Виды клеток растений. Особенности строения и основные органеллы растительных клеток

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Клетка растения. Особенности клеток растений. Виды клеток растений


Клетка растения. Особенности клеток растений

Тела живых организмов могут представлять собой одну-единственную клетку, их группу или огромное скопление, насчитывающее миллиарды таких элементарных структур. К последним относится большинство высших растений. Изучением клетки — основного элемента строения и функций живых организмов - занимается цитология. Этот раздел биологии начал бурно развиваться после открытия электронного микроскопа, совершенствования хроматографии и других методов биохимии. Рассмотрим главные признаки, а также особенности, по которым клетка растения отличается от мельчайших структурных единиц строения бактерий, грибов и животных.

Открытие клетки Р. Гуком

Теория о крошечных элементах строения всего живого прошла путь развития, измеряемый сотнями лет. Строение оболочки клетки растений впервые увидел в свой микроскоп британский ученый Р. Гук. Общие положения клеточной гипотезы сформулировали Шлейден и Шванн, до этого похожие выводы делали и другие исследователи.

Англичанин Р. Гук рассмотрел в микроскоп срез пробки дуба и представил результаты на заседании Королевского общества в Лондоне 13 апреля 1663 года (по другим данным, событие произошло в 1665 году). Оказалось, что кора дерева состоит из крохотных ячеек, названных Гуком «клетками». Стенки этих камер, образующих узор в виде пчелиных сот, ученый считал живым веществом, а полость признал безжизненной, вспомогательной структурой. В дальнейшем было доказано, что внутри клетки растений и животных содержат субстанцию, без которой невозможно их существование, да и деятельность всего организма.

Клеточная теория

Важное открытие Р. Гука получило развитие в работах других ученых, изучавших строение клеток животных и растений. Схожие элементы строения наблюдали ученые на микроскопических срезах многоклеточных грибов. Было установлено, что структурные единицы живых организмов обладают способностью к делению. На основании исследований представители биологической науки Германии М. Шлейден и Т. Шванн сформулировали гипотезу, ставшую впоследствии клеточной теорией.

Сравнение клеток растений и животных с бактериями, водорослями и грибами позволило немецким исследователям прийти к следующему выводу: обнаруженные Р. Гуком «камеры» — это элементарные структурные единицы, а идущие в них процессы лежат в основе жизнедеятельности большинства организмов на Земле. Важное дополнение внес Р. Вирхов в 1855 году, отметив, что деление клеток — единственный путь их размножения. Теория Шлейдена-Шванна с уточнениями стала общепризнанной в биологии.

Клетка — мельчайший элемент строения и жизнедеятельности растений

Согласно теоретическим положениям Шлейдена и Шванна, органический мир един, что доказывает схожее микроскопическое строение животных и растений. Кроме этих двух царств, клеточное существование характерно для грибов, бактерий, а у вирусов отсутствует. Рост и развитие живых организмов обеспечивается благодаря возникновению новых клеток в процессе деления уже существующих.

Многоклеточный организм — не просто скопление структурных элементов. Маленькие единицы строения взаимодействуют между собой, образуя ткани и органы. Одноклеточные организмы живут изолированно, что не мешает им создавать колонии. Главные признаки клетки:

  • способность к самостоятельному существованию;
  • собственный обмен веществ;
  • самовоспроизведение;
  • развитие.

В эволюции жизни одним из важнейших этапов стало отделение ядра от цитоплазмы при помощи защитной мембраны. Связь сохранилась, ведь отдельно эти структуры не могут существовать. В настоящее время выделяют два надцарства — безъядерных и ядерных организмов. Вторую группу образуют растения, грибы и животные, изучением которых занимаются соответствующие разделы науки и в целом биология. Клетка растения обладает ядром, цитоплазмой и органоидами, речь о которых пойдет ниже.

Разнообразие клеток растений

На изломе спелого арбуза, яблока или картофеля можно заметить невооруженным глазом структурные «ячейки», заполненные жидкостью. Это клетки паренхимы плодов, имеющие диаметр до 1 мм. Лубяные волокна — вытянутые структуры, длина которых значительно превышает ширину. Например, клетка растения, которое называется хлопчатник, достигает в длину 65 мм. Волокна луба льна и конопли имеют линейные размеры, составляющие 40–60 мм. Типичные клетки намного меньше —20–50 мкм. Рассмотреть такие крохотные структурные элементы можно только под микроскопом. Особенности мельчайших единиц строения растительного организма проявляются не только в различиях по форме и размерам, но и в выполняемых функциях в составе тканей.

Клетка растения: основные черты строения

Ядро и цитоплазма тесно взаимосвязаны и взаимодействуют между собой, что подтверждают исследования ученых. Это главные части эукариотической клетки, от них зависят все остальные элементы строения. Ядро служит для накопления и передачи генетической информации, необходимой для синтеза белка.

Британский ученый Р. Броун в 1831 году впервые заметил в клетке растения семейства орхидных особое тельце (нуклеус). Это было ядро, окруженное полужидкой цитоплазмой. Название этой субстанции означает в дословном переводе с греческого «первичная масса клетки». Она может быть более жидкой или вязкой, но обязательно покрыта мембраной. Наружная оболочка клетки состоит в основном из целлюлозы, лигнина, воска. Один из признаков, отличающих клетки растений и животных, — наличие этой прочной целлюлозной стенки.

Строение цитоплазмы

Внутренняя часть растительной клетки заполнена гиалоплазмой с взвешенными в ней мельчайшими гранулами. Ближе к оболочке так называемая эндоплазма переходит в более вязкую экзоплазму. Именно эти субстанции, которыми заполнена клетка растения, служат местом протекания биохимических реакций и транспорта соединений, размещения органоидов и включений.

Примерно 70–85 % цитоплазмы составляет вода, 10–20 % приходится на белки, другие химические компоненты — углеводы, липиды, минеральные соединения. Клетки растений имеют цитоплазму, в которой среди конечных продуктов синтеза присутствуют биорегуляторы функций и запасные вещества (витамины, ферменты, масла, крахмал).

Ядро

Сравнение клеток растений и животных показывает, что они имеют сходное строение ядра, находящегося в цитоплазме и занимающего до 20 % ее объема. Англичанин Р. Броун, впервые рассмотревший под микроскопом этот важнейший и постоянный компонент всех эукариотов, дал ему название от латинского слова nucleus. Внешний вид ядер обычно коррелирует с формой и размерами клеток, но иногда отличается от них. Обязательные элементы строения — мембрана, кариолимфа, ядрышко и хроматин.

В мембране, отделяющей ядро от цитоплазмы, имеются поры. Через них вещества поступают из ядра в цитоплазму и обратно. Кариолимфа представляет собой жидкое или вязкое ядерное содержимое с участками хроматина. Ядрышко содержит рибонуклеиновую кислоту (РНК), проникающую в рибосомы цитоплазмы для участия в синтезе белка. Другая нуклеиновая кислота — дезоксирибонуклеиновая (ДНК) — также присутствует в больших количествах. ДНК и РНК впервые были обнаружены в животных клетках в 1869 году, впоследствии найдены в растениях. Ядро — это «центр управления» внутриклеточными процессами, место хранения информации о наследственных признаках всего организма.

Эндоплазматическая сеть (ЭПС)

Строение клеток животных и растений имеет значительное сходство. Обязательно присутствуют в цитоплазме внутренние канальцы, заполненные разными по происхождению и составу веществами. Гранулярная разновидность ЭПС отличается от агранулярного типа наличием рибосом на поверхности мембран. Первая участвует в синтезе белков, вторая играет роль в образовании углеводов и липидов. Как установили исследователи, каналы не только пронизывают цитоплазму, они связаны с каждым органоидом живой клетки. Поэтому значение ЭПС оценивают очень высоко как участника метаболизма, системы связи с окружающей средой.

Рибосомы

Строение клетки растений или животных трудно представить без этих мелких частиц. Рибосомы очень малы, увидеть их можно только в электронный микроскоп. В составе телец преобладают белки и молекулы рибонуклеиновых кислот, есть незначительное количество ионов кальция и магния. Практически все количество РНК клетки сосредоточено в рибосомах, они обеспечивают белковый синтез, «собирая» протеины из аминокислот. Затем белки поступают в каналы ЭПС и разносятся сетью по всей клетке, проникают в ядро.

Митохондрии

Эти органоиды клетки считают ее энергетическими станциями, они видны при увеличении в обычный световой микроскоп. Количество митохондрий варьируется в очень широких пределах, их может насчитываться единицы или тысячи. Строение органоида не отличается большой сложностью, есть две мембраны и матрикс внутри. Митохондрии состоят из белка липидов, ДНК и РНК, отвечают за биосинтез АТФ — аденозинтрифосфорной кислоты. Для этого вещества клетки растений или животного характерно присутствие трех фосфатов. Отщепление каждого из них дает энергию, необходимую для всех процессов жизнедеятельности в самой клетке и во всем организме. Наоборот, присоединение остатков фосфорной кислоты дает возможность запасать энергию и переносить в таком виде по всей клетке.

Рассмотрите на представленном ниже рисунке органоиды клетки и назовите те, что вам уже известны. Обратите внимание на крупный пузырек (вакуоль) и зеленые пластиды (хлоропласты). Речь о них пойдет дельше.

Комплекс Гольджи

Сложный клеточный органоид состоит из гранул, мембран и вакуолей. Комплекс был открыт в 1898 году и получил название в честь итальянского биолога. Особенности клеток растений заключаются в равномерном распространении частиц Гольджи по всей цитоплазме. Ученые считают, что комплекс необходим для регулирования содержания воды и продуктов жизнедеятельности, удаления избытков веществ.

Пластиды

Только клетки тканей растений содержат органоиды зеленого цвета. Кроме того, есть бесцветные, желтые и оранжевые пластиды. На их строении и функциях отражается вид питания растения, причем они способны менять цвет за счет химических реакций. Основные типы пластид:

  • оранжевые и желтые хромопласты, образованные каротином и ксантофиллом;
  • хлоропласты, содержащие зерна хлорофилла, — пигмента зеленого цвета;
  • лейкопласты — бесцветные пластиды.

Строение клетки растений связано с идущими в ней химическими реакциями синтеза органического вещества из углекислого газа и воды с использованием световой энергии. Название этого удивительного и очень сложного процесса — фотосинтез. Осуществляются реакции благодаря хлорофиллу, именно это вещество способно улавливать энергию луча света. Наличием зеленого пигмента объясняется характерный цвет листьев, травянистых стеблей, незрелых плодов. Хлорофилл по строению похож на гемоглобин крови животных и человека.

Красная, желтая и оранжевая окраска различных органов растений обусловлена присутствием в клетках хромопластов. Их основой является большая группа каротиноидов, выполняющих важную роль в метаболизме. Лейкопласты отвечают за синтез и накопление крахмала. Пластиды растут и размножаются в цитоплазме, вместе с ней передвигаются вдоль внутренней оболочки клетки растения. Они богаты ферментами, ионами, другими биологически активными соединениями.

Отличия в микроскопическом строении основных групп живых организмов

Большинство клеток напоминают крошечный мешочек, наполненный слизью, тельцами, гранулами и пузырьками. Часто присутствуют разные включения в виде твердых кристаллов минеральных веществ, капель масел, крахмальных зерен. Клетки тесно соприкасаются в составе тканей растений, жизнь в целом зависит от деятельности этих мельчайших единиц строения, образующих целое.

При многоклеточном строении существует специализация, которая выражается в разных физиологических задачах и функциях микроскопических структурных элементов. Они определяются в основном местоположением тканей в листьях, корне, стебле или генеративных органах растения.

Выделим основные элементы проведенного сравнения клетки растения с элементарными единицами строения других живых организмов:

  1. Плотная оболочка, характерная только для растений, образована клетчаткой (целлюлозой). У грибов мембрана состоит из прочного хитина (особого белка).
  2. Клетки растений и грибов отличаются по цвету благодаря наличию или отсутствию пластид. Такие тельца, как хлоропласты, хромопласты и лейкопласты, присутствуют только в растительной цитоплазме.
  3. Есть органоид, который отличает животных, — это центриоль (клеточный центр).
  4. Только в составе клетки растения присутствует крупная центральная вакуоль, заполненная жидким содержимым. Обычно этот клеточный сок окрашен пигментами в разные цвета.
  5. Главное запасное соединение растительного организма — крахмал. Грибы и животные накапливают в своих клетках гликоген.

Среди водорослей известно много одиночных, свободно живущих клеток. К примеру, таким самостоятельным организмом является хламидомонада. Хотя растения отличаются от животных присутствием целлюлозной клеточной стенки, но половые клетки лишены такой плотной оболочки — это еще одно доказательство единства органического мира.

fb.ru

Строение растительной клетки

Строение растительной клетки изучает наука — физиология растений. Клетка является основной структурной единицей как растительного, так и животного организма. Она представляет собой наименьшую часть организма, обладающую свойствами живого

Одноклеточные и многоклеточные растения

Есть растения одноклеточные и многоклеточные. К первым относятся некоторые водоросли, состоящие только из одной клетки, и в этом случае такая клетка несет в себе все присущие ей функции.

Многоклеточные растения представляют собой не простую сумму клеток, а единый организм, в котором они образуют различные ткани и органы, находящиеся во взаимодействии друг с другом.

Структурные элементы растительной клетки

Клетки растений весьма разнообразны как по размерам и форме, так и по выполняемым ими функциям, но в основном состоят из одних и тех же частей.

Строение взрослой растительной клетки
  1. — оболочка,
  2. — срединная пластинка,
  3. — межклетник,
  4. — плазмодесмы,
  5. — плазмалемма,
  6. — тонопласт,
  7. — вакуоля,
  8. — цитоплазма,
  9. — капелька масла,
  10. — митохондрия,
  11. — хлоропласт,
  12. — граны в хлоропласте,
  13. — крахмальное зерно в хлоропласте,
  14. — ядро,
  15. — ядерная оболочка,
  16. — ядрышко,
  17. — хроматин.

Каждая взрослая живая клетка состоит из:

  • оболочки,
  • протоплазмы,
  • вакуоли.

Оболочка придает растительной клетке определенную форму. Под оболочкой находится протоплазма, обычно плотно прижатая к оболочке. Центральную часть клетки занимает вакуоля, наполненная клеточным соком. У молодых клеток вакуоли нет и протоплазма заполняет всю полость клетки.

Протоплазма

Протоплазма — это живое вещество организма; в ней протекают сложнейшие реакции обмена, характерные для жизни.

В протоплазме находится большое количество мембран-пленок, в образовании которых большую роль играют соединения белков с фосфатидами (жироподобными веществами). Благодаря наличию мембран у протоплазмы имеются огромные внутренние поверхности, на которых и протекают процессы адсорбции (поглощения) и десорбции (выделения) веществ и их передвижение, происходящие с большой скоростью.

Большое количество мембран, разделяющих содержимое клетки, позволяет различным веществам, находящимся в клетке, не перемешиваться и передвигаться одновременно в противоположных направлениях.

Однако физико-химические свойства мембран непостоянны; они непрерывно изменяются в зависимости от внутренних и внешних условий, что дает возможность саморегулирования биохимических процессов.

Химический состав протоплазмы

Химический состав протоплазмы очень сложен. Она состоит из органических и неорганических соединений, находящихся как в коллоидном, так и в растворенном состоянии.

Удобным объектом для изучения химического состава протоплазмы является плазмодий фикомицетов, представляющий собой голую, лишенную оболочки протоплазму.

Ниже приведен суммарный состав протоплазмы фикомицетов (в % от сухого веса):

Водорастворимые органические вещества…………………………………………………   40,7

Из них: сахара………………………………………………………………………………………………..   14,2белки……………………………………………………………………………………………………………….  22аминокислоты, органические основания и другие азотные соединения…..  24,3

Не растворимые в воде органические вещества ………………………………………..   55,9

Из них: нуклеопротеиды………………………………………………………………………………..   32,2свободные нуклеиновые кислоты ………………………………………………………………..   2,5глобулины (простые белки) ……………………………………………………………………………   0,5липопротеиды…………………………………………………………………………………………………   4,8нейтральные жиры…………………………………………………………………………………………   6,8фитостеролы (высокомолекулярные спирты) ……………………………………………….  3.2фосфатиды………………………………………………………………………………………………………..  1,3другие органические вещества……………………………………………………………………….  4,6

Минеральные вещества…………………………………………………………………………………..  3,4

Химический состав протоплазмы высших растений близок к приведенному выше, но он может изменяться в зависимости от вида, возраста и органа растения.

В протоплазме содержится до 80% воды (в протоплазме покоящихся семян — 5—15%). Она пропитывает всю коллоидную систему протоплазмы, являясь ее структурным элементом. В протоплазме все время происходят химические реакции, для протекания которых необходимо, чтобы реагирующие соединения были в растворе.

Цитоплазма

Основной частью протоплазмы является цитоплазма, представляющая собой полужидкое содержимое клетки и заполняющее ее внутреннее пространство.

В цитоплазме расположены ядро, пластиды, митохондрии (хондриосомы), рибосомы и аппарат Гольджи.

Наружная мембрана цитоплазмы, граничащая с клеточной оболочкой, называется плазмалеммой. Плазмалемма легко пропускает воду и многие ионы, но задерживает крупные молекулы.

На границе цитоплазмы с вакуолью тоже образуется мембрана, называемая тонопластом.

В цитоплазме расположена эндоплазматическая сеть, представляющая собой систему ветвящихся мембран, соединенных с наружной мембраной. Мембраны эндоплазматической сети образуют каналы и расширения, на поверхности которых и протекают все химические реакции.

Важнейшие свойства цитоплазмы — вязкость и эластичность. Вязкость цитоплазмы изменяется в зависимости от температуры: при повышении температуры вязкость уменьшается и, наоборот, при понижении — увеличивается. При большой вязкости обмен веществ в клетке снижается, при малой — возрастает.

Эластичность цитоплазмы проявляется в ее способности возвращаться к исходной форме после деформации, что указывает на определенную структуру цитоплазмы.

Цитоплазма способна к движению, которое тесно связано с окружающими условиями. Основу движения составляет сократимость белков цитоплазмы клеток. Повышение температуры ускоряет движение цитоплазмы, отсутствие кислорода останавливает его. Вероятно, движение цитоплазмы тесно связано с превращением веществ и энергии в растении.

Способность цитоплазмы реагировать на внешние условия и приспосабливаться к ним называется раздражимостью.

Наличие раздражимости характеризует живой организм. Ответная реакция цитоплазмы на воздействие температуры, света и влаги требует затраты энергии, которая выделяется в процессе дыхания. Листочки стыдливой мимозы при механическом раздражении быстро складываются, но при частом повторении раздражения перестают на него реагировать; последнее, по-видимому, объясняется недостатком энергии. Раздражимость цитоплазмы— основа всех видов движения и других явлений жизнедеятельности раст.

Ядро

Ядро — важнейший и самый крупный органоид клетки. Размеры ядра зависят от вида растения и состояния клетки (у высших растений в среднем от 5 до 25 мк). Форма ядра чаще всего шаровидная, у вытянутых клеток — овальная.

Живая клетка обычно имеет только одно ядро, но у высших растений сильно вытянутые клетки (из которых образуются лубяные волокна) содержат по нескольку ядер. В молодых клетках, не имеющих вакуоли, ядро обычно занимает центральное положение, у взрослых при образовании вакуолей оно отодвигается к периферии.

Ядро представляет собой коллоидную систему, но более вязкую, чем цитоплазма. Оно отличается от цитоплазмы и по химическому составу; в ядре содержатся основные и кислые белки и различные ферменты, а также большое количество нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК преобладает в ядре и обычно не содержится в цитоплазме.

Ядро отделяется от цитоплазмы тонкой оболочкой, или ядерной мембраной, в которой находятся отверстия — поры. Через поры осуществляется обмен между ядром и цитоплазмой. Под мембраной находится ядерный сок, в который погружены одно или несколько ядрышек и хромосомы. В ядрышке содержатся рибонуклеиновая кислота (РНК), которая принимает участие в синтезе белка, и фосфорсодержащие белки.

Ядро принимает участие во всех жизненных процессах клетки; при его удалении клетка отмирает.

Пластиды

Пластиды имеются только в растительных клетках. Они хорошо видны в обычный микроскоп, так как более плотные и иначе преломляют свет, чем цитоплазма.Во взрослой растительной клетке различают 3 типа пластид:

  • хлоропласты, имеющие зеленую окраску,
  • хлоропласты желтые или оранжевые,
  • лейкопласты — бесцветные.

Размеры пластид зависят от вида растения и колеблются от 3—4 до 15—30 мк. Лейкопласты обычно мельче хлоропластов и хромопластов.

Митохондрии

Митохондрии встречаются во всех живых клетках и расположены в цитоплазме. Форма их весьма разнообразна и изменчива, размеры 0,2—5 мк. Количество митохондрий в клетке колеблется от десятков до нескольких тысяч. Они более плотны, чем цитоплазма, и имеют иной химический состав; в них содержится 30—40% белка, 28—38% липоидов и 1 — .6% рибонуклеиновой кислоты.

Митохондрии передвигаются в клетке вместе с цитоплазмой, но в некоторых клетках, по-видимому, они способны и к самостоятельному движению. Роль митохондрий в обмене веществ клетки очень велика.

Митохондрии являются центрами, в которых происходит дыхание и образование макроэргических связей, заключенных в аденозинтрифосфорной кислоте (АТФ) и имеющих большой запас энергии (стр. 70, 94—96).

Освобождение и перенос образующейся энергии происходят с участием большого числа ферментов, находящихся в митохондриях.

Аппарат Гольджи

В цитоплазме находится аппарат Гольджи, форма которого различна в разных клетках. Он может быть в виде дисков, палочек, зернышек. Аппарат Гольджи имеет много полостей, окруженных двухслойной оболочкой. Роль его сводится к накоплению и выведению из клетки различных веществ, вырабатываемых клеткой.

Рибосомы

Рибосомы — это субмикроскопические частицы, имеющие форму зернышек размером до 0,015 мк. Рибосомы содержат много белка (до 55%) и богаты рибонуклеиновой кислотой (35%), что составляет 65% всей рибонуклеиновой кислоты (РНК), находящейся в клетке.

В рибосомах из аминокислот синтезируются белки, что возможно только при наличии РНК. Рибосомы находятся в цитоплазме, ядре, пластидах и, возможно, в митохондриях.

Химический состав органоидов. В настоящее время благодаря созданию центрифуг, имеющих огромную скорость вращения (десятки тысяч оборотов в минуту), можно отделять различные части клетки друг от друга, так как они имеют разный удельный вес. Поэтому стало возможным изучать биохимические свойства каждой части клетки.

Для сравнения химического состава органоидов клетки приводим данные (табл. 1).

Химический состав органоидов растительной клетки(в °/о от сухого вещества)

Органоид Белки  Липоиды  Нуклеиновые кислоты  Примечание
 Цитоплазма  80—95  2—3  1—2   Большая часть нуклеиновых кислот — ДНК
 Ядра  50—80  8—40  10—30
 Пластиды  30—45  20—40  0,5—3,0
 Митохондрии  30—40  25—38  1—6
 Рибосомы  50—57  3—4  35

Клеточная оболочка

Характерный признак растительной клетки — наличие прочной оболочки, которая придает клетке определенную форму и предохраняет протоплазму от повреждений. Оболочка может расти только при участии протоплазмы. Клеточная оболочка молодых клеток состоит в основном из целлюлозы (клетчатки), гемицеллюлоз и пектиновых веществ.

Молекулы целлюлозы имеют вид длинных цепочек, собранных в мицеллы, расположение которых неодинаково у разных клеток. У волокон льна, конопли и других, представляющих собой вытянутые в длину клетки, мицеллы целлюлозы расположены вдоль клетки под некоторым углом. У клеток с одинаковым диаметром мицеллы расположены по всем направлениям в виде сетки. В межмицеллярных пространствах оболочки находится вода.

В процессе жизни растительного организма в строении клеточной оболочки могут происходить изменения: оболочка может утолщаться и химически изменяться. Утолщение оболочки идет изнутри за счет жизнедеятельности протоплазмы, причем оно происходит не по всей внутренней поверхности клетки; всегда остаются не утолщенные места — поры, состоящие только из тонкой целлюлозной оболочки.

Через поры, расположенные в соседних клетках друг против друга, проходят тончайшие нити цитоплазмы — плазмодесмы, благодаря которым осуществляется обмен между клетками. Однако при очень сильном утолщении оболочек резко затрудняется обмен, в клетке остается очень мало протоплазмы, и такие клетки отмирают, например лубяные волокна льна и конопли.

В оболочке клетки могут происходить также химические изменения в зависимости от характера растительной ткани. В покровных тканях — эпидермисе — происходит кутинизация. При этом в межмицеллярных пространствах целлюлозной оболочки накапливается кутин — жироподобное вещество, трудно проницаемое для газов и воды.

Однако кутинизация не приводит к отмиранию клеток, так как отложения кутина не захватывают всей поверхности клетки. В клетках покровной ткани кутинизируется только наружная стенка, образуя так называемую кутикулу.

В оболочках клеток может также откладываться суберин — пробковое вещество, тоже жироподобное и непроницаемое для воды и газов. Отложение суберина, или опробковение, происходит быстро по всей поверхности оболочки, это нарушает обмен клетки и приводит к ее отмиранию. Может происходить и одревеснение оболочки. В этом случае она пропитывается лигнином, который приводит к остановке роста клетки, а в дальнейшем, при более сильном одревеснении, и к ее отмиранию.

Клеточный сок

Молодая растительная клетка полностью заполнена протоплазмой, но по мере роста клетки в ней появляются вакуоли, заполненные клеточным соком. Вначале вакуоли возникают в большом количестве в виде мелких капелек, затем отдельные вакуоли начинают сливаться в одну центральную и протоплазма оттесняется к стенкам клетки.

Изменения происходящие в растительной клетке при ее росте
  1. — молодая клетка,
  2. — образование вакуолей,
  3. — слияние вакуолей и оттеснение  протоплазмы к оболочке.

Клеточный сок, заполняющий вакуолю, представляет собой водный раствор органических и минеральных веществ. В нем могут находиться сахара, органические и минеральные кислоты и их соли, ферменты, растворимые белки и пигменты. Весьма часто в клеточном соке встречается пигмент антоциан, окраска которого меняется в зависимости от реакции среды.

libtime.ru

Строение растительной клетки Клетка – это мельчайшая структурно-функциональная единица живого организма. Каждая клетка осуществляет функции, от которых зависит ее жизнь: поглощает вещества и энергию, избавляется от отходов жизнедеятельности, использует энергию для построения сложных структур из более простых веществ, растет, размножается. Кроме того она выполняет отдельные специализированные функции в качестве вклада в общую жизнедеятельность многоклеточного организма. Все высшие растения относятся к надцарству эукариотов (содержащих ядра) и имеют общий план строения клеток. Растительная клетка состоит из клеточной оболочки, включающей клеточную стенку и цитоплазматическую мембрану и протопласта, состоящего из цитоплазмы и ядра. Клеточная оболочка Клеточная стенка Клеточная стенка бывает только у растительных клеток, бактерий и грибов, но у растений состоит преимущественно из целлюлозы. Придает клетке форму, определяя рамки ее роста, обеспечивает структурную и механическую поддержку, тургор (напряженное состояние оболочек), защиту от внешних факторов, запасает питательные вещества. Клеточная стенка пористая, чтобы пропускать воду и другие малые молекулы, жесткая, чтобы придавать телу растения определенную структуру и обеспечивать ему опору и гибкая, чтобы растение под напором ветра гнулось, но не ломалось. Строение клеточной стенки Цитоплазматическая мембрана Тонкой, гибкой и эластичной пленкой покрывает всю клетку, отделяя ее от внешней среды. Через нее осуществляется перенос веществ из клетки в клетку, обмен веществами со средой. Состоит в основном из белков и липидов, обладает избирательной проницательностью. Вода проходит сквозь клеточную мембрану совершенно свободно путем осмоса. Полярным молекулам и ионам мембранные белки помогают перемещаться в обоих направлениях. Крупные частицы поглощаются клеткой путем фагоцитоза: мембрана окружает их, захватывает в вакуоли, содержащие клеточный сок и перемещает в клетку. Для выведения веществ наружу клетки используют обратный процесс – экзоцитоз. Наружная цитоплазматическая мембрана Протопласт Цитоплазма Содержит воду, различные соли и органические соединения, структурные компоненты – органеллы. Находится в постоянном движении,  объединяет все клеточные структуры и способствует их взаимодействию друг с другом.  В цитоплазме расположены все органоиды клетки: Вакуоль – полость, содержащая клеточный сок, занимающая большую часть растительной клетки (до 90%), отделенная от цитоплазмы тонкопластом. Поддерживает тургорное давление, накапливает молекулы питательных веществ, соли и другие соединения,  красные, синие и пурпурные пигменты, отходы жизнедеятельности. В ядовитых растениях здесь хранятся цианиды, не причиняя вреда растению. Пластиды – органеллы, окруженные двойной мембраной, отделяющей их от цитоплазмы. Из пластид наиболее широко распространены хлоропласты – структуры, от которых зависит зеленая окраска многих растительных клеток. В хлоропластах находится зеленый пигмент хлорофилл, необходимый для фотосинтеза. Во многих растениях присутствуют другие типы пластид с красными, желтыми и оранжевыми пигментами — хромопласты, именно они придают цветам, плодам и осенним листьям соответствующую окраску. В бесцветных пластидах лейкопластах синтезируется крахмал, образуются липиды и белки, их особенно много в клубнях, корнях и семенах. На свету лейкопласты превращаются в хлоропласты. Митохондрии – состоят из наружной и внутренней мембран, создают большую часть клеточного запаса энергии в форме молекул АТФ(аденозинтрифосфорной кислоты. Рибосомы – состоят из большой и малой субчастиц, в них происходит синтез белка; Эндопламатическая сеть (ретикулум) – сложная трехмерная система мембран, состоящая из цистерн, каналов, трубочек и пузырьков. Из ретикулума образуются вакуоли, он делит клетку на компартменты (ячейки), на поверхности его мембран протекают многие химические реакции Аппарат Гольджи — участвует в образовании клеточных оболочек, представляет собой стопку мембранных мешочков, в которые упаковываются белки и прочие материалы для выведения из клетки. Клеточное ядро Ядро – самая заметная органелла клетки, которая обеспечивает важнейшие метаболические и генетические функции. В ядре находится ДНК – генетический материал клетки, объединенный с большим количеством белка в структуры, называемые хромосомами. Оно окружено ядерной мембраной, в которой имеются крупные поры. Участок ядра, где происходит образование субчастиц рибосом, называется ядрышком. Все в живой клетке пребывает в непрерывном движении. Для ее разнообразной двигательной активности необходимы два типа структур – микротрубочки, образующие внутренний каркас и микрофиламенты, представляющие собой белковые волокна. Перемещение клеток в жидкой среде и создание тока жидкости у своей поверхности осуществляется с помощью ресничек и жгутиков – тонких выростов, содержащих микротрубочки. Сравнение строения растительных и животных клеток   Растительная клетка Животная клетка Максимальный размер 100 мкм 30 мкм Форма Плазматическая или кубическая Разнообразная Центриоли Отсутствуют Есть Положение ядра Периферическое Центральное Пластиды Хлоропласты, хромопласты и лейкопласты Отсутствуют Вакуоли Крупные Мелкие Запасные питательные вещества Крахмал, белок, масла, соли Белки, жиры, углевод гликоген Способ питания Автотрофный – потребление неорганических соединений и создание из них углеводов с помощью солнечной или химической энергии Гетеротрофный – с использованием готовых органических соединений Фотосинтез Есть Отсутствует Клеточное деление Дополнительная фаза митоза — препрофаза Митоз – деление ядра, приводящее к образованию двух дочерних ядер с таким же набором хромосом Синтез АТФ В митохондриях и хлоропластах Только в митохондриях Сходства строения растительной и животной клетки У растительной и животной клетки имеются следующие общие признаки: Универсальное мембранное строение; Единые структурные системы – цитоплазма и ядро; Одинаковый химический состав; Сходные процессы обмена веществ и энергии; Сходный процесс деления клеток; Единый принцип наследственного кода;

Cтроение растительной клетки

Клетка – это мельчайшая структурно-функциональная единица живого организма. Каждая клетка осуществляет функции, от которых зависит ее жизнь: поглощает вещества и энергию, избавляется от отходов жизнедеятельности, использует энергию для построения сложных структур из более простых веществ, растет, размножается. Кроме того она выполняет отдельные специализированные функции в качестве вклада в общую жизнедеятельность многоклеточного организма. Все высшие растения относятся к надцарству эукариотов (содержащих ядра) и имеют общий план строения клеток. Растительная клетка состоит из клеточной оболочки, включающей клеточную стенку и цитоплазматическую мембрану и протопласта, состоящего из цитоплазмы и ядра.

Клеточная оболочка

Клеточная стенка

Клеточная стенка бывает только у растительных клеток, бактерий и грибов, но у растений состоит преимущественно из целлюлозы. Придает клетке форму, определяя рамки ее роста, обеспечивает структурную и механическую поддержку, тургор (напряженное состояние оболочек), защиту от внешних факторов, запасает питательные вещества. Клеточная стенка пористая, чтобы пропускать воду и другие малые молекулы, жесткая, чтобы придавать телу растения определенную структуру и обеспечивать ему опору и гибкая, чтобы растение под напором ветра гнулось, но не ломалось.

Строение клеточной стенки

Цитоплазматическая мембрана

Тонкой, гибкой и эластичной пленкой покрывает всю клетку, отделяя ее от внешней среды. Через нее осуществляется перенос веществ из клетки в клетку, обмен веществами со средой. Состоит в основном из белков и липидов, обладает избирательной проницательностью. Вода проходит сквозь клеточную мембрану совершенно свободно путем осмоса.

Полярным молекулам и ионам мембранные белки помогают перемещаться в обоих направлениях. Крупные частицы поглощаются клеткой путем фагоцитоза: мембрана окружает их, захватывает в вакуоли, содержащие клеточный сок и перемещает в клетку. Для выведения веществ наружу клетки используют обратный процесс – экзоцитоз.

Наружная цитоплазматическая мембрана

Протопласт

Цитоплазма

Содержит воду, различные соли и органические соединения, структурные компоненты – органеллы. Находится в постоянном движении,  объединяет все клеточные структуры и способствует их взаимодействию друг с другом.  В цитоплазме расположены все органоиды клетки:

  • Вакуоль – полость, содержащая клеточный сок, занимающая большую часть растительной клетки (до 90%), отделенная от цитоплазмы тонкопластом. Поддерживает тургорное давление, накапливает молекулы питательных веществ, соли и другие соединения,  красные, синие и пурпурные пигменты, отходы жизнедеятельности. В ядовитых растениях здесь хранятся цианиды, не причиняя вреда растению.
  • Пластиды – органеллы, окруженные двойной мембраной, отделяющей их от цитоплазмы. Из пластид наиболее широко распространены хлоропласты – структуры, от которых зависит зеленая окраска многих растительных клеток. В хлоропластах находится зеленый пигмент хлорофилл, необходимый для фотосинтеза. Во многих растениях присутствуют другие типы пластид с красными, желтыми и оранжевыми пигментами — хромопласты, именно они придают цветам, плодам и осенним листьям соответствующую окраску. В бесцветных пластидах лейкопластах синтезируется крахмал, образуются липиды и белки, их особенно много в клубнях, корнях и семенах. На свету лейкопласты превращаются в хлоропласты.
  • Митохондрии – состоят из наружной и внутренней мембран, создают большую часть клеточного запаса энергии в форме молекул АТФ(аденозинтрифосфорной кислоты.
  • Рибосомы – состоят из большой и малой субчастиц, в них происходит синтез белка;
  • Эндопламатическая сеть (ретикулум) – сложная трехмерная система мембран, состоящая из цистерн, каналов, трубочек и пузырьков. Из ретикулума образуются вакуоли, он делит клетку на компартменты (ячейки), на поверхности его мембран протекают многие химические реакции
  • Аппарат Гольджи — участвует в образовании клеточных оболочек, представляет собой стопку мембранных мешочков, в которые упаковываются белки и прочие материалы для выведения из клетки.

Клеточное ядро

Ядро – самая заметная органелла клетки, которая обеспечивает важнейшие метаболические и генетические функции. В ядре находится ДНК – генетический материал клетки, объединенный с большим количеством белка в структуры, называемые хромосомами. Оно окружено ядерной мембраной, в которой имеются крупные поры. Участок ядра, где происходит образование субчастиц рибосом, называется ядрышком.

Все в живой клетке пребывает в непрерывном движении. Для ее разнообразной двигательной активности необходимы два типа структур – микротрубочки, образующие внутренний каркас и микрофиламенты, представляющие собой белковые волокна. Перемещение клеток в жидкой среде и создание тока жидкости у своей поверхности осуществляется с помощью ресничек и жгутиков – тонких выростов, содержащих микротрубочки.

Сравнение строения растительных и животных клеток

  Растительная клетка Животная клетка
Максимальный размер 100 мкм 30 мкм
Форма Плазматическая или кубическая Разнообразная
Центриоли Отсутствуют Есть
Положение ядра Периферическое Центральное
Пластиды Хлоропласты, хромопласты и лейкопласты Отсутствуют
Вакуоли Крупные Мелкие
Запасные питательные вещества Крахмал, белок, масла, соли Белки, жиры, углевод гликоген
Способ питания Автотрофный – потребление неорганических соединений и создание из них углеводов с помощью солнечной или химической энергии Гетеротрофный – с использованием готовых органических соединений
Фотосинтез Есть Отсутствует
Клеточное деление Дополнительная фаза митоза — препрофаза Митоз – деление ядра, приводящее к образованию двух дочерних ядер с таким же набором хромосом
Синтез АТФ В митохондриях и хлоропластах Только в митохондриях

Сходства строения растительной и животной клетки

У растительной и животной клетки имеются следующие общие признаки:

  • Универсальное мембранное строение;
  • Единые структурные системы – цитоплазма и ядро;
  • Одинаковый химический состав;
  • Сходные процессы обмена веществ и энергии;
  • Сходный процесс деления клеток;
  • Единый принцип наследственного кода;

mfina.ru

Основные типы клеток

В организме растений и животных выделяют различные типы ткани, клеток. Ткани могут отличаться как строением клеток, так и строением межклеточного вещества, а также своими функциями. Различные типы клеток могут отличаться формой, размером, наличием или отсутствием некоторых органоидов. Разные виды клеток формируют разные виды тканей. Рассмотрим основные типы клеток.

Растительные, грибные, животные, бактериальные

Это классификация клеток в зависимости от организмов, которые из них построены. Вот сравнительная таблица, где приведены эти типы клеток, их различия и сходства.

РастительнаяЖивотнаяГрибнаяБактериальная
Ядроестьестьестьнет
Клеточная стенкаиз целлюлозынет (над мембраной расположен гликокаликс)из хитинаиз муреина
Плазматическая мембранаестьестьестьесть
Запасное веществокрахмалгликогенгликогенволютин
Митохондрииестьестьестьнет
Пластидыестьнетунетнет
Рибосомыестьестьестьесть
Комплекс Гольджиестьестьестьнет
Эндоплазматическая сетьестьестьестьнет
Лизосомыестьестьестьнет
Вакуолиестьнетнету некоторых
Способ получения энергиидыханиедыханиедыханиеброжение
Способ получения органических веществфотосинтезизвнеизвнеизвне, хемосинтез или фотосинтез

Типы клеток разных тканей

Различные клетки формируют разные ткани. Кроме того, одна и та же ткань состоит из нескольких разных видов клеток.

Эпителиальные клетки

Они называются эпителиоцитами. Это полярно дифференциированные клетки, расположенные тесно друг к другу. Они могут быть кубической, плоской или цилиндрической формы. Эпителиоциты обычно располагаются на базальной мембране.

Виды клеток соединительной ткани

Соединительная ткань существует нескольких видов:

  • ретикулярная;
  • плотная волокнистая;
  • рыхлая волокнистая;
  • костная;
  • хрящевая;
  • жировая;
  • кровь;
  • лимфа.

Каждая из этих тканей обладает различными клетками и межклеточным веществом. Ретикулярная ткань состоит из ретикулоцитов и ретикулярных волокон. Из ретикулоцитов могут формироваться кроветворные клетки и макрофаги — клетки, отвечающие за защиту организма от вирусов.

Плотная волокнистая ткань состоит преимущественно из волокон, а рыхлая — из аморфного вещества. Плотная волокнистая ткань придает органам эластичность, а рыхлая заполняет промежутки между внутренними органами.

Костная ткань содержит различные типы клеток: остеогенные, остеобласты, остеокласты и остеоциты. Последние являются основными клетками ткани. Остеогенные — это недифференцированные клетки, из которых могут формироваться остеоциты, остеобласты и остеокласты. Остеобласты вырабатывают вещества, из которых состоит межклеточное вещество костной ткани. Остеокласты отвечают за рассасывание костной ткани в случае необходимости. Некоторые ученые не относят их к костным клеткам.

Хрящевая ткань состоит из хондроцитов, хондрокластов и хондробластов. Первые находятся в наружном слое хряща. Они обладают веретенообразной формой. Хондробласты располагаются во внутреннем слое. Они имеют овальную или круглую форму. Хондрокласты отвечают за утилизацию старых клеток хряща.

Жировая ткань состоит только из одного вида клеток: липоцитов. Они содержат в себе большое количество запасных жиров.

Кровь содержит многочисленные типы клеток, которые называются кровяными тельцами. Это эритроциты, тромбоциты и лейкоциты, которые делятся на несколько видов. Эритроциты обладают сплющенной круглой формой. Они содержат белок гемоглобин, функция которого — транспорт кислорода по организму. Тромбоциты — небольшие безъядерные клетки. Они отвечают за свертывание крови. Лейкоциты представляют собой иммунную систему человека и животного.

Лейкоциты делятся на две большие группы: зернистые и незернистые. К первым относятся нейтрофилы, эозинофилы и базофилы. Первые способны осуществлять фагоцитоз — поедание враждебных бактерий и вирусов. Эозинофилы также способны к фагоцитозу, но это не основная их роль. Главная их функция заключается в разрушении гистамина, выделяющегося другими клетками при воспалительном процессе, который может вызывать отек. Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор.

Незернистые лейкоциты делятся на лимфоциты и моноциты. Первые разделяются на три класса в зависимости от своих функций. Существуют Т-лимфоциты, В-лимфоциты и нулевые лимфоциты. В-лимфоциты отвечают за выработку антител. Т-лимфоциты отвечают за распознание чужеродных клеток, а также стимуляцию работы В-лимфоцитов и моноцитов. Нулевые лимфоциты являются резервными.

Моноциты, или макрофаги, тоже способны к фагоцитозу. Они уничтожают вирусы и бактерии.

Нервная ткань

Существуют следующие типы нервных клеток:

  • собственно нервные;
  • глиальные.

Нервные клетки называются нейронами. Они состоят из тельца и отростков: длинного аксона и коротких разветвленных дендритов. Они отвечают за формирование и передачу импульса. В зависимости от количества отростков выделяют униполярные (с одним), биполярные (с двумя) и мультиполярные (с множеством) нейроны. Мультиполярные наиболее распространены в организме человека и животных.

Глиальные клетки выполняют опорную и питательную функции, обеспечивая стабильное размещение в пространстве и поставку питательных веществ нейронам.

Мышечные клетки

Они называются миоцитами, или волокнами. Существует три вида мышечной ткани:

  • поперечно-полосатая;
  • сердечная;
  • гладкая.

В зависимости от типа ткани, миоциты бывают разными. В поперечно-полосатой ткани они длинные, вытянутые, обладают несколькими ядрами и большим количеством митохондрий. Кроме того, они переплетаются между собой. Гладкая мышечная ткань характеризуется более мелкими миоцитами с меньшим количеством ядер и митохондрий. Гладкие мышечные ткани не способны сокращаться так же быстро, как поперечно-полосатые. Сердечная мышца состоит из миоцитов, больше похожих на таковые у поперечно-полосатой ткани. Все миоциты содержат сократительные белки: актин и миозин.

fb.ru

характеристика, строение и основные органеллы

Растения уникальные среди эукариот организмы, чьи клетки имеют дополнительную оболочку, поверх плазматической мембраны и органеллы, которые помогают производить свою собственную пищу. Хлорофилл придает растениям зеленый окрас и позволяет использовать солнечный свет в процессе фотосинтеза для преобразования воды и углекислого газа в сахара и углеводы — вещества, используемые клеткой в качестве источника энергии.

Читайте также: Сходство и различия строения клеток растений и животных.

Характеристика растений и их клеток

Как и грибы, растительные клетки сохранили защитную клеточную стенку от своих предков. Типичная клетка растений имеет сходное строение с типичной эукариотной клеткой, но не имеет центриолей, лизосом, промежуточных волокон, ресничек или жгутиков, как животная клетка. Однако клетки растений обладают рядом других специализированных структур, включая жесткую клеточную стенку, центральную вакуоль, плазмодесмату и хлоропласты. Хотя растения (и их типичные клетки) не подвижны, некоторые виды производят гаметы (половые клетки), которые обладают жгутиками и, следовательно, способны двигаться.

Все растения можно разделить на два основных типа: сосудистые и несосудистые. Сосудистые растения считаются более развитыми, чем несосудистые, потому что имеют специализированные ткани: ксилему, которая участвует в структурной поддержке и водопроводности, а также флоэму, которая является транспортной системой для продуктов фотосинтеза. Следовательно, они также обладают корнями, стеблями и листьями, представляющими более высокую форму организации, отсутствующую в растениях без сосудистых тканей.

Несосудистые растения, входящие в группу мохообразные, обычно не более 3-5 см в высоту, так как не имеют структурной поддержки, характерной сосудистым растениям. Они также в большей степени зависят от окружающей среды, чтобы поддерживать соответствующее количество влаги и, как правило, встречаются во влажных затемненных местах.

По оценкам, сегодня в мире насчитывается не менее 260 000 видов растений. Они варьируются по размеру и сложности от небольших мхов до гигантских секвой, самых больших живых организмов на планете, растущих до 100 м. Лишь малый процент от этих видов, непосредственно используется людьми для питания, жилья и медицины.

Тем не менее, растения являются основой экосистемы и пищевой цепи на Земле, и без них сложные формы жизни, такие как животные (включая людей), никогда бы не развились. Действительно, все живые организмы напрямую или косвенно зависят от энергии, создаваемой фотосинтезом, а побочный продукт этого процесса — кислород жизненно необходим для животных. Растения также уменьшают количество углекислого газа, присутствующего в атмосфере, препятствуют эрозии почв, влияют на уровень и качество воды.

Растениям свойственны жизненные циклы, которые включают чередование поколений диплоидных форм, содержащих парные наборы хромосом в ядрах клеток и гаплоидные формы, которые обладают только одним набором. Как правило, эти две формы растения очень разные по внешнему виду. В высших растениях диплоидная фаза, известная как спорофит (из-за способности вырабатывать споры), обычно доминирует и более узнаваема, чем генерация гаплоидных гаметофитов. Однако у мохообразных, поколение гаметофит является доминирующим и физиологически необходимым для фазы спорофит.

Животные должны потреблять белок для получения азота, но растения могут использовать неорганические формы этого элемента и, следовательно, не нуждаются во внешнем источнике белка. Однако растениям обычно требуется значительное количество воды, которое необходимо для процесса фотосинтеза, для поддержания структуры клеток, облегчения роста и в качестве средства доставки питательных веществ к растительным клеткам.

Количество и типы питательных веществ, необходимых для разных видов растений, значительно различается, однако некоторые элементы необходимы растениям в больших количествах. Эти питательные вещества включают кальций, углерод, водород, магний, азот, кислород, фосфор, калий и серу. Также, есть несколько микроэлементов, которые требуются растениями в меньших количествах: бор, хлор, медь, железо, марганец, молибден и цинк.

Строение растительных клеток

Схема строения клетки растений

Далее приведен список и краткая характеристика основных органелл клеток растений. Для более детальной информации переходите по ссылкам ниже:

  • Клеточная стенка. Как и их прокариотические предки, растительные клетки имеют жесткую оболочку, окружающую плазматическую мембрану. Однако это гораздо более сложная структура, которая выполняет множеству функций — от защиты клетки до регулирования жизненного цикла растительного организма.
  • Хлоропласты. Самой важной характеристикой растений является их способность фотосинтезировать, по сути, производить свою собственную пищу, превращая световую энергию в химическую энергию. Этот процесс осуществляется в специализированных органеллах, называемых хлоропластами.
  • Эндоплазматический ретикулу — сеть мешочков, которая производит, обрабатывает и переносит химические соединения для использования внутри и вне клетки. Он связан с двухслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой. В растениях эндоплазматический ретикулум также соединяется между клетками через плазмодесмату.
  • Аппарат Гольджи — это отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, и готовит их для экспорта.
  • Микрофиламенты — твердые стержни из глобулярных белков, называемые актином. Они выполняют структурную поддержку и являются основным компонентом цитоскелета.
  • Микротрубочки — прямые, полые цилиндры, обнаруженные в цитоплазме всех эукариотических клеток (у прокариот они отсутствуют) и выполняют различные функции, от транспортировки до поддержки структуры.
  • Митохондрии — вытянутые органеллы, которые также присутствуют в цитоплазме всех эукариотических клеток. В растительных клетках они перерабатывают молекулы углеводов и сахара, чтобы обеспечить клетку энергией, особенно когда свет не доступен для хлоропластов.
  • Ядро — важная органелла, которая служит в качестве информационно-административного центра клетки и выполняет две основные функции: 1) хранит наследственный материал клетки или ДНК и координирует деятельность клетки (рост, посредственный метаболизм, синтез белка и деление клеток).
  • Пероксисомы — окруженные одной мембраной округлые органеллы, встречающиеся в цитоплазме клеток.
  • Плазмодесмы — небольшие трубки, соединяющие растительные клетки друг с другом, обеспечивая живые мостики между ними.
  • Плазматическая мембрана. Все живые клетки имеют мембрану, которая окружает их содержимое. В прокариотах и ​​растениях мембрана представляет собой внутренний слой защиты, окруженный жесткой клеточной стенкой. Эти мембраны также регулируют прохождение молекул внутрь или из клеток.
  • Рибосомы. Все клетки живых организмов имеют рибосомы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы включают четыре нити РНК, а у прокариот — три нити РНК.
  • Вакуоль. Каждая растительная клетка имеет большую одиночную вакуоль, которая хранит соединения, помогает в росте и играет важную структурную роль для растений.
← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Клетка

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

biouroki.ru

Особенности строения растительных клеток - Биология

Растения, как и все живые организмы, имеют клеточное строение. Они могут быть одноклеточными, колониальными и многоклеточными. Клетка одноклеточного растения представляет собой  целый организм и  выполняет все функции, необходимые для обеспечения жизнедеятельности. Чаще всего оно имеет форму близкую к шаровидной или яйцевидной. Клетки многоклеточных растений очень разнообразны. Они отличаются друг от друга формой, строением, размерами. Это связано с тем, что в многоклеточном организме клетки выполняют различные функции. Многообразие растительных клеток возникает в результате дифференциации однородных клеток зародыша. Размеры клеток большинства растений колеблются в переделах 10-1000 мкм. Форма клеток многоклеточных организмов может быть округлой, эллипсовидной, кубической, цилиндрической, звездчатой и т.д. Все многообразие форм прастительных клеток можно свести к двум основным типам:

·         паренхимные клетки — клетки, имеющие форму изодиаметрического многогранника, то есть их размеры во всех трех измерениях приблизительно одинаковы;

·         прозенхимные клетки — сильно вытянутые клетки, длина которых превышает их ширину и толщину в 5 и более раз (например, волокна льна имеют длину 0,2-4 см, а толщина не превышает 100мкм.

Несмотря на разнообразие, клетки растений имеют общий план строения. Растительная клетка имеет все органоиды, свойственные другим эукариотическим организмам (животные, грибы): ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи и т.д. Вместе с тем, она отличается от них наличием:

·         прочной клеточной стенки;

·         пластид;

·         развитой системы постоянно существующих вакуолей.

Кроме того, в клетках большинства высших растений отсутствует клеточный центр с центриолями.

Общий план строения эукариотической клетки рассматривается в разделе "Общая биология" В этой главе мы остановимся только на отличительных особенностях строения растительной клетки.

 Клеточная стенка

Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток.

Основным компонентом клеточной стенки является целлюлоза (клетчатка). Молекулы целлюлозы собраны в пучки — фибриллы, образующие каркас клеточной стенки. Промежутки между фибриллами заполнены матриксом, в состав которого входят другие полисахариды — гемицеллюлозы, пектины и гликопротеины. Помимо полисахаридов, в клеточной стенке можно обнаружить и неуглеводные компоненты — лигнин, воска, кутин и суберин.

Функции клеточной стенки:

·         придает клетке определенную форму и прочность;

·         защищает живое содержимое клетки;

·         играет определенную роль в поглощении, транспорте и выделении веществ;

·         служит местом накопления некоторых запасных веществ.

Плазмодесмы

Плазмодесмы — цитоплазматические тяжи, соединяющие содержимое соседних клеток. Они проходят через клеточную стенку.

Плазмодесмы представляют собой узкие каналы, выстланные плазматической мембраной. В нем располагается десмотрубочка — цилиндрическая трубочка меньшего диаметра, сообщающаяся с ЭПР обеих соседних клеток. Чаще всего плазмодесмы формируются во время клеточного деления.

Пластиды

Двумембранные органеллы, характерные для растительных клеток. Совокупность всех пластид клетки называется пластидом.

Образование пластид происходит из пропластид — мелких телец, находящихся в меристематических клетках корней и побегов. По форме пропластиды напоминают митохондрии, отличаясь лишь большими размерами.

Снаружи они покрыты двойной цитоплазматической мембраной. В пластидах различают более или менее развитую мембранную систему (часто это одиночные тилакоиды, расположенные без определенной ориентации; иногда — трубочки или пузырьки) и внутреннее содержимое, представленное гомогенным веществом — строму.

Различают три основных типа пластид:

·         лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений;

·         хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цвета;

·         хлоропласты — зеленые пластиды.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету) обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты

Основная функция хлоропластов — фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Хлоропласты — двумембранные органоиды (рис. 2). Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результате образования выпячиваний внутренней мембраны, возникает система основных структурных элементов хлоропласта — тилакоидов. Различают:

·         тилакоиды гран, имеющие вид уплощенных мешочков, уложенных в стопки — граны;

·         тилакоиды стромы, имеющие вид уплощенных канальцев и связывающие граны между собой.

Молекулы хлорофилла входят в состав мембран тилакоидов гран, где они собраны в группы — квантосомы. Тилакоиды гран связаны друг с другом таким образом, что их полости оказываются непрерывными. В каждом хлоропласте находится в среднем 40-60 гран, расположенных в шахматном порядке. Этим обеспечивается максимальная освещенность каждой граны. Каждая грана содержит ферменты, участвующие в синтезе АТФ.

Внутренняя среда хлоропласта — строма — содержит ДНК и рибосомы, благодаря чему хлоропласт способен к автономному делению, как и митохондрии. На рибосомах происходит синтез белков мембран тилакоидов (в том числе и ферментов, осуществляющих световые реакции фотосинтеза). Белки стромы и липиды мембран имеют внепластидное происхождение. Среди белков стромы особое значение имеют белки-ферменты, синтезирующие органические вещества с использованием энергии АТФ.

Лейкопласты

Бесцветные, обычно мелкие пластиды. Встречаются в клетках органов, скрытых от солнечного света — корнях, корневищах, клубнях, семенах. Форма разнообразна — шаровидная, эллипсовидная, гантелевидная, чашевидная и т.д. Тилакоиды развиты слабо. Имеют ДНК, рибосомы, а также ферменты, осуществляющие синтез и гидролиз запасных веществ. Основная функция — синтез и накопление запасных продуктов (в первую очередь крахмала, реже — белков и липидов).

Хромопласты

Встречаются в клетках лепестков многих растений, зрелых плодов, реже — корнеплодов, а также в осенних листьях. Содержат пигменты, относящиеся к группе каротиноидов, придающие им красную, желтую и оранжевую окраску. Внутренняя мембранная система отсутствует или представлена одиночными тилакоидами. Значение в обмене веществ до конца не выяснено. По-видимому, большинство из них представляют собой стареющие пластиды. Косвенное биологическое значение состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых-опылителей и других животных для распространения плодов.

Вакуоли

Вакуоли представляют собой полости, заполненные клеточным соком и отграниченные от цитоплазмы мембраной, которую называют тонопластом.

На долю вакуолей в растительной клетке приходится до 90% ее объема. Причем, вакуоли являются постоянными компонентами растительных клеток в отличие от животных, в которых могут возникать временные вакуоли.

Вакуоли развиваются из цистерн ЭПР. В их образовании принимает участие и аппарат Гольджи, в котором упаковываются продукты обмена веществ и затем в виде пузырьков транспортируются в вакуоль.

Молодые клетки, как правило, содержат большое количество мелких вакуолей, которые, постепенно сливаясь, образуют одну большую, занимающую практически всю полость клетки. При этом цитоплазма с органоидами и ядро оказываются оттесненными к цитоплазматической мембране, то есть занимают пристенное положение.

Клеточный сок, содержащийся в вакуолях, представляет собой слабоконцентрированный водный раствор органических и неорганических веществ, образующих истинные и коллоидные растворы. В вакуолях происходит накопление как запасных веществ, так и конечных продуктов обмена веществ. Кроме того, в вакуолях часто содержатся особые пигменты из группы антоцианов, придающие растительным клеткам голубую, фиолетовую, пурпурную, темно-красную и пунцовую окраску.

Функции вакуолей:

·         накапливают питательные вещества;

·         изолируют конечные продукты обмена веществ;

·         поддерживают тургорное давление;

·         регулируют водно-солевой обмен;

·         способствуют растяжению и росту клеток;

·         окрашивают определенные части растений, привлекая опылителей и распространителей плодов и семян;

·         могут выполнять функцию лизосом.

sites.google.com


Смотрите также

Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта