Технология микроклонального размножения. Микроклональное размножение растений в домашних условиях
Микроклональное размножение буцефаландр как альтернатива генеративному способу
В своих предыдущих публикациях я неоднократно писал, что получение посадочного материала буцефаландр для аквариума в результате закупки диких растений из природы – это путь в никуда. Основания для такого утверждения очевидны. Систематический сбор приводит к значительному сокращению природных популяций, а большинство экспортируемых растений гибнет в руках любителей из-за различных заболеваний. Для того чтобы сохранить буцефаландры в природе и в тоже время сделать их доступными для аквариумиста, необходимо осваивать эффективные методы их коммерческого разведения в неволе. Одним из таких способов, безусловно, является генеративное (семенное) размножение. Однако в настоящей заметке я хочу рассмотреть альтернативный метод – микроклональное размножение.
Для начала следует разобраться с понятиями “микроклональное” и “меристемное” размножения. Строго говоря, это не одно и то же. Меристемы являются всего лишь быстро делящимися образовательными тканями. Они присутствуют в любой растительной почке, поэтому обычное вегетативное размножение можно так же считать меристемным. Например, когда мы инициируем вегетативное размножение у анубиаса с помощью надламывания корневища, происходит активация пазушных меристем и дальнейшее образование молодых побегов из спящих почек. То же самое относится к эхинодорусам. Метод доступен каждому и легко выполним в домашних условиях. Однако это не совсем то, что нам нужно. Во-первых, материал не проходит стерилизацию, а во-вторых, масштабы размножения очень низки.
В тоже время, в классической схеме микроклонального размножения подразумевается на первой стадии получение стерильной дедифференцированной тканевой культуры (каллуса) практически из любого вегетативного органа растения, которую в дальнейшем подвергают дифференциации с образованием множества молодых побегов. Осуществляется это все с помощью варьирования концентраций фитогормонов – ауксинов и цитокининов. Первые вызывают дедифференциацию тканей, а вторые – их интенсивное деление. Все операции и выращивание проводится в стерильных условиях, и по этой причине трудновыполнимо в домашних условиях.
Существует также промежуточный вариант, в котором вырезают пазушную почку, стерилизуют ее и в дальнейшем выращивают in vitro. Выращивание возможно как безгормонально, так и с добавлением цитокининов. В последнем случае количество дочерних растений будет больше.
О том, что буцефаландры уже несколько лет успешно размножают микроклонально, мне рассказал Владимир Желтоног, владелец аквариумных магазинов “Водяной”. В частности, эта сеть регулярно закупает меристемные буцефаландры из Тайланда. Каким из вышеописанных способов происходит размножение из рассмотренных фотографий сказать трудно. Скорее всего, это промежуточный вариант, поскольку стадий получения каллусной культуры в фотоматериале не представлено.
В заключение рассмотрим некоторые плюсы и минусы буцефаландр полученных микроклональным способом. Самым главным преимуществом, безусловно, является отсутствие у них инфекционных заболеваний. Во-вторых, не маловажное значение имеет генетическая однородность материала, которое часто не удается соблюсти при семенном способе. Стоит однако оговорится, что при несоблюдении методик, в микроклональном варианте также возможно появление неоднородности из-за мутаций. Между тем, главным камнем преткновения меристемных растений является их адаптация к обычным (нестерильным) условиям. Причем дело тут даже не в многообразии различных микроорганизмов в естественной среде, а в изменении влажности воздуха. “В пробирке” влажность всегда высокая, из-за чего у меристемных растений с рождения на листьях открыты устьица, а закрывать их они еще не научились. В результате, после помещения в обычную воздушную среду, такие растения начинают отставать в росте или могут полностью высохнуть. Однако все это не касается буцефаландр и других аквариумных растений, ведь они предназначены для жизни под водой!
www.aquaflore.ru
Каковы главные основы микроразмножения комнатных растений?
Технику микроразмножения можно практиковать в домашних условиях. Многие растения можно размножить только путём микроразмножения. Так же этот метод хорош для выведения новых разновидностей растений.
Микроразмножение- это методика размножения растений в лабораторных условиях или в искусственно созданных условиях. Для микроразмножения берутся побегообразные участки растений ( кончики корней, основания молодых листьев, боковые почки) , отделяют от основного растения и помещают в питательную среду в специальный контейнер или пробирку, где они продолжают своё развитие.
У такого размножения множество положительных моментов.Особенно такой вид рекомендован для растений, зараженных вирусом. Учёными было обнаружено, что на верхушках корней образовательные ткани растения не повреждаются вирусом. Размножение растения таким способом позволяет получить абсолютно здоровое растение от зараженного.
Микроразмножение позволяет размножить те виды и разновидности растений, которые не дают семян и которые поэтому невозможно скрестить с другим видом.
Микроразмножение в домашних условиях.
Необходимые предметы.
Для него можно использовать аквариум достаточного размер. Рядом должна находится лампа дневного света ( 1000-1500 лк), дополнительная система обогрева ( температура окружающей среды должна быть 20-25 градусов), система аэрации, для которой хорошо подойдет электровентилятор.
Стерилизатор необходим для стерилизации предметов, которыми будет производиться срезка посевного материала и стерилизации субстрата и посадочных контейнеров. Дезинфицирующий отбеливатель ( гипохлорид натрия) разводится в дистиллированной воде до 5 % концентрации и используется для стерилизации рабочей поверхности, после её дезинфекции поверхность промывается дистиллированной водой. 1-2 % раствор гипохлорита натрия нужен для стерилизации микрочеренков. Все работы проводятся в медицинских перчатках.
Для срезки микрочеренков используют безопасные бритвы. Черенки складываются в специально подготовленные емкости с широким горлышком.
Субстратом для размножения обычно служит агар-агар. К агар-агару добавляют гормоны и удобрения. Готовые среды для микроразмножения можно найти в аптеках. Полученные растеньица высаживают в торфяной субстрат с нейтральной pH средой. Используют фитогормоны двух типов , для стимуляции роста и пролиферации побегов.
Начало процесса микроразмножения.
Для начала подготовить аквариум или шкаф. оснастить его освещением, отоплением, вентиляцией.
Подготовить питательную среду, обогатив её фитогормонами, наполняют этой смесью колбы или контейнеры. После этой процедуры лезвия и баночки отправляют на стерилизацию в стерилизатор, процедура стерилизации проходит в течении 20 минут при температуре 110-120 градусов. В это время идет подготовка рабочего стола, то есть его промывка 5 % раствором гипохлорита натрия.
Очередной этап- взять самую верхнюю часть растения, которая будет выращиваться (самый легкий для начинающих экземпляр для микроразмножения- сенполия), удаляют с верхушки самые мелкие листочки. Перед помещением очищенной части растения в сосуд, её дезинфицируют 2 % раствором гипохлорита натрия, и промывают дистиллированной водой. Емкость закрывают и ставят в шкаф, где она выдерживается в течении 20-40 дней, с четырнадцатичасовым освещением.
Следующий этап микроразмножения.
Когда микрочеренок, похожий на зелёный сгусток с горошину, с образовавшимися зачатками органов, подготавливают субстрат для укоренения и новые емкости, стерилизуют в стерилизаторе вместе с режущими инструментами. Рабочую поверхность простерилизовать так же, как и на первом этапе. Теперь можно достать растеньице из шкафа или закрытого аквариума, разделить его стерильным лезвием на части. Эти частички нового растения помещают в новые емкости и вновь отправляют в шкаф дней на 20-30 для образования корневой системы. Световой день так же составляет 14 часов.
Последний этап.
Когда образуются корни, растение достают из сосудов для микроразмножения и сажают в горшки , наполненный торфом с нейтральной средой. Затем эти горшочки помещают в специальные пластиковые трубы, чтобы новым растениям можно было постепенно привыкнуть к окружающей среде. После адаптации, которая длится 4-6 недель можно уже выращивать эти новые растения обычным способом, который присущ тому растению, от которого вы взяли материал для микроразмножения. Наиболее подходящие растения для микроразмножения: орхидеи, хризантемы, сенполии, бегонии, азалии, рододендроны, камелии, фикусовые и марантовые.
www.bolshoyvopros.ru
Технология микроклонального размножения
Клональным микроразмножением называют неполовое размножение растений с помощью метода культуры тканей, позволяющее получать растения идентичные исходному. В основе получения таких растений лежит способность соматических клеток растений полностью реализовывать свой потенциал развития, т.е. свойство тотипотентности. Метод клонального микроразмножения получает все более широкое распространение во всем мире. В большинстве стран эта технология приобрела коммерческий характер.
В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лабораториях Института физиологии растений им. К. А. Тимирязева. В настоявшее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений.
Свое название эта технология размножения получила от термина «клон» (от греч. clon — отпрыск), который предложил Веббер в 1903 г. Клональное микроразмножение имеет существенные преимущества перед традиционными способами размножения:
1. Высокий коэффициент размножения. Одно растение герберы за год при микроклональном размножении дает до 1 млн новых растений, тогда как при обычных способах размножения — только 50—100 растений. Большинство культивируемых в настоящее время сортов лилий размножается только вегетативно. Луковички (возникают на материнских луковицах или на побеге в небольших количествах. Технология микроклонального размножения позволяет получить из одной чешуи луковицы за 6 месяцев до 105 новых растений (сорт Red Caгрet).
2. Получение генетически однородного посадочного материала.
3. Возможность оздоровления растений, освобождения их от вирусов благодаря клонированию меристематических тканей.
4. Возможность размножения растений, которые в естественных условиях репродуцируются с большим трудом.
5. Воспроизведение посадочного материала круглый год, что значительно экономит площади, занимаемые маточными и размножаемыми растениями.
6. Сокращение продолжительности селекционного периода, ускорение перехода растений от ювенильной фазы развития к репродуктивной.
Технология микроклонального размножения.
Обязательное условие клонального микроразмножения — использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют апексы и пазушные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также с негативной селекцией измененных клеток.
Процесс клонального микроразмножения можно подразделить на 3 этапа:
1. Получение хорошо растущей стерильной культуры. На этом этапе необходимо правильно выбрать растение-донор, получить свободную от инфекции культуру, добиться ее выживания и быстрого роста на питательной среде.
2. Собственно размножение, осуществляемое несколькими способами:
· активизация пазушных меристем;
· индукция образования адвентивных почек тканями листа, стебля, чешуйками и донцем луковиц, корневищем и зачатками соцветий без первоначального образования каллусной ткани;
· микрочеренкование побега, сохраняющего апикальное доминирование;
· стимуляция образования микроклубней и микролуковичек;
· индукция соматического эмбриогенеза.
3. Подготовка к высадке в поле или к реализации. Это очень важный этап, во время которого в теплице укорененные растения, полученные in vitro, адаптируют к новым условиям внешней среды: проводят закаливание растений, повышают их устойчивость к патогенным микроорганизмам и различным неблагоприятным факторам внешней среды. Существует много различных способов адаптирования растений к пересадке in vivo. Это подбор почвенного субстрата, создание определенной влажности, обработка химическими веществами (глицерин, парафин) для предотвращения обезвоживания листьев. Некоторые древесные растения лучше приживаются, если их заразить in vitro микоризообразующими грибами. Упрощенный способ адаптации пробирочных растений винограда был разработан в Институте физиологии растений им. К. А. Тимирязева РАН. Адаптацию проводят прямо в пробирках, снимая с них пробки, когда растения винограда дорастают до верха пробирки. Через 1,5—2 недели, когда верхушки побега с двумя развитыми листьями появляются над пробиркой, растение готово к пересадке в почву. Для предотвращения механических повреждений корневой системы растение пересаживают в почву вместе с агаром, заглубляя его так, что над поверхностью почвы остаются только 2 развитых листа, которые выросли из пробирки и уже адаптировались к внешним условиям. Такая методика позволяет значительно упростить, ускорить и удешевить этап акклиматизации растений.
Клональное микроразмножение растений проводят разными способами. Первый и основной способ — активизация пазушных меристем. Он состоит в снятии апикального доминирования и активизации развития меристем, существующих в растении. Этот способ основной и в обычном вегетативном размножении. И на интактном растении, и в случае клонирования снятие апикального доминирования достигается или удалением апикальной меристемы побега, или благодаря действию цитокинина. При клонировании цитокинины (6-бензиламинопурин, 6-фурфуриламинопурин, зеатин) добавляют в питательную среду, что приводит к развитию многочисленных пазушных побегов. Эти побеги отделяют от первичного экспланта и культивируют на свежей питательной среде. Активизацию пазушных меристем широко используют в промышленном размножении овощных сельскохозяйственных культур (картофель, томаты, огурцы, сахарная свекла, топинамбур и др.), цветов (гвоздика, роза, гербера), плодовых и ягодных культур (яблоня, вишня, малина, крыжовник и др.), древесных растений (туя, можжевельник и др.). Однако бесконечно размножать таким способом растения нельзя, поскольку длительное воздействие цитокининов, входящих в состав питательных сред, вызывает аномалии в морфологии стебля, потерю способности побегов к укоренению, иногда — гибель растений. В опытах с размножением земляники было показано, что при микроклональном размножении необходимо чередовать 2—3 цикла получения побегов с их укоренением.
Второй способ — индукция развития адвентивных почек, т. е. почек, возникающих из растительных клеток и тканей, которые их обычно не образуют. Этот метод в значительной мере обусловлен тотипотентностью клеток. Почти любой орган или ткань растения, свободные от инфекции, могут быть использованы в качестве экспланта и в определенных условиях образуют адвентивные почки. Данный процесс вызывают внесением в питательную среду определенных концентраций цитокининов и ауксинов, причем цитокинина должно быть гораздо больше, чем ауксина. Это наиболее распространенный способ микроразмножения высших растений. Развивая адвентивные почки на апикальных и пазушных меристемах, размножают растения томата, лука, чеснока; на сегментах листовых пластинок — салат, глоксинию, фиалки; на тканях донца луковиц — лук, чеснок, гладиолусы, тюльпаны и другие луковичные растения.
Третий способ — микрочеренкование побега, сохраняющего апикальное доминирование. Растения-регенеранты, полученные любым другим способом, можно черенковать в стерильных условиях, высаживать на свежую питательную среду, укоренять, и адаптировать к полевым условиям либо снова подвергать микрочеренкованию для того, чтобы увеличить количество посадочного материала.
Четвертый способ — размножение в биореакторах микроклубнями. Это один из способов ускоренного размножения оздоровленного материала. О. Мелик-Саркисов сконструировал гидропонную установку, позволяющую получать около 7000 микроклубней с 1 м2 при массе одного клубня 5 г. Предусмотрена последующая механизированная посадка их в грунт. В отделе биологии клетки и биотехнологии Института физиологии растений им. К. А. Тимирязева РАН создана эффективная полупромышленная замкнутая система пневмоимпульсного биореактора для получения микроклубней картофеля, в которой предусмотрена возможность воздействия на направление и скорость процессов клубнеобразования. Технологии клонального микроразмножения в биореакторах разработаны не только для сельскохозяйственных, но и для декоративных растений (лилии, гладиолусы, гиацинты, филодендроны и т.д.). Однако созданные установки пока носят лабораторный, модельный характер.
Пятый способ размножения — образование соматических зародышей — основан на морфогенных изменениях — соматическом эмбриогенезе. Впервые это явление было отмечено в середине 50-х годов XX в. в культуре клеток моркови. Формирование эмбриоидов в культуре осуществляется в два этапа. На первом соматические клетки дифференцируются в эмбриональные в присутствии в питательной среде ауксинов, обычно это 2,4-D. На следующей стадии развиваются эмбриоиды. Этот процесс идет только при значительном снижении концентрации ауксина или полном отсутствии его в питательной среде. Соматический эмбриогенез может происходить в тканях первичного экспланта, в каллусной и суспензионной культурах.
Поскольку соматические зародыши представляют собой полностью сформированные растения, данный метод позволяет сократить затраты, связанные с подбором условий укоренения и адаптации растений-регенерантов. Кроме того, преимущество получения соматических эмбриоидов состоит в том, что при использовании соответствующей техники капсулирования из них можно получать искусственные семена.
Соматический эмбриогенез в настоящее время применяют для размножения пшеницы, ячменя, моркови, редиса, винограда, некоторых древесных растений (дуб, ель, эвкалипт).
Оздоровление посадочного материала
Оздоровление посадочного материала начинается с момента стерилизации экспланта в асептических условиях бокса, с обработки ткани антибиотиками. Однако таким образом удается освободиться главным образом от бактерий, грибных инфекций, нематод. Вирусы, вироиды, микоплазмы остаются в тканях инфицированных растений. Именно из-за вирусных болезней погибает от 10 до 50% урожая сельскохозяйственных культур, размножающихся вегетативно. Некоторые бобовые растения (соя) могут передавать вирусы даже при семенном размножении.
В 1949 г. было выяснено, что клетки меристематических тканей растений обычно не содержат вирусов. В 1952 г. Дж. Морель и Г. Мартин предложили, используя культивирование меристем, получать здоровые, избавленные от вирусной инфекции растения. Они обнаружили, что при выращивании верхушки побега, состоящей из конуса нарастания и 2—3 листовых зачатков, на ней образуются сферические образования — протокормы. Протокормы можно делить, и каждую часть культивировать до образования корней и листовых примордиев, получая в большом количестве генетически однородные безвирусные растения. В настоящий момент культивирование меристем побега — наиболее эффективный способ оздоровления растительного материала от вирусов, вироидов и микоплазм. Однако при этом способе требуется соблюдать определенные правила. Как уже говорилось, чем меньше размер меристематического экспланта, тем труднее вызвать в нем морфогенез. Чем больше размер экспланта, тем легче идет морфогенез, в результате которого получается целое растение, но тем больше вероятность присутствия вирусов в экспланте. У многих видов и сортов-растений зона, свободная от вирусных частиц, различна. Так, при клонировании апикальной меристемы картофеля размером 0,2 мм (конус нарастания с одним листовым зачатком) 70% полученных растений были свободны от Y-вируса картофеля, но только 10% — от Х-вируса. В некоторых случаях не удается найти оптимальное соотношение между размером меристематического экспланта и морфогенезом в нем, и при этом избавиться от вирусной инфекции. Приходится дополнять метод культуры меристем термо- или(и) химиотерапией. Так, предварительная термотерапия исходных растений позволяет получать свободные от вирусов растения-регенеранты из меристемных эксплантов размером от 0,3 мм до 0,8 мм. Вместе с тем этот прием может вызвать отставание растений в росте, деформацию органов, увеличение латентных (скрытых) инфекций.
Хорошие результаты дает совместное применение метода культуры тканей и химиотерапии. При внесении в питательную среду препарата «Вирозол» (1-рибофуранозил-1,2,4-триазолкарбоксамид) количество безвирусных растений увеличивается до 80—100 %.
В настоящее время для диагностики вирусных растений используют иммуноферментную технику, моноклональные антитела, метод молекулярной гибридизации меченых фрагментов РНК- и ДНК-вироидов и вирусов с вирусами тестируемого объекта. Эти методы очень чувствительны, но трудоемки и дорогостоящи.
После оздоровления с помощью вышеперечисленных технологий нормальные растения-регенеранты размножают обычными методами клонального микроразмножения. Для некоторых растений, например цитрусовых, получить морфогенез из меристем малого размера не удается, поэтому требуется разработка оригинальных методов. Лимоны и апельсины оздоровляют и размножают, используя прививки меристем размером 0,14— 0,18 мм на пробирочные подвои, полученные из семян. Достоинство такого подхода состоит и в том, что развивающиеся из меристем побеги не имеют ювенильных признаков, при этом цветение и плодоношение ускоряются.
Перспективы использования клонального микроразмножения растений.
Микроразмножение растений получило широкое распространение во второй половине ХХ века, а в последние десятилетия оформилось как мощное промышленное производство, быстро реагирующее на запросы рынка. К примеру, только за период с 1985 по 1990 год число растений, размножаемых in vitro, возросло с 130 млн. до 513 млн. Мировыми лидерами в этой области являются Нидерланды, США, Индия, Израиль, Италия, Польша и другие страны. В основном эта перспективная технология связана с ориентацией на производство декоративных, плодовых, лесных и овощных культур. Использование микроразмножения дает возможность быстро перейти на высокопродуктивные сорта.
Микроразмножение является весьма эффективным приемом быстрого распространения и оздоровления от инфекции новых сортов и гибридов картофеля, плодовых, ягодных, декоративных и лесных растений. Методы микроразмножения широко используются селекционерами для ускоренной репродукции ценного материала. Размножение растений in vitro может стать важным инструментом поддержания существующего биоразнообразия редких и исчезающих видов, занесенных в Красную книгу Беларуси.
biofile.ru
Технология микроклонального размножения. — Блог Виталия Забудько
Клональным микроразмножением называют неполовое размножение растений с помощью метода культуры тканей, позволяющее получать растения идентичные исходному. В основе получения таких растений лежит способность соматических клеток растений полностью реализовывать свой потенциал развития, т.е. свойство тотипотентности. Метод клонального микроразмножения получает все более широкое распространение во всем мире. В большинстве стран эта технология приобрела коммерческий характер.В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лабораториях Института физиологии растений им. К. А. Тимирязева. В настоявшее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений.
Свое название эта технология размножения получила от термина «клон» (от греч. clon — отпрыск), который предложил Веббер в 1903 г. Клональное микроразмножение имеет существенные преимущества перед традиционными способами размножения:
1. Высокий коэффициент размножения. Одно растение герберы за год при микроклональном размножении дает до 1 млн новых растений, тогда как при обычных способах размножения — только 50—100 растений. Большинство культивируемых в настоящее время сортов лилий размножается только вегетативно. Луковички (возникают на материнских луковицах или на побеге в небольших количествах.
Технология микроклонального размножения позволяет получить из одной чешуи луковицы за 6 месяцев до 105 новых растений (сорт Red Caгрet).
2. Получение генетически однородного посадочного материала.
3. Возможность оздоровления растений, освобождения их от вирусов благодаря клонированию меристематических тканей.
4. Возможность размножения растений, которые в естественных условиях репродуцируются с большим трудом.
5. Воспроизведение посадочного материала круглый год, что значительно экономит площади, занимаемые маточными и размножаемыми растениями.
6. Сокращение продолжительности селекционного периода, ускорение перехода растений от ювенильной фазы развития к репродуктивной.
Технология микроклонального размножения.
Обязательное условие клонального микроразмножения — использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют апексы и пазушные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также с негативной селекцией измененных клеток.
Процесс клонального микроразмножения можно подразделить на 3 этапа:
1. Получение хорошо растущей стерильной культуры. На этом этапе необходимо правильно выбрать растение-донор, получить свободную от инфекции культуру, добиться ее выживания и быстрого роста на питательной среде.
2. Собственно размножение, осуществляемое несколькими способами:
· активизация пазушных меристем;
· индукция образования адвентивных почек тканями листа, стебля, чешуйками и донцем луковиц, корневищем и зачатками соцветий без первоначального образования каллусной ткани;
· микрочеренкование побега, сохраняющего апикальное доминирование;
· стимуляция образования микроклубней и микролуковичек;
· индукция соматического эмбриогенеза.
3. Подготовка к высадке в поле или к реализации. Это очень важный этап, во время которого в теплице укорененные растения, полученные in vitro, адаптируют к новым условиям внешней среды: проводят закаливание растений, повышают их устойчивость к патогенным микроорганизмам и различным неблагоприятным факторам внешней среды. Существует много различных способов адаптирования растений к пересадке in vivo. Это подбор почвенного субстрата, создание определенной влажности, обработка химическими веществами (глицерин, парафин) для предотвращения обезвоживания листьев. Некоторые древесные растения лучше приживаются, если их заразить in vitro микоризообразующими грибами. Упрощенный способ адаптации пробирочных растений винограда был разработан в Институте физиологии растений им. К. А. Тимирязева РАН. Адаптацию проводят прямо в пробирках, снимая с них пробки, когда растения винограда дорастают до верха пробирки. Через 1,5—2 недели, когда верхушки побега с двумя развитыми листьями появляются над пробиркой, растение готово к пересадке в почву. Для предотвращения механических повреждений корневой системы растение пересаживают в почву вместе с агаром, заглубляя его так, что над поверхностью почвы остаются только 2 развитых листа, которые выросли из пробирки и уже адаптировались к внешним условиям. Такая методика позволяет значительно упростить, ускорить и удешевить этап акклиматизации растений.
Клональное микроразмножение растений проводят разными способами.
Первый и основной способ — активизация пазушных меристем. Он состоит в снятии апикального доминирования и активизации развития меристем, существующих в растении. Этот способ основной и в обычном вегетативном размножении. И на интактном растении, и в случае клонирования снятие апикального доминирования достигается или удалением апикальной меристемы побега, или благодаря действию цитокинина. При клонировании цитокинины (6-бензиламинопурин, 6-фурфуриламинопурин, зеатин) добавляют в питательную среду, что приводит к развитию многочисленных пазушных побегов. Эти побеги отделяют от первичного экспланта и культивируют на свежей питательной среде. Активизацию пазушных меристем широко используют в промышленном размножении овощных сельскохозяйственных культур (картофель, томаты, огурцы, сахарная свекла, топинамбур и др.), цветов (гвоздика, роза, гербера), плодовых и ягодных культур (яблоня, вишня, малина, крыжовник и др.), древесных растений (туя, можжевельник и др.). Однако бесконечно размножать таким способом растения нельзя, поскольку длительное воздействие цитокининов, входящих в состав питательных сред, вызывает аномалии в морфологии стебля, потерю способности побегов к укоренению, иногда — гибель растений. В опытах с размножением земляники было показано, что при микроклональном размножении необходимо чередовать 2—3 цикла получения побегов с их укоренением.
Второй способ — индукция развития адвентивных почек, т. е. почек, возникающих из растительных клеток и тканей, которые их обычно не образуют. Этот метод в значительной мере обусловлен тотипотентностью клеток. Почти любой орган или ткань растения, свободные от инфекции, могут быть использованы в качестве экспланта и в определенных условиях образуют адвентивные почки. Данный процесс вызывают внесением в питательную среду определенных концентраций цитокининов и ауксинов, причем цитокинина должно быть гораздо больше, чем ауксина. Это наиболее распространенный способ микроразмножения высших растений. Развивая адвентивные почки на апикальных и пазушных меристемах, размножают растения томата, лука, чеснока; на сегментах листовых пластинок — салат, глоксинию, фиалки; на тканях донца луковиц — лук, чеснок, гладиолусы, тюльпаны и другие луковичные растения.
Третий способ — микрочеренкование побега, сохраняющего апикальное доминирование. Растения-регенеранты, полученные любым другим способом, можно черенковать в стерильных условиях, высаживать на свежую питательную среду, укоренять, и адаптировать к полевым условиям либо снова подвергать микрочеренкованию для того, чтобы увеличить количество посадочного материала.
Четвертый способ — размножение в биореакторах микроклубнями. Это один из способов ускоренного размножения оздоровленного материала. О. Мелик-Саркисов сконструировал гидропонную установку, позволяющую получать около 7000 микроклубней с 1 м2 при массе одного клубня 5 г. Предусмотрена последующая механизированная посадка их в грунт. В отделе биологии клетки и биотехнологии Института физиологии растений им. К. А. Тимирязева РАН создана эффективная полупромышленная замкнутая система пневмоимпульсного биореактора для получения микроклубней картофеля, в которой предусмотрена возможность воздействия на направление и скорость процессов клубнеобразования. Технологии клонального микроразмножения в биореакторах разработаны не только для сельскохозяйственных, но и для декоративных растений (лилии, гладиолусы, гиацинты, филодендроны и т.д.). Однако созданные установки пока носят лабораторный, модельный характер.
Пятый способ размножения — образование соматических зародышей — основан на морфогенных изменениях — соматическом эмбриогенезе. Впервые это явление было отмечено в середине 50-х годов XX в. в культуре клеток моркови. Формирование эмбриоидов в культуре осуществляется в два этапа. На первом соматические клетки дифференцируются в эмбриональные в присутствии в питательной среде ауксинов, обычно это 2,4-D. На следующей стадии развиваются эмбриоиды. Этот процесс идет только при значительном снижении концентрации ауксина или полном отсутствии его в питательной среде. Соматический эмбриогенез может происходить в тканях первичного экспланта, в каллусной и суспензионной культурах.
Поскольку соматические зародыши представляют собой полностью сформированные растения, данный метод позволяет сократить затраты, связанные с подбором условий укоренения и адаптации растений-регенерантов. Кроме того, преимущество получения соматических эмбриоидов состоит в том, что при использовании соответствующей техники капсулирования из них можно получать искусственные семена.
Соматический эмбриогенез в настоящее время применяют для размножения пшеницы, ячменя, моркови, редиса, винограда, некоторых древесных растений (дуб, ель, эвкалипт).
Оздоровление посадочного материала
Оздоровление посадочного материала начинается с момента стерилизации экспланта в асептических условиях бокса, с обработки ткани антибиотиками. Однако таким образом удается освободиться главным образом от бактерий, грибных инфекций, нематод. Вирусы, вироиды, микоплазмы остаются в тканях инфицированных растений. Именно из-за вирусных болезней погибает от 10 до 50% урожая сельскохозяйственных культур, размножающихся вегетативно. Некоторые бобовые растения (соя) могут передавать вирусы даже при семенном размножении.
В 1949 г. было выяснено, что клетки меристематических тканей растений обычно не содержат вирусов. В 1952 г. Дж. Морель и Г. Мартин предложили, используя культивирование меристем, получать здоровые, избавленные от вирусной инфекции растения. Они обнаружили, что при выращивании верхушки побега, состоящей из конуса нарастания и 2—3 листовых зачатков, на ней образуются сферические образования — протокормы. Протокормы можно делить, и каждую часть культивировать до образования корней и листовых примордиев, получая в большом количестве генетически однородные безвирусные растения. В настоящий момент культивирование меристем побега — наиболее эффективный способ оздоровления растительного материала от вирусов, вироидов и микоплазм. Однако при этом способе требуется соблюдать определенные правила. Как уже говорилось, чем меньше размер меристематического экспланта, тем труднее вызвать в нем морфогенез. Чем больше размер экспланта, тем легче идет морфогенез, в результате которого получается целое растение, но тем больше вероятность присутствия вирусов в экспланте. У многих видов и сортов-растений зона, свободная от вирусных частиц, различна. Так, при клонировании апикальной меристемы картофеля размером 0,2 мм (конус нарастания с одним листовым зачатком) 70% полученных растений были свободны от Y-вируса картофеля, но только 10% — от Х-вируса. В некоторых случаях не удается найти оптимальное соотношение между размером меристематического экспланта и морфогенезом в нем, и при этом избавиться от вирусной инфекции. Приходится дополнять метод культуры меристем термо- или(и) химиотерапией. Так, предварительная термотерапия исходных растений позволяет получать свободные от вирусов растения-регенеранты из меристемных эксплантов размером от 0,3 мм до 0,8 мм. Вместе с тем этот прием может вызвать отставание растений в росте, деформацию органов, увеличение латентных (скрытых) инфекций.
Хорошие результаты дает совместное применение метода культуры тканей и химиотерапии. При внесении в питательную среду препарата «Вирозол» (1-рибофуранозил-1,2,4-триазолкарбоксамид) количество безвирусных растений увеличивается до 80—100 %.
В настоящее время для диагностики вирусных растений используют иммуноферментную технику, моноклональные антитела, метод молекулярной гибридизации меченых фрагментов РНК- и ДНК-вироидов и вирусов с вирусами тестируемого объекта. Эти методы очень чувствительны, но трудоемки и дорогостоящи.
После оздоровления с помощью вышеперечисленных технологий нормальные растения-регенеранты размножают обычными методами клонального микроразмножения. Для некоторых растений, например цитрусовых, получить морфогенез из меристем малого размера не удается, поэтому требуется разработка оригинальных методов. Лимоны и апельсины оздоровляют и размножают, используя прививки меристем размером 0,14— 0,18 мм на пробирочные подвои, полученные из семян. Достоинство такого подхода состоит и в том, что развивающиеся из меристем побеги не имеют ювенильных признаков, при этом цветение и плодоношение ускоряются.
Перспективы использования клонального микроразмножения растений.
Микроразмножение растений получило широкое распространение во второй половине ХХ века, а в последние десятилетия оформилось как мощное промышленное производство, быстро реагирующее на запросы рынка. К примеру, только за период с 1985 по 1990 год число растений, размножаемых in vitro, возросло с 130 млн. до 513 млн. Мировыми лидерами в этой области являются Нидерланды, США, Индия, Израиль, Италия, Польша и другие страны. В основном эта перспективная технология связана с ориентацией на производство декоративных, плодовых, лесных и овощных культур. Использование микроразмножения дает возможность быстро перейти на высокопродуктивные сорта.
Микроразмножение является весьма эффективным приемом быстрого распространения и оздоровления от инфекции новых сортов и гибридов картофеля, плодовых, ягодных, декоративных и лесных растений. Методы микроразмножения широко используются селекционерами для ускоренной репродукции ценного материала. Размножение растений in vitro может стать важным инструментом поддержания существующего биоразнообразия редких и исчезающих видов, занесенных в Красную книгу.
Поделиться ссылкой:
Понравилось это:
Нравится Загрузка...
Похожее
moyhytor.wordpress.com