскольку вакуоль растения обрабатывает деградацию молекулы.
  • Пластиды: в животных клетках нет пластид. Растительные клетки имеют такие пластиды, как хлоропласты, необходимые для фотосинтеза.
  • Плазмодесмы: клетки животных не имеют плазмодесм. Растительные клетки содержат плазмодесмы, которые представляет собой поры между стенками, позволяющие молекулам и коммуникационным сигналам проходить между отдельными клетками растений.
  • Вакуоль: животные клетки могут иметь много маленьких вакуолей. Клетки растений содержат большую центральную вакуоль, которая может составляет до 90% объема клетки.

Читайте также: Эукариотические и прокариотические клетки: функции, строение и отличия.

Прокариотические клетки

Эукариотические клетки животных и растений также отличаются от прокариотических клеток, таких как бактерии. Прокариоты обычно являются одноклеточными организмами, тогда как животные и растительные клетки обычно многоклеточные. Эукариоты более сложны и больше, чем прокариоты. К клеткам животных и растений относятся многие органеллы, не обнаруженные в прокариотических клетках. Прокариоты не имеют истинного ядра, поскольку ДНК не содержится в мембране, а свернута в области цитоплазмы, называемой нуклеоидом. В то время как животные и растительные клетки размножаются митозом или мейозом, прокариоты чаще всего размножаются с помощью деления или дробления.

Другие эукариотические организмы

Клетки растений и животных не являются единственными типами эукариотических клеток. Протесты (например, эвглена и анеба) и грибы (например, грибы, дрожжи и плесень) — два других примера эукариотических организмов.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Строение животной и растительной клетки

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Строение животной (слева) и растительной (справа) клеток

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10—20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому.

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы.

Строение клетки по данным электронной микроскопии

Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100—120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках животных и низших растений — центросома, животных — лизосомы, у растений — пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Центриоли (клеточный центр) состоит из двух компонентов: триоли и центросферы — особым образом дифференцированного участка цитоплазмы. Центриоли состоят из двух мелких округлых колец. В электронном микроскопе видно, что эти тельца представляют собой систему строго ориентированных трубочек.

Митохондрии в клетках бывают разной формы: палочковидные, нулообразные и др. Полагают, что форма их может изменяться зависимости от функционального состояния клетки. Размеры митохондрии варьируют в значительных пределах: от 0,2 до 2—7 мк. клетках разных тканей они располагаются или равномерно по цитоплазме, или с большей концентрацией в определенных участках. Установлено, что митохондрии принимают участие в окислительных процессах обмена веществ клетки. Митохондрии состоят белков, липидов и нуклеиновых кислот. В них найден ряд ферментов, участвующих в аэробном окислении, а также связанных реакцией фосфорилирования. Полагают, что в митохондриях происходят все реакции цикла Кребса: большая часть освобождаются при этом энергии расходуется на работу клетки.

Строение митохондрий оказалось сложным. Поданным электрон-микроскопических исследований, они представляют собой тельца, суженные гидрофильным золем заключенные в избирательно проницаемую оболочку — мембрану, толщина которой около 80 Å. Митохондрии имеют слоистую структуру в виде системы утренних гребней-кристаллов, толщина которых 180—200 Å. Они отходят от внутренней поверхности мембран, образуя кольцобразные диафрагмы. Предполагается, что митохондрии размножаются путем деления. При делении клетки распределение их по крайним клеткам не подчиняется строгой закономерности, так как % по-видимому, могут быстро размножаться до необходимого клетки количества. По форме, величине и роли в биохимических процессах митохондрии являются характерными для каждого типа ни и вида организма.

При биохимических исследованиях цитоплазмы в ней найдены микросомы, которые представляют собой фрагменты мембран с структурой эндоплазматической сети.

В значительном количестве в цитоплазме находятся рибосомы размерам они варьируют от 150 до 350 Å и в световом микроскопе невидимы. Особенностью их является высокое содержание РНК и белков: около 50% всей клеточной РНК находится в рибосомах, что указывает на большое значение последних в деятельности клетки. Установлено, что рибосомы участвуют в синтезе клеточных белков под контролем ядра. Репродукция самих рибосом также контролируется ядром; в отсутствии ядра они теряют способность синтезировать цитоплазматические белки и исчезают.

В цитоплазме имеется также аппарат Гольджи. Он представляет систему гладких мембран и канальцев, располагающихся вокруг ядра или полярно. Предполагают, что этот аппарат обеспечивает выделительную функцию клетки. Тонкое строение его остается еще не выясненным.

Органоидами цитоплазмы являются также лизосомы — литические тела, выполняющие функцию пищеварения внутри клетки. Они открыты пока только в животных клетках. Лизосомы содержат активный сок — ряд ферментов, способных расщеплять белки, нуклеиновые кислоты и полисахариды, поступающие в клетку. В случае если мембрана лизосомы разрывается и ферменты переходят в цитоплазму, то они «переваривают» другие элементы, цитоплазмы и приводят к растворению клетки — «самопоеданию».

Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов, а также белков, липидов и нуклеиновых кислот. По окраске и выполняемой функции пластиды могут быть разделены на три группы: лейкопласты, хлоропласты и хромопласты. Лейкопласты — бесцветные пластиды, участвующие в синтезе крахмала из сахаров. Хлоропласты представляют белковые тела более плотной консистенции, чем цитоплазма; наряду с белками они содержат много липидов. Белковое тело (строма) хлоропластов несет пигменты, в основном — хлорофилл, чем и объясняется их зеленая окраска, хлоропласты осуществляют фотосинтез. Хромопласты содержат пигменты — каротиноиды (каротин и ксантофилл).

Пластиды размножаются путем прямого деления и, по-видимому, не возникают в клетке заново. До сих пор нам не известен принцип их распределения по дочерним клеткам при делении. Возможно, что строгого механизма, обеспечивающего равное распределение, не существует, так как необходимое число их может быстро восстанавливаться. При бесполом и половом размножении растений через материнскую цитоплазму могут наследоваться признаки, определяемые свойствами пластид.

Здесь мы не будем останавливаться на особенностях изменений отдельных элементов клетки в связи с выполняемыми ими физиологическими функциями, так как это входит в область изучения цитологии, цитохимии, цитофизики и цитофизиологии. Однако следует отметить, что в последнее время исследователи приходят к очень важному выводу в отношении химической характеристики органелл цитоплазмы: ряд из них, такие как митохондрии, пластиды и даже центриоли, имеет собственную ДНК. Какова роль ДНК и каково состояние, в котором она находится, остается пока неясным.

Мы познакомились с общей структурой клетки лишь для того, чтобы в последующем оценить роль отдельных ее элементов в обеспечении материальной преемственности между поколениями, т. е. в наследственности, ибо все структурные элементы клетки принимают участие в ее сохранении. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Структура и функции клетки. | Биология

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма. Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клеткиПлазматическая мембрана. Каждая клетка животных, растений, грибов ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение внутренней среды, сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы. Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи. Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение: окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосомЭндоплазматическая сеть. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.Рибосомы. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).Митохондрии. Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.Пластиды. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.Хромопласты. Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. Корень моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр. Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения. Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.Зерна, гранулы, капли Функции: непостоянные образования, запасающие органические вещества и энергиюЯдро. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

ebiology.ru


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта